organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1576

(±)-trans-5-Benzoyl-2-(1H-indol-3-yl)-4-phenyl-4,5-di­hydro­furan-3-carbo­nitrile

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 15 April 2012; accepted 25 April 2012; online 28 April 2012)

The furan ring in the title compound, C26H18N2O2, is twisted about the C(H)—C(H) bond. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O inter­action, which generates an S(6) ring motif. The presence of N—H⋯N hydrogen bonds leads to inversion dimers, which are stabilized in the crystal packing by C—H⋯O and C—H⋯π inter­actions, forming layers that stack along the a axis.

Related literature

For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the importance of furan derivatives, see: Kappe et al. (1997[Kappe, C. O., Murphree, S. S. & Padwa, A. (1997). Tetrahedron, 53, 14179-14233.]); Sato et al. (1999[Sato, M., Grese, T. A., Dodge, J. A., Bryant, H. U. & Turner, C. H. (1999). J. Med. Chem. 42, 1-24.]); Smith et al. (2002[Smith, R. A., Chen, J., Mader, M. M., Muegge, I., Moehler, U., Katti, S., Marrero, D., Stirtan, W. G., Weaver, D. R., Xiao, H. & Carley, W. (2002). Bioorg. Med. Chem. Lett. 12, 2875-2878.]). For additional conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C26H18N2O2

  • Mr = 390.42

  • Monoclinic, P 21 /c

  • a = 12.4027 (5) Å

  • b = 8.3722 (4) Å

  • c = 19.7472 (8) Å

  • β = 107.570 (2)°

  • V = 1954.85 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.17 × 0.14 × 0.13 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.974

  • 20260 measured reflections

  • 4403 independent reflections

  • 3021 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.02

  • 4403 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1,C31,C32,C37,C38 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33⋯O1 0.93 2.56 3.040 (2) 112
C56—H56⋯O2i 0.93 2.45 3.330 (2) 158
N1—H1⋯N2ii 0.86 2.20 3.037 (2) 163
C43—H43⋯Cg1iii 0.93 2.96 3.410 (2) 112
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzofurans have physiological, pharmacological and toxic properties, and there is continuing interest in their synthesis (Kappe et al., 1997). Various benzofuran derivatives have been investigated as estrogen receptor ligands, because selective estrogen receptor modulators such as ralixofene have emerged as potential therapeutics for the prevention and treatment of osteoporosis (Sato et al., 1999; Smith et al., 2002). In view of their high medicinal value, and in conjunction with our research interests, we were prompted to synthesize and report the X-ray structure determination of the title compound, (I).

In the title compound (Fig. 1), the five-membered furanyl ring adopts a twisted conformation as evident from the puckering parameters (Cremer & Pople, 1975): Q = 0.1429 (2) Å and ϕ = 126.0 (6)°. The five-(N2,/C38/C31/C32/C37) and six-membered (C32—C37) rings in the indole group are planar, with a dihedral angle of 0.95 (1)° between them. The dihedral angle between the phenyl rings (C42—C47 and C51—C56) is 31.56 (1)°. The molecular structure is stabilized by an intramolecular C—H···O interaction which generates an S(6) ring motif (Bernstein et al., 1995).

The presence of N—H···N hydrogen bonds leads to inversion dimers which are stabilised in the crystal packing by C—H···O and C—H···π interactions, Table 1, to form layers that stack along the a axis, Fig. 2.

Related literature top

For graph-set notation, see: Bernstein et al. (1995). For the importance of furan derivatives, see: Kappe et al. (1997); Sato et al. (1999); Smith et al. (2002). For additional conformation analysis, see: Cremer & Pople (1975).

Experimental top

To a stirred mixture of 2-(1H-indole-3-carbonyl)-3-phenylacrylonitrile (1.0 eq.) and phenacylpyridinium bromide (1.0 eq.) in water (10 ml) was added drop-wise triethylamine (0.25 eq.) at room temperature. The resulting clear solution, that slowly became turbid, was stirred at room temperature for 0.5 h. Then the separated free-flowing solid was filtered and washed with methanol (3 ml) to afford the title compound as pale-yellow solids. The product was recrystallized from EtOH/EtOAc mixture (1:1 ratio v/v ml) to give pure compound, as pale-yellow crystals. M. pt: 521 K; Yield: 88%.

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and with Uiso = 1.2Ueq(N,C) for CH and Uiso = 1.5Ueq(C) for CH3.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick,2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing diagram of the molecule (I). The C—H···O interactions are shown as dashed lines.
(±)-trans-5-Benzoyl-2-(1H-indol-3-yl)-4-phenyl-4,5- dihydrofuran-3-carbonitrile top
Crystal data top
C26H18N2O2F(000) = 816
Mr = 390.42Dx = 1.327 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 12.4027 (5) Åθ = 2–31°
b = 8.3722 (4) ŵ = 0.09 mm1
c = 19.7472 (8) ÅT = 293 K
β = 107.570 (2)°Block, pale-yellow
V = 1954.85 (15) Å30.17 × 0.14 × 0.13 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
4403 independent reflections
Radiation source: fine-focus sealed tube3021 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 0 pixels mm-1θmax = 27.3°, θmin = 2.2°
ω and ϕ scansh = 1216
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1010
Tmin = 0.967, Tmax = 0.974l = 2525
20260 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.2502P]
where P = (Fo2 + 2Fc2)/3
4403 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C26H18N2O2V = 1954.85 (15) Å3
Mr = 390.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4027 (5) ŵ = 0.09 mm1
b = 8.3722 (4) ÅT = 293 K
c = 19.7472 (8) Å0.17 × 0.14 × 0.13 mm
β = 107.570 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
4403 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3021 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.030
20260 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.02Δρmax = 0.16 e Å3
4403 reflectionsΔρmin = 0.15 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.67286 (12)0.45451 (19)0.17299 (7)0.0470 (3)
C20.63051 (11)0.34109 (17)0.21081 (7)0.0444 (3)
C30.52658 (12)0.27563 (17)0.18813 (7)0.0450 (3)
C40.59768 (11)0.18757 (18)0.30149 (7)0.0460 (3)
H40.62150.07960.31870.055*
C50.69611 (11)0.27397 (18)0.28285 (7)0.0446 (3)
H50.72510.36140.31640.054*
C310.43701 (12)0.28633 (17)0.12162 (7)0.0463 (3)
C320.32001 (12)0.24303 (17)0.10900 (8)0.0484 (4)
C330.25537 (13)0.1932 (2)0.15212 (9)0.0598 (4)
H330.28780.18230.20090.072*
C340.14258 (15)0.1608 (2)0.12050 (11)0.0744 (5)
H340.09850.12800.14860.089*
C350.09299 (16)0.1758 (3)0.04764 (12)0.0834 (6)
H350.01690.15080.02790.100*
C360.15389 (16)0.2265 (2)0.00444 (10)0.0766 (6)
H360.12050.23730.04430.092*
C370.26741 (13)0.26136 (19)0.03599 (8)0.0569 (4)
C380.44868 (14)0.32868 (19)0.05720 (8)0.0549 (4)
H380.51550.36290.04960.066*
C410.56106 (12)0.27837 (19)0.35731 (8)0.0491 (4)
C420.64154 (12)0.28240 (18)0.43077 (7)0.0464 (3)
C430.62343 (14)0.3942 (2)0.47757 (8)0.0593 (4)
H430.56250.46410.46270.071*
C440.69484 (17)0.4028 (2)0.54600 (9)0.0731 (5)
H440.68220.47860.57720.088*
C450.78458 (17)0.3001 (2)0.56826 (9)0.0728 (5)
H450.83270.30620.61460.087*
C460.80372 (15)0.1881 (2)0.52240 (9)0.0679 (5)
H460.86450.11820.53770.081*
C470.73263 (13)0.1793 (2)0.45343 (8)0.0567 (4)
H470.74600.10400.42230.068*
C510.79172 (11)0.16457 (18)0.28071 (7)0.0448 (3)
C520.90157 (12)0.1926 (2)0.32275 (8)0.0612 (4)
H520.91720.28010.35320.073*
C530.98818 (14)0.0916 (3)0.31985 (10)0.0726 (5)
H531.06160.11170.34840.087*
C540.96707 (15)0.0370 (2)0.27562 (9)0.0685 (5)
H541.02590.10340.27320.082*
C550.85815 (15)0.0680 (2)0.23456 (9)0.0661 (5)
H550.84300.15670.20490.079*
C560.77161 (13)0.0315 (2)0.23725 (8)0.0556 (4)
H560.69820.00900.20940.067*
N10.34776 (12)0.31303 (17)0.00616 (6)0.0629 (4)
H10.33590.33260.03820.076*
N20.70692 (12)0.54844 (18)0.14254 (7)0.0630 (4)
O10.50438 (8)0.17832 (12)0.23712 (5)0.0523 (3)
O20.47216 (10)0.34802 (17)0.34197 (6)0.0765 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0484 (8)0.0492 (9)0.0412 (7)0.0003 (6)0.0104 (6)0.0016 (7)
C20.0464 (7)0.0463 (8)0.0394 (7)0.0010 (6)0.0112 (6)0.0031 (6)
C30.0495 (8)0.0443 (8)0.0401 (7)0.0024 (6)0.0120 (6)0.0019 (6)
C40.0439 (7)0.0510 (9)0.0386 (7)0.0013 (6)0.0056 (6)0.0071 (6)
C50.0459 (7)0.0485 (8)0.0365 (7)0.0046 (6)0.0081 (6)0.0004 (6)
C310.0492 (8)0.0453 (8)0.0407 (7)0.0048 (6)0.0077 (6)0.0002 (6)
C320.0478 (8)0.0429 (8)0.0480 (8)0.0054 (6)0.0048 (6)0.0030 (6)
C330.0540 (9)0.0594 (11)0.0638 (10)0.0033 (7)0.0146 (8)0.0020 (8)
C340.0556 (10)0.0716 (12)0.0970 (14)0.0004 (9)0.0246 (10)0.0079 (11)
C350.0495 (10)0.0815 (14)0.1046 (16)0.0016 (9)0.0012 (11)0.0131 (12)
C360.0620 (11)0.0755 (13)0.0698 (12)0.0075 (9)0.0140 (9)0.0043 (10)
C370.0569 (9)0.0504 (9)0.0531 (9)0.0066 (7)0.0009 (7)0.0010 (7)
C380.0605 (9)0.0560 (10)0.0432 (8)0.0007 (7)0.0081 (7)0.0017 (7)
C410.0444 (8)0.0544 (9)0.0477 (8)0.0006 (7)0.0128 (6)0.0101 (7)
C420.0485 (8)0.0507 (9)0.0414 (7)0.0031 (6)0.0157 (6)0.0091 (6)
C430.0688 (10)0.0625 (10)0.0503 (9)0.0030 (8)0.0235 (8)0.0045 (8)
C440.0986 (14)0.0742 (13)0.0470 (9)0.0058 (11)0.0226 (9)0.0028 (9)
C450.0854 (13)0.0796 (13)0.0441 (9)0.0160 (10)0.0055 (8)0.0071 (9)
C460.0655 (10)0.0733 (12)0.0560 (10)0.0025 (9)0.0050 (8)0.0166 (9)
C470.0604 (9)0.0595 (10)0.0472 (8)0.0034 (7)0.0118 (7)0.0077 (7)
C510.0427 (7)0.0535 (9)0.0351 (7)0.0030 (6)0.0071 (5)0.0062 (6)
C520.0477 (8)0.0690 (11)0.0578 (9)0.0054 (8)0.0020 (7)0.0060 (8)
C530.0426 (8)0.0892 (14)0.0756 (11)0.0024 (9)0.0022 (8)0.0033 (11)
C540.0583 (10)0.0767 (13)0.0704 (11)0.0155 (9)0.0194 (8)0.0117 (10)
C550.0697 (11)0.0649 (11)0.0615 (10)0.0089 (9)0.0167 (8)0.0048 (8)
C560.0491 (8)0.0642 (10)0.0470 (8)0.0022 (7)0.0049 (6)0.0029 (8)
N10.0715 (9)0.0669 (9)0.0396 (7)0.0017 (7)0.0006 (6)0.0059 (6)
N20.0694 (9)0.0656 (9)0.0540 (8)0.0076 (7)0.0185 (7)0.0088 (7)
O10.0495 (6)0.0612 (7)0.0406 (5)0.0114 (5)0.0055 (4)0.0070 (5)
O20.0551 (7)0.1000 (10)0.0680 (7)0.0243 (7)0.0089 (6)0.0007 (7)
Geometric parameters (Å, º) top
C1—N21.1454 (18)C38—H380.9300
C1—C21.404 (2)C41—O21.2024 (17)
C2—C31.3469 (19)C41—C421.4925 (19)
C2—C51.5174 (18)C42—C431.380 (2)
C3—O11.3552 (17)C42—C471.385 (2)
C3—C311.4443 (19)C43—C441.376 (2)
C4—O11.4398 (15)C43—H430.9300
C4—C411.517 (2)C44—C451.370 (3)
C4—C51.5558 (19)C44—H440.9300
C4—H40.9800C45—C461.373 (3)
C5—C511.509 (2)C45—H450.9300
C5—H50.9800C46—C471.383 (2)
C31—C381.370 (2)C46—H460.9300
C31—C321.442 (2)C47—H470.9300
C32—C331.398 (2)C51—C561.382 (2)
C32—C371.400 (2)C51—C521.3847 (19)
C33—C341.376 (2)C52—C531.381 (2)
C33—H330.9300C52—H520.9300
C34—C351.389 (3)C53—C541.361 (3)
C34—H340.9300C53—H530.9300
C35—C361.367 (3)C54—C551.374 (2)
C35—H350.9300C54—H540.9300
C36—C371.388 (2)C55—C561.372 (2)
C36—H360.9300C55—H550.9300
C37—N11.372 (2)C56—H560.9300
C38—N11.3557 (19)N1—H10.8600
N2—C1—C2179.19 (17)O2—C41—C42121.82 (14)
C3—C2—C1124.91 (13)O2—C41—C4120.85 (13)
C3—C2—C5110.46 (12)C42—C41—C4117.29 (12)
C1—C2—C5124.63 (12)C43—C42—C47119.23 (14)
C2—C3—O1112.80 (12)C43—C42—C41118.02 (13)
C2—C3—C31132.33 (14)C47—C42—C41122.75 (14)
O1—C3—C31114.84 (12)C44—C43—C42120.44 (16)
O1—C4—C41109.35 (11)C44—C43—H43119.8
O1—C4—C5107.16 (10)C42—C43—H43119.8
C41—C4—C5111.55 (12)C45—C44—C43120.12 (17)
O1—C4—H4109.6C45—C44—H44119.9
C41—C4—H4109.6C43—C44—H44119.9
C5—C4—H4109.6C44—C45—C46120.17 (16)
C51—C5—C2113.71 (11)C44—C45—H45119.9
C51—C5—C4113.81 (12)C46—C45—H45119.9
C2—C5—C499.04 (10)C45—C46—C47120.03 (17)
C51—C5—H5109.9C45—C46—H46120.0
C2—C5—H5109.9C47—C46—H46120.0
C4—C5—H5109.9C46—C47—C42120.01 (16)
C38—C31—C32106.70 (12)C46—C47—H47120.0
C38—C31—C3126.34 (14)C42—C47—H47120.0
C32—C31—C3126.81 (13)C56—C51—C52117.97 (14)
C33—C32—C37119.04 (14)C56—C51—C5120.70 (12)
C33—C32—C31134.57 (13)C52—C51—C5121.32 (14)
C37—C32—C31106.39 (14)C53—C52—C51120.55 (16)
C34—C33—C32118.29 (16)C53—C52—H52119.7
C34—C33—H33120.9C51—C52—H52119.7
C32—C33—H33120.9C54—C53—C52120.60 (15)
C33—C34—C35121.58 (19)C54—C53—H53119.7
C33—C34—H34119.2C52—C53—H53119.7
C35—C34—H34119.2C53—C54—C55119.50 (16)
C36—C35—C34121.28 (17)C53—C54—H54120.3
C36—C35—H35119.4C55—C54—H54120.3
C34—C35—H35119.4C56—C55—C54120.24 (17)
C35—C36—C37117.53 (17)C56—C55—H55119.9
C35—C36—H36121.2C54—C55—H55119.9
C37—C36—H36121.2C55—C56—C51121.11 (14)
N1—C37—C36130.07 (16)C55—C56—H56119.4
N1—C37—C32107.68 (13)C51—C56—H56119.4
C36—C37—C32122.24 (17)C38—N1—C37109.80 (13)
N1—C38—C31109.43 (15)C38—N1—H1125.1
N1—C38—H38125.3C37—N1—H1125.1
C31—C38—H38125.3C3—O1—C4108.40 (10)
N2—C1—C2—C391 (13)O1—C4—C41—O210.0 (2)
N2—C1—C2—C590 (13)C5—C4—C41—O2108.38 (16)
C1—C2—C3—O1175.50 (13)O1—C4—C41—C42172.28 (11)
C5—C2—C3—O15.01 (17)C5—C4—C41—C4269.37 (16)
C1—C2—C3—C316.4 (3)O2—C41—C42—C4313.3 (2)
C5—C2—C3—C31173.05 (15)C4—C41—C42—C43164.41 (13)
C3—C2—C5—C51109.37 (14)O2—C41—C42—C47166.66 (16)
C1—C2—C5—C5170.13 (18)C4—C41—C42—C4715.6 (2)
C3—C2—C5—C411.72 (15)C47—C42—C43—C440.2 (2)
C1—C2—C5—C4168.78 (14)C41—C42—C43—C44179.82 (15)
O1—C4—C5—C51106.79 (12)C42—C43—C44—C450.1 (3)
C41—C4—C5—C51133.55 (12)C43—C44—C45—C460.1 (3)
O1—C4—C5—C214.22 (14)C44—C45—C46—C470.3 (3)
C41—C4—C5—C2105.43 (12)C45—C46—C47—C420.6 (3)
C2—C3—C31—C3821.4 (3)C43—C42—C47—C460.5 (2)
O1—C3—C31—C38156.61 (14)C41—C42—C47—C46179.48 (14)
C2—C3—C31—C32163.71 (16)C2—C5—C51—C5656.54 (18)
O1—C3—C31—C3218.3 (2)C4—C5—C51—C5655.88 (17)
C38—C31—C32—C33178.57 (17)C2—C5—C51—C52124.44 (15)
C3—C31—C32—C335.7 (3)C4—C5—C51—C52123.14 (15)
C38—C31—C32—C370.40 (16)C56—C51—C52—C531.3 (2)
C3—C31—C32—C37175.29 (14)C5—C51—C52—C53179.67 (15)
C37—C32—C33—C341.4 (2)C51—C52—C53—C540.0 (3)
C31—C32—C33—C34179.72 (16)C52—C53—C54—C551.2 (3)
C32—C33—C34—C350.3 (3)C53—C54—C55—C561.1 (3)
C33—C34—C35—C361.3 (3)C54—C55—C56—C510.3 (3)
C34—C35—C36—C370.5 (3)C52—C51—C56—C551.4 (2)
C35—C36—C37—N1179.66 (18)C5—C51—C56—C55179.51 (14)
C35—C36—C37—C321.3 (3)C31—C38—N1—C370.49 (18)
C33—C32—C37—N1179.05 (14)C36—C37—N1—C38178.77 (17)
C31—C32—C37—N10.11 (17)C32—C37—N1—C380.22 (18)
C33—C32—C37—C362.3 (2)C2—C3—O1—C45.08 (16)
C31—C32—C37—C36178.58 (15)C31—C3—O1—C4176.50 (12)
C32—C31—C38—N10.55 (17)C41—C4—O1—C3108.41 (13)
C3—C31—C38—N1175.17 (14)C5—C4—O1—C312.65 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C31,C32,C37,C38 ring.
D—H···AD—HH···AD···AD—H···A
C33—H33···O10.932.563.040 (2)112
C56—H56···O2i0.932.453.330 (2)158
N1—H1···N2ii0.862.203.037 (2)163
C43—H43···Cg1iii0.932.963.410 (2)112
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H18N2O2
Mr390.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.4027 (5), 8.3722 (4), 19.7472 (8)
β (°) 107.570 (2)
V3)1954.85 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.17 × 0.14 × 0.13
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
20260, 4403, 3021
Rint0.030
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.02
No. of reflections4403
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL97 (Sheldrick,2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C31,C32,C37,C38 ring.
D—H···AD—HH···AD···AD—H···A
C33—H33···O10.932.563.040 (2)112
C56—H56···O2i0.932.453.330 (2)158
N1—H1···N2ii0.862.203.037 (2)163
C43—H43···Cg1iii0.932.963.410 (2)112
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

JS thanks the UGC for the FIST support. JS and RV thank the management of Madura College for their encouragement and support. PG thanks the CSIR for Junior and Senior Research Fellowships. SP thanks the Department of Science and Technology, New Delhi, for funding the Indo-Spanish collaborative major research project (grant: DST/INT/SPAIN/09).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKappe, C. O., Murphree, S. S. & Padwa, A. (1997). Tetrahedron, 53, 14179–14233.  CrossRef CAS Google Scholar
First citationSato, M., Grese, T. A., Dodge, J. A., Bryant, H. U. & Turner, C. H. (1999). J. Med. Chem. 42, 1–24.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, R. A., Chen, J., Mader, M. M., Muegge, I., Moehler, U., Katti, S., Marrero, D., Stirtan, W. G., Weaver, D. R., Xiao, H. & Carley, W. (2002). Bioorg. Med. Chem. Lett. 12, 2875–2878.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1576
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds