organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1546-o1547

(E)-4-Amino-N′-(5-chloro-2-hy­dr­oxy­benzyl­­idene)benzohydrazide

aCollege of Chemistry and Chemical Engineering, Qinzhou University, Qinzhou, Guangxi 535000, People's Republic of China, and bGuangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
*Correspondence e-mail: ljmmarise@163.com

(Received 21 April 2012; accepted 23 April 2012; online 28 April 2012)

The title compound, C14H12ClN3O2, displays an E conformation with respect to the C=N double bond. The dihedral angle between the benzene rings is 41.3 (5)°. The mol­ecular structure is stabilized by an intra­molecular O—H⋯N hydrogen bond. In the crystal, N—H⋯O and weak N—H⋯Cl hydrogen bonds link the mol­ecules into a three-dimensional architecture. In addition, there are weak C—H⋯π stacking inter­actions.

Related literature

For the biological properties of Schiff base and hydrazone compounds, see: Kucukguzel et al. (2006[Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]); Khattab (2005[Khattab, S. N. (2005). Molecules, 10, 1218-1228.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]). For closely related structures and background references, see: Bernhardt et al. (2003[Bernhardt, P. V., Caldwell, L. M., Chaston, T. B., Chin, P. & Richardson, D. R. (2003). J. Biol. Inorg. Chem. 8, 866-880.], 2005[Bernhardt, P. V., Chin, P., Sharpe, P. C., Wang, J. Y. C. & Richardson, D. R. (2005). J. Biol. Inorg. Chem. 10, 761-777.]); Armstrong et al. (2003[Armstrong, C. M., Bernhardt, P. V., Chin, P. & Richardson, D. R. (2003). Eur. J. Inorg. Chem. pp. 1145-1156.]); Cao (2009[Cao, G.-B. (2009). Acta Cryst. E65, o2415.]); Yang (2009[Yang, D.-S. (2009). Acta Cryst. E65, o2864.]); Zhou & Yang (2010[Zhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o365.]); Zhang et al., (2009[Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClN3O2

  • Mr = 289.72

  • Orthorhombic, P n a 21

  • a = 9.3375 (16) Å

  • b = 9.7194 (16) Å

  • c = 14.214 (3) Å

  • V = 1290.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.947, Tmax = 0.970

  • 8516 measured reflections

  • 2944 independent reflections

  • 2866 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.10

  • 2944 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1407 Friedel pairs

  • Flack parameter: 0.09 (9)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 2.12 2.921 (2) 156
N1—H1A⋯Cl1ii 0.86 2.94 3.680 (2) 145
N1—H1B⋯O1iii 0.86 2.19 2.978 (3) 151
O2—H2⋯N3 0.82 1.88 2.588 (3) 145
C5—H5⋯Cg2iv 0.93 2.92 3.473 (3) 120
C14—H14⋯Cg1v 0.93 2.83 3.641 (3) 147
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) x, y, z-1; (iii) [-x+2, -y+1, z-{\script{1\over 2}}]; (iv) [-x+2, -y+2, z-{\script{1\over 2}}]; (v) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are an important class of compounds in the medicinal and pharmaceutical fields and have been found to play a role in the development of coordination chemistry as they readily form stable complexes with most transition metals. These complexes show interesting properties, e.g. their ability to reversibly bind oxygen, catalytic activity in hydrogenation of olefins and transfer of an amino group, photochromic properties, and complexing ability towards toxic metals (Karthikeyan et al., 2006; Khattab, 2005; Kucukguzel et al., 2006). Recently, hydrazone Schiff base compounds (Cao, 2009; Yang, 2009; Zhou & Yang, 2010; Zhang et al., 2009) derived from the reaction of aldehydes with hydrazines have been demonstrated to possess excellent biological activities, such as anti-bacterial, anti-convulsant, and anti-tubercular (Bernhardt & Caldwell et al., 2003; Bernhardt & Chin et al., 2005; Armstrong et al., 2003). In order to explore new anti-bacterial materials, a new hydrazone derivatives was prepared and characterized. It can be seen that in addition to the presence of the typical functional group —CO—NH—N CH—, the compound has chloro, hydroxy and amino substituents, which may enhance its biological properties.

As shown in Fig. 1, the molecule displays an E configuration with respect to the CN double bond. The dihedral angle between the two benzene rings is 41.3 (5)°. The bond lengths and angles are as expected for a compound of this type and agree with the other ligands belonging to the hydrazone series, mentioned above. The C8N3 and C7O1 bond lengths of 1.287 (3) and 1.238 (3) Å, respectively, conform to the values for double bonds. Whereas the C1—N1, C7—N2, C10—O2 and N2—N3 [1.367 (3), 1.370 (3), 1.355 (3) and 1.368 (3) Å, respectively] bond lengths correspond to a single bond. In the crystal packing, it is noted that amino H (H1A, H1B) and amide H2A are involved in forming intermolecular N—H···O and N—H···Cl hydrogen bonds (Fig. 2 and Table 1), linking the molecules into a three-dimensional supramolecular structure. In addition, neighbouring molecules are also interact through weak C—H···π stacking interactions, Table 1.

Related literature top

For the biological properties of Schiff base and hydrazone compounds, see: Kucukguzel et al. (2006); Khattab (2005); Karthikeyan et al. (2006). For closely related structures and background references, see: Bernhardt et al. (2003, 2005); Armstrong et al. (2003); Cao (2009); Yang (2009); Zhou & Yang (2010); Zhang et al., (2009).

Experimental top

To a methanol solution (20 ml) of 5-chloro-2-hydroxybenzaldehyde (1 mmol, 0.157 g) and 4-aminobenzohydrazide (1 mmol, 0.151 g), a few drops of acetic acid were added. The mixture was refluxed for 2 h and then cooled to room temperature to give a yellow solution. Crystals of the title compound were formed by gradual evaporation of the solvent over a period of six days at room temperature.

Refinement top

H-atoms were placed in calculated positions (C—H = 0.93, O—H = 0.82 and N—H = 0.86-0.89 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C or N) and 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing in the title compound where molecules are linked via N—H···O and N—H···Cl hydrogen bonds (dashed lines). Except for those involved in hydrogen-bonding interactions, H atoms have been omitted for clarity.
(E)-4-Amino-N'-(5-chloro-2-hydroxybenzylidene)benzohydrazide top
Crystal data top
C14H12ClN3O2F(000) = 600
Mr = 289.72Dx = 1.487 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 6341 reflections
a = 9.3375 (16) Åθ = 1.4–27.5°
b = 9.7194 (16) ŵ = 0.30 mm1
c = 14.214 (3) ÅT = 296 K
V = 1290.0 (4) Å3Block, yellow
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2944 independent reflections
Radiation source: fine-focus sealed tube2866 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.947, Tmax = 0.970k = 129
8516 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.2086P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2944 reflectionsΔρmax = 0.36 e Å3
182 parametersΔρmin = 0.16 e Å3
0 restraintsAbsolute structure: Flack (1983), 1407 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (9)
Crystal data top
C14H12ClN3O2V = 1290.0 (4) Å3
Mr = 289.72Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.3375 (16) ŵ = 0.30 mm1
b = 9.7194 (16) ÅT = 296 K
c = 14.214 (3) Å0.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2944 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2866 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.970Rint = 0.038
8516 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.36 e Å3
S = 1.10Δρmin = 0.16 e Å3
2944 reflectionsAbsolute structure: Flack (1983), 1407 Friedel pairs
182 parametersAbsolute structure parameter: 0.09 (9)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.75084 (6)0.97018 (6)0.79216 (7)0.03468 (17)
O11.14409 (16)0.65129 (17)0.27805 (12)0.0267 (4)
O21.19222 (18)0.8254 (2)0.51735 (12)0.0343 (4)
H21.15930.81840.46410.051*
N10.8561 (3)0.6238 (2)0.12949 (16)0.0377 (5)
H1A0.79800.68130.15510.045*
H1B0.88670.55420.16100.045*
N20.94718 (19)0.78349 (19)0.30263 (14)0.0224 (4)
H2A0.86820.81640.28160.027*
N30.9907 (2)0.8088 (2)0.39290 (13)0.0224 (4)
C10.8999 (2)0.6432 (2)0.03874 (17)0.0262 (5)
C20.9933 (3)0.5508 (2)0.00555 (18)0.0270 (5)
H2B1.02720.47480.02730.032*
C31.0352 (2)0.5718 (2)0.09760 (17)0.0255 (5)
H31.09820.51030.12570.031*
C40.9840 (2)0.6846 (2)0.14908 (16)0.0220 (4)
C50.8906 (3)0.7754 (3)0.10492 (17)0.0286 (5)
H50.85480.85030.13820.034*
C60.8504 (3)0.7562 (3)0.01244 (17)0.0308 (5)
H60.78950.81930.01610.037*
C71.0335 (2)0.7040 (2)0.24690 (16)0.0220 (4)
C80.9037 (2)0.8682 (2)0.45000 (17)0.0239 (5)
H80.81490.89850.42940.029*
C90.9471 (2)0.8871 (2)0.54757 (16)0.0230 (4)
C101.0863 (2)0.8585 (2)0.57817 (17)0.0247 (5)
C111.1199 (2)0.8632 (2)0.67355 (18)0.0274 (5)
H111.21240.84340.69300.033*
C121.0177 (3)0.8968 (2)0.73943 (16)0.0268 (5)
H121.04020.89790.80310.032*
C130.8807 (3)0.9291 (2)0.70915 (17)0.0256 (5)
C140.8452 (3)0.9260 (2)0.61485 (16)0.0253 (5)
H140.75340.94970.59590.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0388 (3)0.0439 (3)0.0213 (3)0.0096 (2)0.0028 (2)0.0028 (3)
O10.0207 (7)0.0360 (8)0.0235 (9)0.0020 (6)0.0044 (6)0.0024 (7)
O20.0268 (9)0.0562 (11)0.0198 (8)0.0067 (8)0.0026 (7)0.0004 (8)
N10.0550 (14)0.0359 (11)0.0221 (11)0.0034 (10)0.0080 (10)0.0054 (9)
N20.0218 (8)0.0301 (9)0.0155 (8)0.0004 (7)0.0036 (7)0.0002 (7)
N30.0232 (9)0.0287 (9)0.0152 (8)0.0022 (7)0.0037 (7)0.0020 (7)
C10.0289 (11)0.0308 (12)0.0188 (10)0.0055 (9)0.0003 (8)0.0001 (9)
C20.0284 (11)0.0270 (10)0.0254 (11)0.0000 (9)0.0027 (9)0.0042 (10)
C30.0228 (10)0.0289 (11)0.0247 (12)0.0021 (9)0.0020 (9)0.0010 (9)
C40.0227 (10)0.0267 (10)0.0166 (10)0.0023 (8)0.0013 (8)0.0002 (8)
C50.0374 (12)0.0291 (11)0.0195 (11)0.0054 (9)0.0026 (9)0.0010 (9)
C60.0403 (14)0.0317 (11)0.0206 (11)0.0065 (10)0.0077 (10)0.0004 (9)
C70.0236 (10)0.0239 (10)0.0185 (11)0.0033 (8)0.0003 (9)0.0029 (8)
C80.0235 (10)0.0288 (11)0.0195 (11)0.0007 (8)0.0047 (8)0.0018 (9)
C90.0271 (11)0.0239 (10)0.0180 (10)0.0009 (8)0.0033 (8)0.0010 (9)
C100.0263 (11)0.0274 (10)0.0205 (11)0.0000 (8)0.0032 (9)0.0010 (9)
C110.0258 (11)0.0325 (11)0.0239 (12)0.0019 (9)0.0093 (9)0.0012 (9)
C120.0360 (12)0.0299 (11)0.0146 (10)0.0002 (9)0.0062 (9)0.0001 (9)
C130.0322 (12)0.0248 (10)0.0197 (11)0.0011 (8)0.0015 (9)0.0022 (9)
C140.0252 (11)0.0293 (10)0.0215 (11)0.0019 (9)0.0033 (8)0.0009 (9)
Geometric parameters (Å, º) top
Cl1—C131.741 (2)C4—C51.392 (3)
O1—C71.235 (2)C4—C71.479 (3)
O2—C101.355 (3)C5—C61.381 (3)
O2—H20.8200C5—H50.9300
N1—C11.367 (3)C6—H60.9300
N1—H1A0.8600C8—C91.458 (3)
N1—H1B0.8600C8—H80.9300
N2—N31.369 (3)C9—C101.399 (3)
N2—C71.370 (3)C9—C141.403 (3)
N2—H2A0.8600C10—C111.393 (3)
N3—C81.287 (3)C11—C121.378 (3)
C1—C61.396 (3)C11—H110.9300
C1—C21.402 (3)C12—C131.390 (3)
C2—C31.382 (3)C12—H120.9300
C2—H2B0.9300C13—C141.382 (3)
C3—C41.402 (3)C14—H140.9300
C3—H30.9300
C10—O2—H2109.5C1—C6—H6119.6
C1—N1—H1A120.0O1—C7—N2121.3 (2)
C1—N1—H1B120.0O1—C7—C4123.1 (2)
H1A—N1—H1B120.0N2—C7—C4115.54 (19)
N3—N2—C7117.90 (19)N3—C8—C9118.7 (2)
N3—N2—H2A121.1N3—C8—H8120.6
C7—N2—H2A121.1C9—C8—H8120.6
C8—N3—N2118.93 (19)C10—C9—C14118.3 (2)
N1—C1—C6120.1 (2)C10—C9—C8122.0 (2)
N1—C1—C2121.5 (2)C14—C9—C8119.6 (2)
C6—C1—C2118.4 (2)O2—C10—C11117.7 (2)
C3—C2—C1120.6 (2)O2—C10—C9122.0 (2)
C3—C2—H2B119.7C11—C10—C9120.4 (2)
C1—C2—H2B119.7C12—C11—C10120.9 (2)
C2—C3—C4120.8 (2)C12—C11—H11119.6
C2—C3—H3119.6C10—C11—H11119.6
C4—C3—H3119.6C11—C12—C13119.0 (2)
C5—C4—C3118.3 (2)C11—C12—H12120.5
C5—C4—C7122.7 (2)C13—C12—H12120.5
C3—C4—C7118.9 (2)C14—C13—C12121.2 (2)
C6—C5—C4121.0 (2)C14—C13—Cl1119.69 (19)
C6—C5—H5119.5C12—C13—Cl1119.13 (18)
C4—C5—H5119.5C13—C14—C9120.3 (2)
C5—C6—C1120.8 (2)C13—C14—H14119.9
C5—C6—H6119.6C9—C14—H14119.9
C7—N2—N3—C8171.4 (2)N2—N3—C8—C9176.14 (19)
N1—C1—C2—C3179.5 (2)N3—C8—C9—C108.1 (3)
C6—C1—C2—C30.2 (4)N3—C8—C9—C14167.4 (2)
C1—C2—C3—C40.9 (4)C14—C9—C10—O2177.5 (2)
C2—C3—C4—C50.5 (3)C8—C9—C10—O26.9 (3)
C2—C3—C4—C7179.1 (2)C14—C9—C10—C112.7 (3)
C3—C4—C5—C60.7 (4)C8—C9—C10—C11172.9 (2)
C7—C4—C5—C6177.9 (2)O2—C10—C11—C12179.7 (2)
C4—C5—C6—C11.4 (4)C9—C10—C11—C120.4 (4)
N1—C1—C6—C5178.3 (2)C10—C11—C12—C131.4 (4)
C2—C1—C6—C51.0 (4)C11—C12—C13—C141.0 (4)
N3—N2—C7—O13.3 (3)C11—C12—C13—Cl1179.46 (18)
N3—N2—C7—C4177.71 (18)C12—C13—C14—C91.3 (4)
C5—C4—C7—O1158.2 (2)Cl1—C13—C14—C9177.17 (17)
C3—C4—C7—O120.4 (3)C10—C9—C14—C133.1 (3)
C5—C4—C7—N222.8 (3)C8—C9—C14—C13172.6 (2)
C3—C4—C7—N2158.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.122.921 (2)156
N1—H1A···Cl1ii0.862.943.680 (2)145
N1—H1B···O1iii0.862.192.978 (3)151
O2—H2···N30.821.882.588 (3)145
C5—H5···Cg2iv0.932.923.473 (3)120
C14—H14···Cg1v0.932.833.641 (3)147
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x, y, z1; (iii) x+2, y+1, z1/2; (iv) x+2, y+2, z1/2; (v) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H12ClN3O2
Mr289.72
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)9.3375 (16), 9.7194 (16), 14.214 (3)
V3)1290.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.947, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
8516, 2944, 2866
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.10
No. of reflections2944
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.16
Absolute structureFlack (1983), 1407 Friedel pairs
Absolute structure parameter0.09 (9)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.122.921 (2)156.1
N1—H1A···Cl1ii0.862.943.680 (2)145.4
N1—H1B···O1iii0.862.192.978 (3)151.3
O2—H2···N30.821.882.588 (3)145
C5—H5···Cg2iv0.932.923.473 (3)120
C14—H14···Cg1v0.932.833.641 (3)147
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x, y, z1; (iii) x+2, y+1, z1/2; (iv) x+2, y+2, z1/2; (v) x+3/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Guangxi Province (grant No. 2011GXNSFB018023) and the Natural Science Foundation of Education Bureau of Guangxi Province (grant No. 201106LX535). This work was also supported by the Program for Excellent Talents in Guangxi Higher Education Institutions and the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (grant No. K011).

References

First citationArmstrong, C. M., Bernhardt, P. V., Chin, P. & Richardson, D. R. (2003). Eur. J. Inorg. Chem. pp. 1145–1156.  CSD CrossRef Google Scholar
First citationBernhardt, P. V., Caldwell, L. M., Chaston, T. B., Chin, P. & Richardson, D. R. (2003). J. Biol. Inorg. Chem. 8, 866–880.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernhardt, P. V., Chin, P., Sharpe, P. C., Wang, J. Y. C. & Richardson, D. R. (2005). J. Biol. Inorg. Chem. 10, 761–777.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, G.-B. (2009). Acta Cryst. E65, o2415.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhattab, S. N. (2005). Molecules, 10, 1218–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2009). Acta Cryst. E65, o2864.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o365.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1546-o1547
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds