organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1328

3,4-Bis(4-meth­­oxy­phen­yl)-2,5-di­hydro-1H-pyrrole-2,5-dione

aCollege of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
*Correspondence e-mail: duzt@nwsuaf.edu.cn

(Received 29 March 2012; accepted 1 April 2012; online 6 April 2012)

In the title compound, C18H15NO4, the benzene rings form quite different dihedral angles [16.07 (1) and 59.50 (1)°] with the central pyrrole ring, indicating a twisted mol­ecule. Conjugation is indicated between the five- and six-membered rings by the lengths of the C—C bonds which link them [1.462 (3) and 1.477 (3) Å]. The most prominent feature of the crystal packing is the formation of inversion dimers via eight-membered {⋯HNCO}2 synthons.

Related literature

For the use of 3,4-diaryl-substituted maleic imide derivatives as photochromic materials, see: Irie (2000[Irie, M. (2000). Chem. Rev. 100, 1683-1684.]); Liu et al. (2003[Liu, Y., Wang, Q., Liu, Y. & Yang, X. (2003). Chem. Phys. Lett. 373, 338-343.]). For the synthesis, see: Faul et al. (1999[Faul, M. M., Winneroski, L. L. & Krumrich, C. A. (1999). Tetrahedron Lett. 40, 1109-1112.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15NO4

  • Mr = 309.31

  • Triclinic, [P \overline 1]

  • a = 6.030 (3) Å

  • b = 8.971 (5) Å

  • c = 14.023 (8) Å

  • α = 90.945 (6)°

  • β = 95.205 (5)°

  • γ = 97.862 (5)°

  • V = 748.0 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.69 × 0.23 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.233, Tmax = 0.982

  • 3943 measured reflections

  • 2607 independent reflections

  • 1751 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.148

  • S = 1.03

  • 2607 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.03 2.882 (3) 168
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

3,4-Diaryl substituted maleic imide is a conjugated unit which has interesting optical and electronic properties. A number of 3,4-diaryl substituted maleic imide derivatives have been designed and synthesized to be used as photo-chromic materials (Irie, 2000; Liu et al., 2003). In the course of exploring new photo-chromic compounds, we obtained an intermediate compound, 3,4-bis(4'-methoxyphenyl)maleic imide, (I). Herein, we report its structure.

The molecule was designed to feature two terminal methoxy group to enhance its solubility and to, later, enable fictionalization. The inter-planar angles between the two benzene rings connected with the maleic imide five-membered ring are different. The inter-planar angle between the benzene plane defined by C5–C10 and maleic imide plane is 16.07 (1) °. However, the inter-planar angle between the other benzene plane defined by C12–C17 and maleic imide plane is 59.50 (1) °. The lengths of the two single bonds connecting benzene groups and maleic imide are respectively 1.462 (3) Å (C2—C5) and 1.477 (3) Å (C3—C12), which are obviously shorter than typical Csp3—Csp3 single bond. This means that the bonding between the six-membered ring and the five-membered ring is quite conjugated.

Related literature top

For the use of 3,4-diaryl-substituted maleic imide derivatives as photochromic materials, see: Irie (2000); Liu et al. (2003). For the synthesis, see: Faul et al. (1999).

Experimental top

For synthesis of imide (I), an improved procedure (Faul et al., 1999) was followed using 4-methoxyphenylethylglyoxalate (2.1 g, 10 mmol), 4-methoxyphenylacetamide (1.65 g, 10 mmol) and freshly prepared NaOEt (40 mmol) in absolute ethanol (20 ml). The mixture was refluxed for 4 h and poured into diluted HCl. After conventional workup, purification was achieved by column chromatography (ethyl acetate/hexanes 1:1) to yield (I) (2.0 g, 65%) as a yellow solid. Crystals of (I) precipitated at 298 K from its methanol solution by slow evaporation.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.93–0.96 Å and N—H = 0.86 Å and with Uiso(H) = 1.2–1.5Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
3,4-Bis(4-methoxyphenyl)-2,5-dihydro-1H-pyrrole-2,5-dione top
Crystal data top
C18H15NO4Z = 2
Mr = 309.31F(000) = 324
Triclinic, P1Dx = 1.373 Mg m3
Hall symbol: -P 1Melting point: 517 K
a = 6.030 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.971 (5) ÅCell parameters from 1101 reflections
c = 14.023 (8) Åθ = 2.7–23.6°
α = 90.945 (6)°µ = 0.10 mm1
β = 95.205 (5)°T = 296 K
γ = 97.862 (5)°Block, yellow
V = 748.0 (7) Å30.69 × 0.23 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
2607 independent reflections
Radiation source: fine-focus sealed tube1751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.2°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.233, Tmax = 0.982k = 108
3943 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0769P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2607 reflectionsΔρmax = 0.16 e Å3
211 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.114 (12)
Crystal data top
C18H15NO4γ = 97.862 (5)°
Mr = 309.31V = 748.0 (7) Å3
Triclinic, P1Z = 2
a = 6.030 (3) ÅMo Kα radiation
b = 8.971 (5) ŵ = 0.10 mm1
c = 14.023 (8) ÅT = 296 K
α = 90.945 (6)°0.69 × 0.23 × 0.19 mm
β = 95.205 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2607 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1751 reflections with I > 2σ(I)
Tmin = 0.233, Tmax = 0.982Rint = 0.034
3943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
2607 reflectionsΔρmin = 0.18 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3834 (4)0.3007 (3)0.96603 (16)0.0422 (6)
C20.4781 (4)0.3299 (2)0.87029 (14)0.0359 (6)
C30.3710 (4)0.4394 (2)0.82907 (15)0.0351 (5)
C40.2055 (4)0.4800 (3)0.89376 (15)0.0385 (6)
C50.6460 (4)0.2446 (2)0.83558 (15)0.0374 (6)
C60.6830 (4)0.2411 (3)0.73879 (16)0.0453 (6)
H60.60220.29640.69610.054*
C70.8349 (4)0.1582 (3)0.70524 (16)0.0504 (7)
H70.85580.15830.64030.060*
C80.9589 (4)0.0736 (2)0.76676 (16)0.0427 (6)
C90.9229 (4)0.0735 (3)0.86255 (17)0.0497 (7)
H91.00210.01640.90470.060*
C100.7698 (4)0.1579 (3)0.89605 (16)0.0462 (6)
H100.74860.15710.96090.055*
C111.2389 (5)0.0910 (3)0.7865 (2)0.0646 (8)
H11A1.31770.02880.83850.097*
H11B1.34540.13130.75000.097*
H11C1.14210.17210.81140.097*
C120.4059 (4)0.5231 (2)0.74060 (14)0.0347 (5)
C130.6128 (4)0.6031 (3)0.72713 (16)0.0449 (6)
H130.73220.60060.77370.054*
C140.6481 (4)0.6866 (3)0.64669 (16)0.0465 (6)
H140.78860.74050.63990.056*
C150.4738 (4)0.6893 (3)0.57684 (16)0.0441 (6)
C160.2652 (4)0.6106 (3)0.58874 (17)0.0537 (7)
H160.14690.61250.54160.064*
C170.2309 (4)0.5294 (3)0.66974 (16)0.0458 (6)
H170.08890.47820.67720.055*
C180.6974 (5)0.8516 (4)0.4787 (2)0.0779 (9)
H18A0.74480.92320.53070.117*
H18B0.68270.90370.41980.117*
H18C0.80700.78400.47500.117*
N10.2275 (3)0.3981 (2)0.97460 (12)0.0434 (5)
H10.15430.40621.02390.052*
O10.0729 (3)0.57097 (18)0.88000 (11)0.0482 (5)
O20.4269 (3)0.2105 (2)1.02547 (12)0.0629 (6)
O31.1072 (3)0.00307 (19)0.72612 (12)0.0586 (5)
O40.4878 (3)0.7688 (2)0.49458 (12)0.0668 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0439 (14)0.0460 (14)0.0379 (13)0.0089 (12)0.0043 (11)0.0091 (11)
C20.0362 (13)0.0366 (12)0.0347 (12)0.0050 (10)0.0019 (10)0.0052 (10)
C30.0356 (13)0.0361 (12)0.0340 (12)0.0072 (10)0.0024 (10)0.0059 (9)
C40.0360 (13)0.0406 (13)0.0399 (13)0.0072 (11)0.0052 (10)0.0066 (10)
C50.0385 (13)0.0367 (12)0.0380 (12)0.0077 (11)0.0041 (10)0.0076 (10)
C60.0568 (16)0.0453 (14)0.0373 (13)0.0193 (12)0.0045 (11)0.0088 (11)
C70.0687 (18)0.0513 (15)0.0371 (13)0.0240 (14)0.0124 (12)0.0089 (11)
C80.0464 (15)0.0342 (12)0.0499 (14)0.0103 (11)0.0101 (11)0.0052 (11)
C90.0565 (17)0.0496 (15)0.0465 (14)0.0182 (13)0.0045 (12)0.0147 (12)
C100.0524 (15)0.0535 (15)0.0373 (13)0.0196 (13)0.0084 (11)0.0111 (11)
C110.071 (2)0.0505 (16)0.081 (2)0.0338 (15)0.0144 (16)0.0137 (14)
C120.0351 (13)0.0382 (13)0.0331 (11)0.0121 (10)0.0041 (10)0.0071 (9)
C130.0369 (14)0.0571 (15)0.0410 (13)0.0097 (12)0.0013 (11)0.0134 (11)
C140.0400 (14)0.0529 (15)0.0466 (14)0.0039 (12)0.0062 (11)0.0142 (12)
C150.0542 (16)0.0460 (14)0.0346 (12)0.0132 (12)0.0062 (11)0.0115 (10)
C160.0490 (16)0.0707 (18)0.0397 (14)0.0086 (14)0.0083 (12)0.0152 (12)
C170.0390 (14)0.0530 (15)0.0436 (14)0.0015 (12)0.0001 (11)0.0105 (11)
C180.090 (2)0.079 (2)0.0653 (19)0.0022 (19)0.0234 (17)0.0333 (16)
N10.0472 (12)0.0525 (12)0.0352 (10)0.0163 (10)0.0135 (9)0.0107 (9)
O10.0461 (10)0.0555 (10)0.0485 (10)0.0206 (9)0.0112 (8)0.0133 (8)
O20.0737 (13)0.0724 (13)0.0524 (10)0.0323 (11)0.0196 (9)0.0322 (10)
O30.0685 (12)0.0565 (11)0.0605 (11)0.0324 (10)0.0198 (9)0.0118 (9)
O40.0743 (14)0.0783 (13)0.0479 (11)0.0073 (11)0.0062 (10)0.0328 (10)
Geometric parameters (Å, º) top
C1—O21.208 (2)C11—O31.429 (3)
C1—N11.380 (3)C11—H11A0.9600
C1—C21.519 (3)C11—H11B0.9600
C2—C31.357 (3)C11—H11C0.9600
C2—C51.462 (3)C12—C131.382 (3)
C3—C121.477 (3)C12—C171.390 (3)
C3—C41.485 (3)C13—C141.381 (3)
C4—O11.224 (3)C13—H130.9300
C4—N11.367 (3)C14—C151.373 (3)
C5—C101.395 (3)C14—H140.9300
C5—C61.396 (3)C15—O41.369 (3)
C6—C71.366 (3)C15—C161.381 (3)
C6—H60.9300C16—C171.375 (3)
C7—C81.393 (3)C16—H160.9300
C7—H70.9300C17—H170.9300
C8—O31.358 (3)C18—O41.413 (3)
C8—C91.380 (3)C18—H18A0.9600
C9—C101.380 (3)C18—H18B0.9600
C9—H90.9300C18—H18C0.9600
C10—H100.9300N1—H10.8600
O2—C1—N1124.0 (2)O3—C11—H11C109.5
O2—C1—C2129.2 (2)H11A—C11—H11C109.5
N1—C1—C2106.80 (19)H11B—C11—H11C109.5
C3—C2—C5131.08 (19)C13—C12—C17117.5 (2)
C3—C2—C1106.54 (19)C13—C12—C3120.88 (19)
C5—C2—C1122.34 (19)C17—C12—C3121.5 (2)
C2—C3—C12131.28 (19)C14—C13—C12122.1 (2)
C2—C3—C4108.34 (18)C14—C13—H13118.9
C12—C3—C4120.22 (18)C12—C13—H13118.9
O1—C4—N1124.7 (2)C15—C14—C13119.4 (2)
O1—C4—C3127.6 (2)C15—C14—H14120.3
N1—C4—C3107.73 (19)C13—C14—H14120.3
C10—C5—C6116.7 (2)O4—C15—C14124.7 (2)
C10—C5—C2122.1 (2)O4—C15—C16115.7 (2)
C6—C5—C2121.1 (2)C14—C15—C16119.6 (2)
C7—C6—C5121.6 (2)C17—C16—C15120.6 (2)
C7—C6—H6119.2C17—C16—H16119.7
C5—C6—H6119.2C15—C16—H16119.7
C6—C7—C8121.0 (2)C16—C17—C12120.8 (2)
C6—C7—H7119.5C16—C17—H17119.6
C8—C7—H7119.5C12—C17—H17119.6
O3—C8—C9125.3 (2)O4—C18—H18A109.5
O3—C8—C7116.1 (2)O4—C18—H18B109.5
C9—C8—C7118.5 (2)H18A—C18—H18B109.5
C8—C9—C10120.2 (2)O4—C18—H18C109.5
C8—C9—H9119.9H18A—C18—H18C109.5
C10—C9—H9119.9H18B—C18—H18C109.5
C9—C10—C5122.0 (2)C4—N1—C1110.48 (18)
C9—C10—H10119.0C4—N1—H1124.8
C5—C10—H10119.0C1—N1—H1124.8
O3—C11—H11A109.5C8—O3—C11118.18 (19)
O3—C11—H11B109.5C15—O4—C18118.1 (2)
H11A—C11—H11B109.5
O2—C1—C2—C3178.3 (2)C6—C5—C10—C90.5 (3)
N1—C1—C2—C30.8 (2)C2—C5—C10—C9177.8 (2)
O2—C1—C2—C50.4 (4)C2—C3—C12—C1356.6 (3)
N1—C1—C2—C5178.69 (19)C4—C3—C12—C13118.2 (2)
C5—C2—C3—C128.5 (4)C2—C3—C12—C17126.1 (3)
C1—C2—C3—C12173.9 (2)C4—C3—C12—C1759.2 (3)
C5—C2—C3—C4176.3 (2)C17—C12—C13—C140.2 (3)
C1—C2—C3—C41.4 (2)C3—C12—C13—C14177.7 (2)
C2—C3—C4—O1177.7 (2)C12—C13—C14—C150.9 (4)
C12—C3—C4—O16.5 (3)C13—C14—C15—O4179.4 (2)
C2—C3—C4—N13.1 (2)C13—C14—C15—C161.0 (4)
C12—C3—C4—N1172.74 (19)O4—C15—C16—C17178.6 (2)
C3—C2—C5—C10166.7 (2)C14—C15—C16—C170.1 (4)
C1—C2—C5—C1016.0 (3)C15—C16—C17—C121.0 (4)
C3—C2—C5—C616.1 (4)C13—C12—C17—C161.1 (4)
C1—C2—C5—C6161.3 (2)C3—C12—C17—C16178.6 (2)
C10—C5—C6—C70.7 (4)O1—C4—N1—C1177.1 (2)
C2—C5—C6—C7178.1 (2)C3—C4—N1—C13.6 (3)
C5—C6—C7—C80.1 (4)O2—C1—N1—C4176.4 (2)
C6—C7—C8—O3179.2 (2)C2—C1—N1—C42.8 (2)
C6—C7—C8—C90.9 (4)C9—C8—O3—C110.3 (3)
O3—C8—C9—C10179.0 (2)C7—C8—O3—C11179.8 (2)
C7—C8—C9—C101.1 (4)C14—C15—O4—C181.5 (4)
C8—C9—C10—C50.4 (4)C16—C15—O4—C18179.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.032.882 (3)168
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC18H15NO4
Mr309.31
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.030 (3), 8.971 (5), 14.023 (8)
α, β, γ (°)90.945 (6), 95.205 (5), 97.862 (5)
V3)748.0 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.69 × 0.23 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.233, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
3943, 2607, 1751
Rint0.034
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.148, 1.03
No. of reflections2607
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.032.882 (3)168
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

Financial support from the Program for Excellent Young Talents in Northwest A&F University (No. 2111020712) and the opening project of the Xinjiang Production Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin (BRTD1004) is greatly appreciated.

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFaul, M. M., Winneroski, L. L. & Krumrich, C. A. (1999). Tetrahedron Lett. 40, 1109–1112.  Web of Science CrossRef CAS Google Scholar
First citationIrie, M. (2000). Chem. Rev. 100, 1683–1684.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Y., Wang, Q., Liu, Y. & Yang, X. (2003). Chem. Phys. Lett. 373, 338–343.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1328
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds