organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1569

25,26-Bis(propan-2-yl­­idene)hepta­cyclo[20.2.1.110,13.02,21.03,8.09,14.015,20]hexa­cosa-2(21),3,5,7,9(14),11,15,17,19,23-deca­ene

aDepartment of Chemistry, Louisiana State University, Baton Rouge LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 16 April 2012; accepted 23 April 2012; online 28 April 2012)

In the title compound, C32H28, the central cyclo­octa­tetra­ene ring has a boat conformation, and the mol­ecule is saddle shaped. The seat is defined by the mean plane of the four-atom attachment points (r.m.s. deviation = 0.014 Å) of the two bicyclo­heptenyl substituents. These substituents comprise the pommel and cantle, with each mean plane defined by four atoms proximate to the seat (r.m.s. deviations = 0.002 and 0.004 Å). Relative to the seat, the pommel and cantle bend up 31.16 (4) and 29.40 (5)°, while the benzo units (flaps, r.m.s. deviations = 0.006 and 0.009 Å) bend down 36.75 (4) and 38.46 (4)°. The mean planes of the dimethyl­ethyl­idene units are almost perpendicular to the saddle seat, making dihedral angles 86.89 (4) and 88.01 (4)°.

Related literature

For related structures, see: Durr et al. (1983[Durr, H., Klauck, G., Peters, K. & von Schnering, H. G. (1983). Angew. Chem. 95, 321-323.]); Sygula et al. (2007[Sygula, A., Fronczek, F. R., Sygula, R., Rabideau, P. W. & Olmstead, M. M. (2007). J. Am. Chem. Soc. 129, 3842-3843.]). For the synthesis, see: Schaller (1994[Schaller, T. R. (1994). PhD dissertation, Louisiana State University, Baton Rouge, USA.]).

[Scheme 1]

Experimental

Crystal data
  • C32H28

  • Mr = 412.54

  • Triclinic, [P \overline 1]

  • a = 9.3577 (2) Å

  • b = 9.5500 (3) Å

  • c = 12.6946 (3) Å

  • α = 94.068 (2)°

  • β = 94.402 (2)°

  • γ = 100.162 (1)°

  • V = 1109.24 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 90 K

  • 0.40 × 0.30 × 0.27 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.973, Tmax = 0.982

  • 15041 measured reflections

  • 7973 independent reflections

  • 5906 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.140

  • S = 1.04

  • 7972 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Structures related to the title compound have been reported previously (Durr et al., 1983; Sygula et al., 2007). The central 8-ring of the title compound adopts the boat configuration, and the overall shape of the molecule is that of a saddle. Relative to the mean plane of the saddle seat (C7, C8, C15, C16, δr.m.s. = 0.014 Å), the two bicycloheptane moieties (mean planes C7, C8, C22, C24, δr.m.s. = 0.002 Å, and C15, C16, C17, C19, δr.m.s. = 0.0040 Å) bend up 29.40 (5) and 31.16 (4)°, while the mean planes of the benzo moieties (δr.m.s. = 0.010 and 0.012 Å) bend down 36.75 (4) and 38.46 (4)°. The dihedral angles between the saddle seat and the mean planes of the dimethylethylidene moieties (C17, C18, C19, C27, C28, C29, δr.m.s. = 0.006 Å; C22, C23, C24, C30, C31, C32, δr.m.s. = 0.009 Å) are 86.89 (4) and 88.01 (4)°.

Related literature top

For related structures, see: Durr et al. (1983); Sygula et al. (2007). For the synthesis, see: Schaller (1994).

Experimental top

The preparation is described by Schaller (1994). Suitable crystals were obtained by recrystallization from mixed hexanes.

Refinement top

All H atoms were placed in calculated positions guided by difference maps. The C—H bond distances were constrained to the range from 0.95 to 1.0 Å, and Uiso= 1.2Ueq (1.5 for methyl groups), thereafter refined as riding. A torsional parameter was refined for each methyl group. One reflection was omitted from the refinement, because it was behind the beamstop and measured zero.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids)
25,26-Bis(propan-2- ylidene)heptacyclo[20.2.1.110,13.02,21.03,8.09,14.015,20]hexacosa- 2(21),3,5,7,9(14),11,15,17,19,23-decaene top
Crystal data top
C32H28Z = 2
Mr = 412.54F(000) = 440
Triclinic, P1Dx = 1.235 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3577 (2) ÅCell parameters from 7268 reflections
b = 9.5500 (3) Åθ = 2.6–32.6°
c = 12.6946 (3) ŵ = 0.07 mm1
α = 94.068 (2)°T = 90 K
β = 94.402 (2)°Prism, colourless
γ = 100.162 (1)°0.40 × 0.30 × 0.27 mm
V = 1109.24 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
7973 independent reflections
Radiation source: sealed tube5906 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.033
Detector resolution: 9 pixels mm-1θmax = 32.6°, θmin = 2.6°
CCD rotation images, thick slices scansh = 1413
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1414
Tmin = 0.973, Tmax = 0.982l = 1918
15041 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.3029P]
where P = (Fo2 + 2Fc2)/3
7972 reflections(Δ/σ)max < 0.001
293 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C32H28γ = 100.162 (1)°
Mr = 412.54V = 1109.24 (5) Å3
Triclinic, P1Z = 2
a = 9.3577 (2) ÅMo Kα radiation
b = 9.5500 (3) ŵ = 0.07 mm1
c = 12.6946 (3) ÅT = 90 K
α = 94.068 (2)°0.40 × 0.30 × 0.27 mm
β = 94.402 (2)°
Data collection top
Nonius KappaCCD
diffractometer
7973 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
5906 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.033
15041 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.04Δρmax = 0.40 e Å3
7972 reflectionsΔρmin = 0.31 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.51176 (11)0.54105 (11)0.17992 (8)0.01164 (19)
C20.51490 (12)0.40789 (12)0.12654 (8)0.0145 (2)
H20.43720.33050.13150.017*
C30.62865 (12)0.38631 (12)0.06666 (9)0.0162 (2)
H30.62760.29560.03030.019*
C40.74406 (12)0.49844 (13)0.06037 (9)0.0163 (2)
H40.82140.48560.01850.020*
C50.74507 (12)0.62937 (12)0.11594 (8)0.0142 (2)
H50.82570.70460.11340.017*
C60.63010 (11)0.65370 (11)0.17583 (8)0.01175 (19)
C70.64466 (11)0.79423 (11)0.23501 (8)0.01148 (18)
C80.55457 (11)0.88949 (11)0.23640 (8)0.01190 (19)
C90.41322 (11)0.88530 (11)0.17555 (8)0.01217 (19)
C100.39865 (12)1.00158 (12)0.11612 (9)0.0159 (2)
H100.47831.07910.11850.019*
C110.27112 (13)1.00619 (13)0.05405 (9)0.0184 (2)
H110.26501.08430.01260.022*
C120.15202 (13)0.89528 (13)0.05307 (9)0.0180 (2)
H120.06430.89690.01060.022*
C130.16272 (12)0.78247 (12)0.11457 (9)0.0149 (2)
H130.07980.70930.11600.018*
C140.29252 (11)0.77331 (11)0.17483 (8)0.01192 (19)
C150.29265 (11)0.64752 (11)0.23522 (8)0.01116 (18)
C160.38385 (11)0.55264 (11)0.23830 (8)0.01137 (18)
C170.31002 (12)0.42739 (12)0.29816 (8)0.0140 (2)
H170.37440.36410.32820.017*
C180.23755 (12)0.51417 (12)0.37755 (8)0.0147 (2)
C190.15754 (11)0.58407 (12)0.29174 (8)0.0140 (2)
H190.09450.65190.31630.017*
C200.08048 (12)0.44649 (13)0.22486 (9)0.0162 (2)
H200.01390.43100.18780.019*
C210.17094 (12)0.35344 (12)0.22873 (9)0.0164 (2)
H210.15320.25920.19510.020*
C220.64166 (12)1.02883 (12)0.29767 (8)0.0143 (2)
H220.58371.09900.32630.017*
C230.73077 (12)0.95972 (12)0.37897 (8)0.0148 (2)
C240.79219 (11)0.87001 (12)0.29476 (8)0.0139 (2)
H240.86010.80740.32080.017*
C250.85602 (12)0.99244 (12)0.22954 (8)0.0157 (2)
H250.94290.99930.19460.019*
C260.76665 (12)1.08699 (12)0.23115 (9)0.0160 (2)
H260.77791.17370.19770.019*
C270.24121 (13)0.52483 (13)0.48278 (9)0.0193 (2)
C280.15625 (15)0.61803 (15)0.54365 (10)0.0272 (3)
H28A0.09820.66420.49380.041*
H28B0.22390.69120.58970.041*
H28C0.09140.55940.58700.041*
C290.33042 (15)0.44386 (16)0.55141 (10)0.0276 (3)
H29A0.38170.38530.50650.041*
H29B0.26600.38210.59320.041*
H29C0.40160.51150.59930.041*
C300.75090 (13)0.97426 (13)0.48432 (9)0.0194 (2)
C310.67789 (15)1.07174 (15)0.55135 (10)0.0275 (3)
H31A0.61691.12020.50540.041*
H31B0.75221.14300.59380.041*
H31C0.61701.01570.59850.041*
C320.85020 (15)0.89543 (15)0.54657 (10)0.0267 (3)
H32A0.89320.83420.49760.040*
H32B0.79400.83650.59470.040*
H32C0.92790.96440.58780.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0123 (4)0.0130 (5)0.0102 (4)0.0040 (3)0.0001 (3)0.0014 (3)
C20.0161 (5)0.0129 (5)0.0145 (5)0.0032 (4)0.0001 (4)0.0005 (4)
C30.0195 (5)0.0160 (5)0.0140 (5)0.0072 (4)0.0006 (4)0.0006 (4)
C40.0154 (5)0.0206 (5)0.0141 (5)0.0070 (4)0.0024 (4)0.0002 (4)
C50.0123 (5)0.0165 (5)0.0142 (5)0.0035 (4)0.0015 (4)0.0008 (4)
C60.0121 (4)0.0131 (5)0.0104 (4)0.0037 (3)0.0000 (3)0.0008 (3)
C70.0121 (4)0.0121 (5)0.0100 (4)0.0017 (3)0.0010 (3)0.0004 (3)
C80.0131 (4)0.0115 (4)0.0107 (4)0.0009 (3)0.0017 (3)0.0006 (3)
C90.0141 (5)0.0121 (5)0.0110 (4)0.0042 (4)0.0020 (3)0.0002 (3)
C100.0191 (5)0.0133 (5)0.0159 (5)0.0039 (4)0.0028 (4)0.0024 (4)
C110.0232 (6)0.0165 (5)0.0179 (5)0.0085 (4)0.0022 (4)0.0046 (4)
C120.0174 (5)0.0221 (6)0.0163 (5)0.0098 (4)0.0008 (4)0.0023 (4)
C130.0133 (5)0.0172 (5)0.0149 (5)0.0050 (4)0.0014 (4)0.0003 (4)
C140.0132 (4)0.0130 (5)0.0104 (4)0.0045 (3)0.0027 (3)0.0000 (3)
C150.0107 (4)0.0129 (5)0.0097 (4)0.0018 (3)0.0008 (3)0.0003 (3)
C160.0117 (4)0.0116 (5)0.0102 (4)0.0009 (3)0.0002 (3)0.0006 (3)
C170.0146 (5)0.0136 (5)0.0133 (5)0.0009 (4)0.0008 (4)0.0033 (4)
C180.0127 (5)0.0165 (5)0.0137 (5)0.0011 (4)0.0013 (4)0.0024 (4)
C190.0125 (5)0.0168 (5)0.0126 (4)0.0018 (4)0.0023 (4)0.0016 (4)
C200.0133 (5)0.0200 (5)0.0135 (5)0.0010 (4)0.0002 (4)0.0019 (4)
C210.0173 (5)0.0150 (5)0.0150 (5)0.0015 (4)0.0004 (4)0.0007 (4)
C220.0164 (5)0.0126 (5)0.0133 (5)0.0008 (4)0.0022 (4)0.0005 (4)
C230.0142 (5)0.0151 (5)0.0132 (5)0.0017 (4)0.0018 (4)0.0002 (4)
C240.0127 (5)0.0152 (5)0.0129 (4)0.0009 (4)0.0003 (4)0.0012 (4)
C250.0145 (5)0.0191 (5)0.0122 (5)0.0009 (4)0.0023 (4)0.0007 (4)
C260.0182 (5)0.0147 (5)0.0135 (5)0.0019 (4)0.0022 (4)0.0010 (4)
C270.0185 (5)0.0215 (6)0.0145 (5)0.0058 (4)0.0018 (4)0.0025 (4)
C280.0304 (7)0.0296 (7)0.0171 (5)0.0074 (5)0.0101 (5)0.0049 (5)
C290.0270 (6)0.0345 (7)0.0164 (5)0.0080 (5)0.0046 (5)0.0105 (5)
C300.0197 (5)0.0214 (6)0.0130 (5)0.0072 (4)0.0016 (4)0.0001 (4)
C310.0300 (7)0.0310 (7)0.0159 (5)0.0082 (5)0.0078 (5)0.0080 (5)
C320.0286 (7)0.0311 (7)0.0150 (5)0.0076 (5)0.0059 (5)0.0057 (5)
Geometric parameters (Å, º) top
C1—C21.4040 (15)C18—C271.3298 (15)
C1—C61.4081 (14)C18—C191.5320 (15)
C1—C161.4716 (14)C19—C201.5429 (16)
C2—C31.3902 (15)C19—H191.0000
C2—H20.9500C20—C211.3319 (17)
C3—C41.3917 (16)C20—H200.9500
C3—H30.9500C21—H210.9500
C4—C51.3896 (16)C22—C231.5346 (16)
C4—H40.9500C22—C261.5422 (15)
C5—C61.4064 (14)C22—H221.0000
C5—H50.9500C23—C301.3301 (15)
C6—C71.4701 (15)C23—C241.5314 (15)
C7—C81.3451 (15)C24—C251.5414 (15)
C7—C241.5536 (15)C24—H241.0000
C8—C91.4724 (14)C25—C261.3348 (17)
C8—C221.5533 (15)C25—H250.9500
C9—C101.4062 (15)C26—H260.9500
C9—C141.4108 (15)C27—C291.5052 (18)
C10—C111.3879 (16)C27—C281.5060 (18)
C10—H100.9500C28—H28A0.9800
C11—C121.3941 (17)C28—H28B0.9800
C11—H110.9500C28—H28C0.9800
C12—C131.3877 (16)C29—H29A0.9800
C12—H120.9500C29—H29B0.9800
C13—C141.4045 (15)C29—H29C0.9800
C13—H130.9500C30—C311.5029 (18)
C14—C151.4702 (15)C30—C321.5077 (19)
C15—C161.3505 (14)C31—H31A0.9800
C15—C191.5528 (14)C31—H31B0.9800
C16—C171.5503 (15)C31—H31C0.9800
C17—C181.5321 (15)C32—H32A0.9800
C17—C211.5430 (15)C32—H32B0.9800
C17—H171.0000C32—H32C0.9800
C2—C1—C6118.81 (9)C18—C19—H19116.9
C2—C1—C16117.03 (9)C20—C19—H19116.9
C6—C1—C16124.16 (9)C15—C19—H19116.9
C3—C2—C1121.75 (10)C21—C20—C19107.19 (9)
C3—C2—H2119.1C21—C20—H20126.4
C1—C2—H2119.1C19—C20—H20126.4
C2—C3—C4119.54 (10)C20—C21—C17107.18 (10)
C2—C3—H3120.2C20—C21—H21126.4
C4—C3—H3120.2C17—C21—H21126.4
C5—C4—C3119.35 (10)C23—C22—C2697.95 (9)
C5—C4—H4120.3C23—C22—C897.91 (8)
C3—C4—H4120.3C26—C22—C8107.32 (8)
C4—C5—C6121.88 (10)C23—C22—H22116.9
C4—C5—H5119.1C26—C22—H22116.9
C6—C5—H5119.1C8—C22—H22116.9
C5—C6—C1118.61 (10)C30—C23—C24132.56 (11)
C5—C6—C7117.50 (9)C30—C23—C22133.28 (11)
C1—C6—C7123.81 (9)C24—C23—C2294.14 (8)
C8—C7—C6130.92 (10)C23—C24—C2597.84 (9)
C8—C7—C24106.93 (9)C23—C24—C797.76 (8)
C6—C7—C24121.31 (9)C25—C24—C7107.36 (8)
C7—C8—C9130.01 (10)C23—C24—H24116.9
C7—C8—C22106.74 (9)C25—C24—H24116.9
C9—C8—C22122.04 (9)C7—C24—H24116.9
C10—C9—C14118.72 (10)C26—C25—C24107.36 (9)
C10—C9—C8117.34 (10)C26—C25—H25126.3
C14—C9—C8123.94 (9)C24—C25—H25126.3
C11—C10—C9121.78 (11)C25—C26—C22106.97 (10)
C11—C10—H10119.1C25—C26—H26126.5
C9—C10—H10119.1C22—C26—H26126.5
C10—C11—C12119.44 (11)C18—C27—C29122.74 (12)
C10—C11—H11120.3C18—C27—C28123.12 (12)
C12—C11—H11120.3C29—C27—C28114.14 (11)
C13—C12—C11119.46 (10)C27—C28—H28A109.5
C13—C12—H12120.3C27—C28—H28B109.5
C11—C12—H12120.3H28A—C28—H28B109.5
C12—C13—C14121.90 (10)C27—C28—H28C109.5
C12—C13—H13119.0H28A—C28—H28C109.5
C14—C13—H13119.0H28B—C28—H28C109.5
C13—C14—C9118.60 (10)C27—C29—H29A109.5
C13—C14—C15117.35 (10)C27—C29—H29B109.5
C9—C14—C15124.04 (9)H29A—C29—H29B109.5
C16—C15—C14131.01 (9)C27—C29—H29C109.5
C16—C15—C19106.86 (9)H29A—C29—H29C109.5
C14—C15—C19121.04 (9)H29B—C29—H29C109.5
C15—C16—C1130.80 (9)C23—C30—C31122.88 (12)
C15—C16—C17106.60 (9)C23—C30—C32122.80 (12)
C1—C16—C17121.28 (9)C31—C30—C32114.31 (11)
C18—C17—C2197.97 (8)C30—C31—H31A109.5
C18—C17—C1698.11 (8)C30—C31—H31B109.5
C21—C17—C16107.16 (8)H31A—C31—H31B109.5
C18—C17—H17116.8C30—C31—H31C109.5
C21—C17—H17116.8H31A—C31—H31C109.5
C16—C17—H17116.8H31B—C31—H31C109.5
C27—C18—C19132.61 (11)C30—C32—H32A109.5
C27—C18—C17133.24 (11)C30—C32—H32B109.5
C19—C18—C1794.15 (8)H32A—C32—H32B109.5
C18—C19—C2097.99 (9)C30—C32—H32C109.5
C18—C19—C1597.64 (8)H32A—C32—H32C109.5
C20—C19—C15107.39 (9)H32B—C32—H32C109.5
C6—C1—C2—C32.57 (15)C15—C16—C17—C2166.01 (11)
C16—C1—C2—C3178.23 (10)C1—C16—C17—C21102.21 (11)
C1—C2—C3—C41.03 (16)C21—C17—C18—C27125.62 (13)
C2—C3—C4—C51.34 (16)C16—C17—C18—C27125.66 (13)
C3—C4—C5—C62.18 (16)C21—C17—C18—C1953.94 (9)
C4—C5—C6—C10.63 (15)C16—C17—C18—C1954.78 (9)
C4—C5—C6—C7177.63 (10)C27—C18—C19—C20125.66 (13)
C2—C1—C6—C51.71 (15)C17—C18—C19—C2053.90 (9)
C16—C1—C6—C5179.16 (9)C27—C18—C19—C15125.47 (13)
C2—C1—C6—C7175.09 (9)C17—C18—C19—C1554.97 (9)
C16—C1—C6—C74.04 (16)C16—C15—C19—C1836.15 (10)
C5—C6—C7—C8127.28 (12)C14—C15—C19—C18154.55 (9)
C1—C6—C7—C855.89 (16)C16—C15—C19—C2064.75 (11)
C5—C6—C7—C2440.80 (13)C14—C15—C19—C20104.55 (11)
C1—C6—C7—C24136.03 (10)C18—C19—C20—C2135.12 (11)
C6—C7—C8—C92.37 (19)C15—C19—C20—C2165.51 (11)
C24—C7—C8—C9166.99 (10)C19—C20—C21—C170.07 (12)
C6—C7—C8—C22169.67 (10)C18—C17—C21—C2035.23 (11)
C24—C7—C8—C220.31 (11)C16—C17—C21—C2065.85 (11)
C7—C8—C9—C10125.05 (12)C7—C8—C22—C2335.24 (10)
C22—C8—C9—C1040.57 (14)C9—C8—C22—C23156.22 (9)
C7—C8—C9—C1455.85 (16)C7—C8—C22—C2665.68 (11)
C22—C8—C9—C14138.53 (10)C9—C8—C22—C26102.86 (11)
C14—C9—C10—C112.48 (16)C26—C22—C23—C30124.46 (13)
C8—C9—C10—C11178.38 (10)C8—C22—C23—C30126.71 (13)
C9—C10—C11—C122.28 (17)C26—C22—C23—C2454.13 (9)
C10—C11—C12—C130.31 (17)C8—C22—C23—C2454.71 (9)
C11—C12—C13—C142.71 (17)C30—C23—C24—C25124.57 (13)
C12—C13—C14—C92.48 (16)C22—C23—C24—C2554.04 (9)
C12—C13—C14—C15178.66 (10)C30—C23—C24—C7126.61 (13)
C10—C9—C14—C130.11 (15)C22—C23—C24—C754.79 (9)
C8—C9—C14—C13179.19 (9)C8—C7—C24—C2335.81 (10)
C10—C9—C14—C15178.68 (9)C6—C7—C24—C23153.58 (9)
C8—C9—C14—C150.41 (16)C8—C7—C24—C2564.96 (11)
C13—C14—C15—C16127.68 (12)C6—C7—C24—C25105.65 (11)
C9—C14—C15—C1653.52 (16)C23—C24—C25—C2635.32 (11)
C13—C14—C15—C1938.70 (14)C7—C24—C25—C2665.40 (11)
C9—C14—C15—C19140.10 (10)C24—C25—C26—C220.02 (12)
C14—C15—C16—C11.89 (19)C23—C22—C26—C2535.21 (11)
C19—C15—C16—C1165.94 (10)C8—C22—C26—C2565.69 (11)
C14—C15—C16—C17168.56 (10)C19—C18—C27—C29179.81 (11)
C19—C15—C16—C170.73 (11)C17—C18—C27—C290.8 (2)
C2—C1—C16—C15128.07 (12)C19—C18—C27—C280.5 (2)
C6—C1—C16—C1552.79 (16)C17—C18—C27—C28178.90 (11)
C2—C1—C16—C1736.95 (13)C24—C23—C30—C31179.52 (11)
C6—C1—C16—C17142.20 (10)C22—C23—C30—C311.4 (2)
C15—C16—C17—C1834.98 (10)C24—C23—C30—C320.2 (2)
C1—C16—C17—C18156.80 (9)C22—C23—C30—C32177.91 (11)

Experimental details

Crystal data
Chemical formulaC32H28
Mr412.54
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)9.3577 (2), 9.5500 (3), 12.6946 (3)
α, β, γ (°)94.068 (2), 94.402 (2), 100.162 (1)
V3)1109.24 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.30 × 0.27
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
15041, 7973, 5906
Rint0.033
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.140, 1.04
No. of reflections7972
No. of parameters293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.31

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationDurr, H., Klauck, G., Peters, K. & von Schnering, H. G. (1983). Angew. Chem. 95, 321–323.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchaller, T. R. (1994). PhD dissertation, Louisiana State University, Baton Rouge, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSygula, A., Fronczek, F. R., Sygula, R., Rabideau, P. W. & Olmstead, M. M. (2007). J. Am. Chem. Soc. 129, 3842–3843.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1569
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds