organic compounds
2-[1-({2-[1-(2-Hydroxy-5-{[methyl(phenyl)amino]methyl}phenyl)ethylideneamino]ethyl}imino)ethyl]-4-{[methyl(phenyl)amino]methyl}phenol
aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, and bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Mentouri-Constantine, 25000 Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
Molecules of the title compound, C34H38N4O2, lie across crystallographic inversion centres. The crystal packing can be described by alternating zigzag chains along the c axis in which the molecules are linked by van der Waals interactions. There is an intramolecular O—H⋯N hydrogen bond and the two benzene rings in the make a dihedral angle of 79.81 (6)°.
Related literature
For the synthesis and applications of similar compounds and derivates containing both an anilinic moiety and a salicylaldehyde derivative, see: Wulff & Akelah (1979); Horwitz & Murray (1988); Smith et al. (2003); Dong et al. (2010); Guo & Wong (1999); Stejskal & Gilbert (2002); Coche-Guerente et al. (1996); Ourari et al. (2008); Khedkar & Radhakrishnan (1997); Huo et al. (1999).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812017904/vm2172sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812017904/vm2172Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812017904/vm2172Isup3.cml
The title compound is a tetradentate Schiff base ligand (H2L). It was synthesized by dissolving 7 g (27.45 mmol) of 5-(N,N-methylphenylaminomethyl)-2-hydroxyacetophenone in 30 ml of absolute ethanol and placed in a three-necked flask of 100 ml, surmounted by a condenser. To this solution, 0.823 g (13.72 mmol) of 1,2-diaminoethane were placed in 20 ml of the same solvent (absolute EtOH) and slowly added. This mixture was heated to 50°C under stirring and nitrogen atmosphere for two hours. A precipitate obtained was filtered, washed with diethyl ether and then dried under reduced pressure to yield 4.26 g (58%) of the expected compound. Its melting point was found to be 156 °C and a suitable single-crystal was formed by slow evaporation from a solvent mixture EtOH/CH2Cl2 (8/2, v/v).
The remaining H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C and O) with C—H = 0.96 Å (methyl), 0.97 Å (methylene) or 0.93 Å (aromatic) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(Caromatic and Cmethylene) or Uiso(H) = 1.5Ueq(Cmethyl and Ohydroxy).
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).C34H38N4O2 | Dx = 1.236 Mg m−3 |
Mr = 534.68 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 3346 reflections |
a = 7.460 (1) Å | θ = 1.0–26.4° |
b = 12.350 (1) Å | µ = 0.08 mm−1 |
c = 31.176 (2) Å | T = 295 K |
V = 2872.3 (5) Å3 | Prism, yellow |
Z = 4 | 0.15 × 0.08 × 0.04 mm |
F(000) = 1144 |
Nonius KappaCCD diffractometer | 1698 reflections with I > 2σ(I) |
Radiation source: Enraf–Nonius FR590 | Rint = 0.023 |
Graphite monochromator | θmax = 26.4°, θmin = 3.3° |
Detector resolution: 9 pixels mm-1 | h = −9→9 |
CCD rotation images, thick slices scans | k = −15→15 |
5411 measured reflections | l = −38→38 |
2916 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.216 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.1401P)2] where P = (Fo2 + 2Fc2)/3 |
2916 reflections | (Δ/σ)max < 0.001 |
185 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.15 e Å−3 |
C34H38N4O2 | V = 2872.3 (5) Å3 |
Mr = 534.68 | Z = 4 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 7.460 (1) Å | µ = 0.08 mm−1 |
b = 12.350 (1) Å | T = 295 K |
c = 31.176 (2) Å | 0.15 × 0.08 × 0.04 mm |
Nonius KappaCCD diffractometer | 1698 reflections with I > 2σ(I) |
5411 measured reflections | Rint = 0.023 |
2916 independent reflections |
R[F2 > 2σ(F2)] = 0.063 | 0 restraints |
wR(F2) = 0.216 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.30 e Å−3 |
2916 reflections | Δρmin = −0.15 e Å−3 |
185 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5460 (3) | 0.46343 (16) | 0.01583 (6) | 0.0656 (6) | |
H1A | 0.469 | 0.4517 | 0.0405 | 0.079* | |
H1B | 0.5703 | 0.3938 | 0.0027 | 0.079* | |
C2 | 0.8224 (3) | 0.46551 (15) | 0.05564 (6) | 0.0596 (6) | |
C3 | 0.7906 (3) | 0.35392 (18) | 0.07299 (8) | 0.0807 (7) | |
H3A | 0.8621 | 0.3028 | 0.0573 | 0.121* | |
H3B | 0.6662 | 0.3357 | 0.07 | 0.121* | |
H3C | 0.8232 | 0.3519 | 0.1028 | 0.121* | |
C4 | 0.9870 (2) | 0.52384 (14) | 0.06796 (6) | 0.0570 (5) | |
C5 | 1.1047 (3) | 0.48234 (16) | 0.09881 (6) | 0.0629 (6) | |
H5 | 1.0776 | 0.4159 | 0.1113 | 0.076* | |
C6 | 1.2584 (3) | 0.53460 (15) | 0.11170 (7) | 0.0667 (6) | |
C7 | 1.2950 (3) | 0.63504 (18) | 0.09292 (7) | 0.0742 (6) | |
H7 | 1.3968 | 0.6731 | 0.1013 | 0.089* | |
C8 | 1.1835 (3) | 0.67844 (17) | 0.06238 (7) | 0.0724 (6) | |
H8 | 1.2113 | 0.7452 | 0.0503 | 0.087* | |
C9 | 1.0299 (3) | 0.62421 (15) | 0.04924 (6) | 0.0610 (6) | |
C10 | 1.3850 (3) | 0.48353 (17) | 0.14366 (8) | 0.0820 (7) | |
H10A | 1.3408 | 0.4118 | 0.1506 | 0.098* | |
H10B | 1.5011 | 0.4749 | 0.1301 | 0.098* | |
C11 | 1.2474 (3) | 0.5513 (2) | 0.20900 (8) | 0.1033 (9) | |
H11A | 1.173 | 0.6082 | 0.1978 | 0.155* | |
H11B | 1.2779 | 0.5671 | 0.2383 | 0.155* | |
H11C | 1.1836 | 0.4839 | 0.2077 | 0.155* | |
C12 | 1.5322 (3) | 0.63015 (18) | 0.18474 (6) | 0.0679 (6) | |
C13 | 1.6980 (3) | 0.6251 (2) | 0.16424 (7) | 0.0792 (7) | |
H13 | 1.7262 | 0.5643 | 0.148 | 0.095* | |
C14 | 1.8194 (4) | 0.7066 (3) | 0.16743 (8) | 0.0935 (8) | |
H14 | 1.9291 | 0.7006 | 0.1534 | 0.112* | |
C15 | 1.7821 (4) | 0.7986 (2) | 0.19121 (10) | 0.1025 (9) | |
H15 | 1.8654 | 0.8543 | 0.1934 | 0.123* | |
C16 | 1.6205 (4) | 0.8054 (2) | 0.21135 (9) | 0.0998 (9) | |
H16 | 1.5936 | 0.8668 | 0.2274 | 0.12* | |
C17 | 1.4965 (4) | 0.7236 (2) | 0.20856 (7) | 0.0865 (8) | |
H17 | 1.3873 | 0.7305 | 0.2227 | 0.104* | |
N1 | 0.7139 (2) | 0.51374 (13) | 0.02949 (5) | 0.0631 (5) | |
N10 | 1.4097 (3) | 0.54358 (15) | 0.18363 (6) | 0.0774 (6) | |
O9 | 0.9279 (2) | 0.66894 (11) | 0.01863 (5) | 0.0748 (5) | |
H9 | 0.8365 | 0.6329 | 0.0155 | 0.112* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0617 (13) | 0.0730 (13) | 0.0621 (13) | −0.0004 (9) | −0.0044 (10) | −0.0032 (9) |
C2 | 0.0630 (12) | 0.0613 (12) | 0.0544 (11) | 0.0029 (9) | 0.0016 (9) | −0.0035 (8) |
C3 | 0.0839 (16) | 0.0750 (14) | 0.0831 (15) | −0.0086 (12) | −0.0155 (12) | 0.0142 (11) |
C4 | 0.0584 (12) | 0.0608 (11) | 0.0519 (11) | 0.0026 (9) | 0.0031 (9) | −0.0040 (8) |
C5 | 0.0628 (13) | 0.0633 (11) | 0.0627 (12) | 0.0037 (9) | −0.0031 (10) | 0.0019 (9) |
C6 | 0.0622 (13) | 0.0719 (13) | 0.0660 (13) | 0.0061 (10) | −0.0056 (10) | −0.0045 (10) |
C7 | 0.0658 (14) | 0.0784 (14) | 0.0785 (14) | −0.0068 (11) | −0.0063 (11) | −0.0007 (12) |
C8 | 0.0716 (14) | 0.0689 (13) | 0.0766 (14) | −0.0077 (11) | 0.0004 (12) | 0.0065 (10) |
C9 | 0.0636 (13) | 0.0641 (12) | 0.0553 (12) | 0.0056 (10) | 0.0011 (9) | −0.0013 (9) |
C10 | 0.0747 (15) | 0.0792 (13) | 0.0919 (17) | 0.0080 (12) | −0.0182 (13) | −0.0032 (13) |
C11 | 0.0753 (17) | 0.147 (3) | 0.0877 (18) | −0.0085 (16) | 0.0024 (15) | 0.0101 (15) |
C12 | 0.0622 (13) | 0.0858 (14) | 0.0557 (12) | 0.0071 (11) | −0.0076 (10) | 0.0053 (10) |
C13 | 0.0705 (15) | 0.0970 (16) | 0.0702 (15) | 0.0103 (12) | −0.0007 (11) | −0.0002 (12) |
C14 | 0.0722 (16) | 0.130 (2) | 0.0779 (17) | −0.0072 (16) | −0.0056 (13) | 0.0264 (16) |
C15 | 0.111 (2) | 0.107 (2) | 0.0895 (19) | −0.0297 (18) | −0.0276 (17) | 0.0273 (17) |
C16 | 0.110 (2) | 0.0918 (18) | 0.097 (2) | 0.0005 (16) | −0.0171 (17) | −0.0120 (14) |
C17 | 0.0758 (16) | 0.1022 (18) | 0.0815 (18) | 0.0120 (14) | −0.0016 (12) | −0.0065 (13) |
N1 | 0.0610 (11) | 0.0690 (10) | 0.0595 (10) | 0.0034 (8) | −0.0053 (8) | −0.0021 (8) |
N10 | 0.0677 (12) | 0.0937 (13) | 0.0710 (12) | −0.0011 (10) | −0.0056 (9) | 0.0019 (9) |
O9 | 0.0808 (11) | 0.0709 (9) | 0.0726 (10) | 0.0000 (8) | −0.0130 (8) | 0.0109 (7) |
C1—N1 | 1.462 (3) | C10—N10 | 1.462 (3) |
C1—C1i | 1.503 (4) | C10—H10A | 0.97 |
C1—H1A | 0.97 | C10—H10B | 0.97 |
C1—H1B | 0.97 | C11—N10 | 1.449 (3) |
C2—N1 | 1.294 (2) | C11—H11A | 0.96 |
C2—C4 | 1.474 (3) | C11—H11B | 0.96 |
C2—C3 | 1.499 (3) | C11—H11C | 0.96 |
C3—H3A | 0.96 | C12—C13 | 1.393 (3) |
C3—H3B | 0.96 | C12—C17 | 1.398 (3) |
C3—H3C | 0.96 | C12—N10 | 1.407 (3) |
C4—C5 | 1.400 (3) | C13—C14 | 1.358 (3) |
C4—C9 | 1.407 (3) | C13—H13 | 0.93 |
C5—C6 | 1.376 (3) | C14—C15 | 1.384 (4) |
C5—H5 | 0.93 | C14—H14 | 0.93 |
C6—C7 | 1.399 (3) | C15—C16 | 1.362 (4) |
C6—C10 | 1.511 (3) | C15—H15 | 0.93 |
C7—C8 | 1.373 (3) | C16—C17 | 1.372 (3) |
C7—H7 | 0.93 | C16—H16 | 0.93 |
C8—C9 | 1.389 (3) | C17—H17 | 0.93 |
C8—H8 | 0.93 | O9—H9 | 0.82 |
C9—O9 | 1.340 (2) | ||
N1—C1—C1i | 109.1 (2) | N10—C10—H10A | 108.4 |
N1—C1—H1A | 109.9 | C6—C10—H10A | 108.4 |
C1i—C1—H1A | 109.9 | N10—C10—H10B | 108.4 |
N1—C1—H1B | 109.9 | C6—C10—H10B | 108.4 |
C1i—C1—H1B | 109.9 | H10A—C10—H10B | 107.5 |
H1A—C1—H1B | 108.3 | N10—C11—H11A | 109.5 |
N1—C2—C4 | 117.40 (17) | N10—C11—H11B | 109.5 |
N1—C2—C3 | 123.46 (19) | H11A—C11—H11B | 109.5 |
C4—C2—C3 | 119.13 (18) | N10—C11—H11C | 109.5 |
C2—C3—H3A | 109.5 | H11A—C11—H11C | 109.5 |
C2—C3—H3B | 109.5 | H11B—C11—H11C | 109.5 |
H3A—C3—H3B | 109.5 | C13—C12—C17 | 116.7 (2) |
C2—C3—H3C | 109.5 | C13—C12—N10 | 122.1 (2) |
H3A—C3—H3C | 109.5 | C17—C12—N10 | 121.1 (2) |
H3B—C3—H3C | 109.5 | C14—C13—C12 | 121.7 (2) |
C5—C4—C9 | 117.70 (18) | C14—C13—H13 | 119.2 |
C5—C4—C2 | 121.51 (17) | C12—C13—H13 | 119.2 |
C9—C4—C2 | 120.79 (17) | C13—C14—C15 | 120.9 (3) |
C6—C5—C4 | 123.50 (19) | C13—C14—H14 | 119.6 |
C6—C5—H5 | 118.3 | C15—C14—H14 | 119.6 |
C4—C5—H5 | 118.3 | C16—C15—C14 | 118.4 (3) |
C5—C6—C7 | 117.18 (19) | C16—C15—H15 | 120.8 |
C5—C6—C10 | 121.19 (18) | C14—C15—H15 | 120.8 |
C7—C6—C10 | 121.60 (19) | C15—C16—C17 | 121.5 (3) |
C8—C7—C6 | 121.2 (2) | C15—C16—H16 | 119.3 |
C8—C7—H7 | 119.4 | C17—C16—H16 | 119.3 |
C6—C7—H7 | 119.4 | C16—C17—C12 | 120.9 (2) |
C7—C8—C9 | 121.06 (19) | C16—C17—H17 | 119.6 |
C7—C8—H8 | 119.5 | C12—C17—H17 | 119.6 |
C9—C8—H8 | 119.5 | C2—N1—C1 | 121.60 (17) |
O9—C9—C8 | 118.68 (17) | C12—N10—C11 | 118.62 (18) |
O9—C9—C4 | 121.97 (18) | C12—N10—C10 | 119.24 (18) |
C8—C9—C4 | 119.35 (19) | C11—N10—C10 | 113.17 (19) |
N10—C10—C6 | 115.41 (18) | C9—O9—H9 | 109.5 |
N1—C2—C4—C5 | 174.50 (17) | C7—C6—C10—N10 | 63.5 (3) |
C3—C2—C4—C5 | −6.7 (3) | C17—C12—C13—C14 | 0.4 (3) |
N1—C2—C4—C9 | −4.9 (3) | N10—C12—C13—C14 | −176.3 (2) |
C3—C2—C4—C9 | 173.95 (18) | C12—C13—C14—C15 | −0.3 (4) |
C9—C4—C5—C6 | 0.3 (3) | C13—C14—C15—C16 | 0.0 (4) |
C2—C4—C5—C6 | −179.11 (17) | C14—C15—C16—C17 | 0.2 (4) |
C4—C5—C6—C7 | 0.8 (3) | C15—C16—C17—C12 | −0.1 (4) |
C4—C5—C6—C10 | −177.15 (18) | C13—C12—C17—C16 | −0.2 (3) |
C5—C6—C7—C8 | −1.1 (3) | N10—C12—C17—C16 | 176.6 (2) |
C10—C6—C7—C8 | 176.8 (2) | C4—C2—N1—C1 | −179.07 (16) |
C6—C7—C8—C9 | 0.3 (3) | C3—C2—N1—C1 | 2.2 (3) |
C7—C8—C9—O9 | −178.48 (18) | C1i—C1—N1—C2 | −177.48 (19) |
C7—C8—C9—C4 | 0.8 (3) | C13—C12—N10—C11 | 174.4 (2) |
C5—C4—C9—O9 | 178.18 (17) | C17—C12—N10—C11 | −2.2 (3) |
C2—C4—C9—O9 | −2.4 (3) | C13—C12—N10—C10 | −40.6 (3) |
C5—C4—C9—C8 | −1.1 (3) | C17—C12—N10—C10 | 142.8 (2) |
C2—C4—C9—C8 | 178.31 (17) | C6—C10—N10—C12 | −82.4 (3) |
C5—C6—C10—N10 | −118.6 (2) | C6—C10—N10—C11 | 64.4 (2) |
Symmetry code: (i) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C34H38N4O2 |
Mr | 534.68 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 295 |
a, b, c (Å) | 7.460 (1), 12.350 (1), 31.176 (2) |
V (Å3) | 2872.3 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.15 × 0.08 × 0.04 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5411, 2916, 1698 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.063, 0.216, 1.01 |
No. of reflections | 2916 |
No. of parameters | 185 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.15 |
Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor 1997), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
Acknowledgements
The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la recherche scientifique for financial support and Professor L. Ouahab (Laboratoire des Sciences Chimiques, Rennes1, France) for helpful discussions.
References
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Coche-Guerente, L., Cosnier, S., Innocent, C. & Mailly, P. (1996). Anal. Chim. Acta, 11, 161–169. Google Scholar
Dong, W. K., Sun, Y. X., Zhao, C. Y., Dong, X. Y. & Xu, L. (2010). Polyhedron, 29, 2087–2097. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Guo, P. & Wong, K. Y. (1999). Electrochem. Commun. 1, 559–564. Web of Science CrossRef CAS Google Scholar
Horwitz, C. P. & Murray, R. W. (1988). Mol. Cryst. Liq. Cryst. 160, 389–404. Google Scholar
Huo, L. H., Cao, L. X., Wang, D. M., Cui, N. N., Zeng, G. F. & Xi, S. Q. (1999). Thin Solid Films, 350, 5–9. Web of Science CrossRef CAS Google Scholar
Khedkar, S. P. & Radhakrishnan, S. (1997). Thin Solid Films, 303, 167–172. CrossRef CAS Web of Science Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Ourari, A., Baameur, L., Bouet, G. & Khan, M. A. (2008). Electrochem. Commun. 10, 1736–1739. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. A., Tasker, P. A. & White, D. J. (2003). Coord. Chem. Rev. 241, 61–85. Web of Science CrossRef CAS Google Scholar
Stejskal, J. & Gilbert, R. G. (2002). Pure Appl. Chem. 74, 857–867. Web of Science CrossRef CAS Google Scholar
Wulff, G. & Akelah, A. (1979). Makromol. Chem. 179, 2647–2651. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of new derivatives containing simultaneously an anilinic moiety and salicylaldehyde derivative is of great interest given that they are currently used as precursors for the preparation of chelating agents such as Schiff bases (Wulff & Akelah, 1979; Horwitz et al., 1988) and oximes (Smith et al., 2003; Dong et al., 2010). These compounds may also be involved in the elaboration of modified electrodes by anodic (Guo et al., 1999) or by chemical oxidation (Stejskal et al., 2002). These materials are mainly applied in catalysis, electrocatalysis and sensors (Ourari et al., 2008; Coche-Guerente et al., 1996). The synthesis of new salicylaldehyde derivatives containing electropolymerizable units can be considered as the main source of functionalized conducting π-conjugated polymers as those of polyaniline and polypyrrole (Huo et al., 1999; Khedkar et al., 1997).
We report here the synthesis of title compound and its crystal structure. The molecular geometry of (I), and the atomic numbering used, is illustrated in Fig. 1. The asymmetric unit of the title compound, (I), consists of one-half of the molecule, with the other half generated by a crystallographic inversion centre. The two phenyl rings make a dihedral angle of 79.81 (6)°. The crystal packing in the title structure can be described by alterning zigzag chains along the c axis (Fig. 2). There is an intramolecular O—H···N hydrogen bonding (Table 1, Fig. 2) and the packing is stabilized by Van der Waals interactions and weak π···π stackings (minimal distance: Cg1··· Cg2i= 5.2048 (15) Å; Cg1 and Cg2 are the centroids of rings C4-C9 and C12-C17, respectively; symmetry code: (i) -1 + x, y, z). These interactions link the molecules within the chains and also link the layers together reinforcing the cohesion of the structure.