organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1562

2-[1-({2-[1-(2-Hy­dr­oxy-5-{[meth­yl(phen­yl)amino]­meth­yl}phen­yl)ethyl­­idene­amino]­eth­yl}imino)­eth­yl]-4-{[meth­yl(phen­yl)amino]­meth­yl}phenol

aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, and bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Mentouri-Constantine, 25000 Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 18 April 2012; accepted 21 April 2012; online 28 April 2012)

Mol­ecules of the title compound, C34H38N4O2, lie across crystallographic inversion centres. The crystal packing can be described by alternating zigzag chains along the c axis in which the molecules are linked by van der Waals interactions. There is an intra­molecular O—H⋯N hydrogen bond and the two benzene rings in the asymmetric unit make a dihedral angle of 79.81 (6)°.

Related literature

For the synthesis and applications of similar compounds and derivates containing both an anilinic moiety and a salicyl­aldehyde derivative, see: Wulff & Akelah (1979[Wulff, G. & Akelah, A. (1979). Makromol. Chem. 179, 2647-2651.]); Horwitz & Murray (1988[Horwitz, C. P. & Murray, R. W. (1988). Mol. Cryst. Liq. Cryst. 160, 389-404.]); Smith et al. (2003[Smith, G. A., Tasker, P. A. & White, D. J. (2003). Coord. Chem. Rev. 241, 61-85.]); Dong et al. (2010[Dong, W. K., Sun, Y. X., Zhao, C. Y., Dong, X. Y. & Xu, L. (2010). Polyhedron, 29, 2087-2097.]); Guo & Wong (1999[Guo, P. & Wong, K. Y. (1999). Electrochem. Commun. 1, 559-564.]); Stejskal & Gilbert (2002[Stejskal, J. & Gilbert, R. G. (2002). Pure Appl. Chem. 74, 857-867.]); Coche-Guerente et al. (1996[Coche-Guerente, L., Cosnier, S., Innocent, C. & Mailly, P. (1996). Anal. Chim. Acta, 11, 161-169.]); Ourari et al. (2008[Ourari, A., Baameur, L., Bouet, G. & Khan, M. A. (2008). Electrochem. Commun. 10, 1736-1739.]); Khedkar & Radhakrishnan (1997[Khedkar, S. P. & Radhakrishnan, S. (1997). Thin Solid Films, 303, 167-172.]); Huo et al. (1999[Huo, L. H., Cao, L. X., Wang, D. M., Cui, N. N., Zeng, G. F. & Xi, S. Q. (1999). Thin Solid Films, 350, 5-9.]).

[Scheme 1]

Experimental

Crystal data
  • C34H38N4O2

  • Mr = 534.68

  • Orthorhombic, P b c a

  • a = 7.460 (1) Å

  • b = 12.350 (1) Å

  • c = 31.176 (2) Å

  • V = 2872.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.15 × 0.08 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 5411 measured reflections

  • 2916 independent reflections

  • 1698 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.216

  • S = 1.01

  • 2916 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9⋯N1 0.82 1.79 2.517 (2) 147

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The synthesis of new derivatives containing simultaneously an anilinic moiety and salicylaldehyde derivative is of great interest given that they are currently used as precursors for the preparation of chelating agents such as Schiff bases (Wulff & Akelah, 1979; Horwitz et al., 1988) and oximes (Smith et al., 2003; Dong et al., 2010). These compounds may also be involved in the elaboration of modified electrodes by anodic (Guo et al., 1999) or by chemical oxidation (Stejskal et al., 2002). These materials are mainly applied in catalysis, electrocatalysis and sensors (Ourari et al., 2008; Coche-Guerente et al., 1996). The synthesis of new salicylaldehyde derivatives containing electropolymerizable units can be considered as the main source of functionalized conducting π-conjugated polymers as those of polyaniline and polypyrrole (Huo et al., 1999; Khedkar et al., 1997).

We report here the synthesis of title compound and its crystal structure. The molecular geometry of (I), and the atomic numbering used, is illustrated in Fig. 1. The asymmetric unit of the title compound, (I), consists of one-half of the molecule, with the other half generated by a crystallographic inversion centre. The two phenyl rings make a dihedral angle of 79.81 (6)°. The crystal packing in the title structure can be described by alterning zigzag chains along the c axis (Fig. 2). There is an intramolecular O—H···N hydrogen bonding (Table 1, Fig. 2) and the packing is stabilized by Van der Waals interactions and weak π···π stackings (minimal distance: Cg1··· Cg2i= 5.2048 (15) Å; Cg1 and Cg2 are the centroids of rings C4-C9 and C12-C17, respectively; symmetry code: (i) -1 + x, y, z). These interactions link the molecules within the chains and also link the layers together reinforcing the cohesion of the structure.

Related literature top

For the synthesis and applications of similar compounds and derivates, see: Wulff & Akelah (1979); Horwitz & Murray (1988); Smith et al. (2003); Dong et al. (2010); Guo & Wong (1999); Stejskal & Gilbert (2002); Coche-Guerente et al. (1996); Ourari et al. (2008); Khedkar & Radhakrishnan (1997); Huo et al. (1999).

Experimental top

The title compound is a tetradentate Schiff base ligand (H2L). It was synthesized by dissolving 7 g (27.45 mmol) of 5-(N,N-methylphenylaminomethyl)-2-hydroxyacetophenone in 30 ml of absolute ethanol and placed in a three-necked flask of 100 ml, surmounted by a condenser. To this solution, 0.823 g (13.72 mmol) of 1,2-diaminoethane were placed in 20 ml of the same solvent (absolute EtOH) and slowly added. This mixture was heated to 50°C under stirring and nitrogen atmosphere for two hours. A precipitate obtained was filtered, washed with diethyl ether and then dried under reduced pressure to yield 4.26 g (58%) of the expected compound. Its melting point was found to be 156 °C and a suitable single-crystal was formed by slow evaporation from a solvent mixture EtOH/CH2Cl2 (8/2, v/v).

Refinement top

The remaining H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C and O) with C—H = 0.96 Å (methyl), 0.97 Å (methylene) or 0.93 Å (aromatic) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(Caromatic and Cmethylene) or Uiso(H) = 1.5Ueq(Cmethyl and Ohydroxy).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular geometry of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Only the non-H atoms of the asymmetric unit are labelled.
[Figure 2] Fig. 2. Packing diagram of (I) viewed along the a axis showing alterning chains and intramolecular O—H···N hydrogen bond interaction (shown in red).
2-[1-({2-[1-(2-Hydroxy-5- {[methyl(phenyl)amino]methyl}phenyl)ethylideneamino]ethyl}imino)ethyl]- 4-{[methyl(phenyl)amino]methyl}phenol top
Crystal data top
C34H38N4O2Dx = 1.236 Mg m3
Mr = 534.68Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3346 reflections
a = 7.460 (1) Åθ = 1.0–26.4°
b = 12.350 (1) ŵ = 0.08 mm1
c = 31.176 (2) ÅT = 295 K
V = 2872.3 (5) Å3Prism, yellow
Z = 40.15 × 0.08 × 0.04 mm
F(000) = 1144
Data collection top
Nonius KappaCCD
diffractometer
1698 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590Rint = 0.023
Graphite monochromatorθmax = 26.4°, θmin = 3.3°
Detector resolution: 9 pixels mm-1h = 99
CCD rotation images, thick slices scansk = 1515
5411 measured reflectionsl = 3838
2916 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1401P)2]
where P = (Fo2 + 2Fc2)/3
2916 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C34H38N4O2V = 2872.3 (5) Å3
Mr = 534.68Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 7.460 (1) ŵ = 0.08 mm1
b = 12.350 (1) ÅT = 295 K
c = 31.176 (2) Å0.15 × 0.08 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
1698 reflections with I > 2σ(I)
5411 measured reflectionsRint = 0.023
2916 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.216H-atom parameters constrained
S = 1.01Δρmax = 0.30 e Å3
2916 reflectionsΔρmin = 0.15 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5460 (3)0.46343 (16)0.01583 (6)0.0656 (6)
H1A0.4690.45170.04050.079*
H1B0.57030.39380.00270.079*
C20.8224 (3)0.46551 (15)0.05564 (6)0.0596 (6)
C30.7906 (3)0.35392 (18)0.07299 (8)0.0807 (7)
H3A0.86210.30280.05730.121*
H3B0.66620.33570.070.121*
H3C0.82320.35190.10280.121*
C40.9870 (2)0.52384 (14)0.06796 (6)0.0570 (5)
C51.1047 (3)0.48234 (16)0.09881 (6)0.0629 (6)
H51.07760.41590.11130.076*
C61.2584 (3)0.53460 (15)0.11170 (7)0.0667 (6)
C71.2950 (3)0.63504 (18)0.09292 (7)0.0742 (6)
H71.39680.67310.10130.089*
C81.1835 (3)0.67844 (17)0.06238 (7)0.0724 (6)
H81.21130.74520.05030.087*
C91.0299 (3)0.62421 (15)0.04924 (6)0.0610 (6)
C101.3850 (3)0.48353 (17)0.14366 (8)0.0820 (7)
H10A1.34080.41180.15060.098*
H10B1.50110.47490.13010.098*
C111.2474 (3)0.5513 (2)0.20900 (8)0.1033 (9)
H11A1.1730.60820.19780.155*
H11B1.27790.56710.23830.155*
H11C1.18360.48390.20770.155*
C121.5322 (3)0.63015 (18)0.18474 (6)0.0679 (6)
C131.6980 (3)0.6251 (2)0.16424 (7)0.0792 (7)
H131.72620.56430.1480.095*
C141.8194 (4)0.7066 (3)0.16743 (8)0.0935 (8)
H141.92910.70060.15340.112*
C151.7821 (4)0.7986 (2)0.19121 (10)0.1025 (9)
H151.86540.85430.19340.123*
C161.6205 (4)0.8054 (2)0.21135 (9)0.0998 (9)
H161.59360.86680.22740.12*
C171.4965 (4)0.7236 (2)0.20856 (7)0.0865 (8)
H171.38730.73050.22270.104*
N10.7139 (2)0.51374 (13)0.02949 (5)0.0631 (5)
N101.4097 (3)0.54358 (15)0.18363 (6)0.0774 (6)
O90.9279 (2)0.66894 (11)0.01863 (5)0.0748 (5)
H90.83650.63290.01550.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0617 (13)0.0730 (13)0.0621 (13)0.0004 (9)0.0044 (10)0.0032 (9)
C20.0630 (12)0.0613 (12)0.0544 (11)0.0029 (9)0.0016 (9)0.0035 (8)
C30.0839 (16)0.0750 (14)0.0831 (15)0.0086 (12)0.0155 (12)0.0142 (11)
C40.0584 (12)0.0608 (11)0.0519 (11)0.0026 (9)0.0031 (9)0.0040 (8)
C50.0628 (13)0.0633 (11)0.0627 (12)0.0037 (9)0.0031 (10)0.0019 (9)
C60.0622 (13)0.0719 (13)0.0660 (13)0.0061 (10)0.0056 (10)0.0045 (10)
C70.0658 (14)0.0784 (14)0.0785 (14)0.0068 (11)0.0063 (11)0.0007 (12)
C80.0716 (14)0.0689 (13)0.0766 (14)0.0077 (11)0.0004 (12)0.0065 (10)
C90.0636 (13)0.0641 (12)0.0553 (12)0.0056 (10)0.0011 (9)0.0013 (9)
C100.0747 (15)0.0792 (13)0.0919 (17)0.0080 (12)0.0182 (13)0.0032 (13)
C110.0753 (17)0.147 (3)0.0877 (18)0.0085 (16)0.0024 (15)0.0101 (15)
C120.0622 (13)0.0858 (14)0.0557 (12)0.0071 (11)0.0076 (10)0.0053 (10)
C130.0705 (15)0.0970 (16)0.0702 (15)0.0103 (12)0.0007 (11)0.0002 (12)
C140.0722 (16)0.130 (2)0.0779 (17)0.0072 (16)0.0056 (13)0.0264 (16)
C150.111 (2)0.107 (2)0.0895 (19)0.0297 (18)0.0276 (17)0.0273 (17)
C160.110 (2)0.0918 (18)0.097 (2)0.0005 (16)0.0171 (17)0.0120 (14)
C170.0758 (16)0.1022 (18)0.0815 (18)0.0120 (14)0.0016 (12)0.0065 (13)
N10.0610 (11)0.0690 (10)0.0595 (10)0.0034 (8)0.0053 (8)0.0021 (8)
N100.0677 (12)0.0937 (13)0.0710 (12)0.0011 (10)0.0056 (9)0.0019 (9)
O90.0808 (11)0.0709 (9)0.0726 (10)0.0000 (8)0.0130 (8)0.0109 (7)
Geometric parameters (Å, º) top
C1—N11.462 (3)C10—N101.462 (3)
C1—C1i1.503 (4)C10—H10A0.97
C1—H1A0.97C10—H10B0.97
C1—H1B0.97C11—N101.449 (3)
C2—N11.294 (2)C11—H11A0.96
C2—C41.474 (3)C11—H11B0.96
C2—C31.499 (3)C11—H11C0.96
C3—H3A0.96C12—C131.393 (3)
C3—H3B0.96C12—C171.398 (3)
C3—H3C0.96C12—N101.407 (3)
C4—C51.400 (3)C13—C141.358 (3)
C4—C91.407 (3)C13—H130.93
C5—C61.376 (3)C14—C151.384 (4)
C5—H50.93C14—H140.93
C6—C71.399 (3)C15—C161.362 (4)
C6—C101.511 (3)C15—H150.93
C7—C81.373 (3)C16—C171.372 (3)
C7—H70.93C16—H160.93
C8—C91.389 (3)C17—H170.93
C8—H80.93O9—H90.82
C9—O91.340 (2)
N1—C1—C1i109.1 (2)N10—C10—H10A108.4
N1—C1—H1A109.9C6—C10—H10A108.4
C1i—C1—H1A109.9N10—C10—H10B108.4
N1—C1—H1B109.9C6—C10—H10B108.4
C1i—C1—H1B109.9H10A—C10—H10B107.5
H1A—C1—H1B108.3N10—C11—H11A109.5
N1—C2—C4117.40 (17)N10—C11—H11B109.5
N1—C2—C3123.46 (19)H11A—C11—H11B109.5
C4—C2—C3119.13 (18)N10—C11—H11C109.5
C2—C3—H3A109.5H11A—C11—H11C109.5
C2—C3—H3B109.5H11B—C11—H11C109.5
H3A—C3—H3B109.5C13—C12—C17116.7 (2)
C2—C3—H3C109.5C13—C12—N10122.1 (2)
H3A—C3—H3C109.5C17—C12—N10121.1 (2)
H3B—C3—H3C109.5C14—C13—C12121.7 (2)
C5—C4—C9117.70 (18)C14—C13—H13119.2
C5—C4—C2121.51 (17)C12—C13—H13119.2
C9—C4—C2120.79 (17)C13—C14—C15120.9 (3)
C6—C5—C4123.50 (19)C13—C14—H14119.6
C6—C5—H5118.3C15—C14—H14119.6
C4—C5—H5118.3C16—C15—C14118.4 (3)
C5—C6—C7117.18 (19)C16—C15—H15120.8
C5—C6—C10121.19 (18)C14—C15—H15120.8
C7—C6—C10121.60 (19)C15—C16—C17121.5 (3)
C8—C7—C6121.2 (2)C15—C16—H16119.3
C8—C7—H7119.4C17—C16—H16119.3
C6—C7—H7119.4C16—C17—C12120.9 (2)
C7—C8—C9121.06 (19)C16—C17—H17119.6
C7—C8—H8119.5C12—C17—H17119.6
C9—C8—H8119.5C2—N1—C1121.60 (17)
O9—C9—C8118.68 (17)C12—N10—C11118.62 (18)
O9—C9—C4121.97 (18)C12—N10—C10119.24 (18)
C8—C9—C4119.35 (19)C11—N10—C10113.17 (19)
N10—C10—C6115.41 (18)C9—O9—H9109.5
N1—C2—C4—C5174.50 (17)C7—C6—C10—N1063.5 (3)
C3—C2—C4—C56.7 (3)C17—C12—C13—C140.4 (3)
N1—C2—C4—C94.9 (3)N10—C12—C13—C14176.3 (2)
C3—C2—C4—C9173.95 (18)C12—C13—C14—C150.3 (4)
C9—C4—C5—C60.3 (3)C13—C14—C15—C160.0 (4)
C2—C4—C5—C6179.11 (17)C14—C15—C16—C170.2 (4)
C4—C5—C6—C70.8 (3)C15—C16—C17—C120.1 (4)
C4—C5—C6—C10177.15 (18)C13—C12—C17—C160.2 (3)
C5—C6—C7—C81.1 (3)N10—C12—C17—C16176.6 (2)
C10—C6—C7—C8176.8 (2)C4—C2—N1—C1179.07 (16)
C6—C7—C8—C90.3 (3)C3—C2—N1—C12.2 (3)
C7—C8—C9—O9178.48 (18)C1i—C1—N1—C2177.48 (19)
C7—C8—C9—C40.8 (3)C13—C12—N10—C11174.4 (2)
C5—C4—C9—O9178.18 (17)C17—C12—N10—C112.2 (3)
C2—C4—C9—O92.4 (3)C13—C12—N10—C1040.6 (3)
C5—C4—C9—C81.1 (3)C17—C12—N10—C10142.8 (2)
C2—C4—C9—C8178.31 (17)C6—C10—N10—C1282.4 (3)
C5—C6—C10—N10118.6 (2)C6—C10—N10—C1164.4 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···N10.821.792.517 (2)147

Experimental details

Crystal data
Chemical formulaC34H38N4O2
Mr534.68
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)7.460 (1), 12.350 (1), 31.176 (2)
V3)2872.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.15 × 0.08 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5411, 2916, 1698
Rint0.023
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.216, 1.01
No. of reflections2916
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.15

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor 1997), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···N10.82001.79002.517 (2)147.00
 

Acknowledgements

The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la recherche scientifique for financial support and Professor L. Ouahab (Laboratoire des Sciences Chimiques, Rennes1, France) for helpful discussions.

References

First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCoche-Guerente, L., Cosnier, S., Innocent, C. & Mailly, P. (1996). Anal. Chim. Acta, 11, 161–169.  Google Scholar
First citationDong, W. K., Sun, Y. X., Zhao, C. Y., Dong, X. Y. & Xu, L. (2010). Polyhedron, 29, 2087–2097.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGuo, P. & Wong, K. Y. (1999). Electrochem. Commun. 1, 559–564.  Web of Science CrossRef CAS Google Scholar
First citationHorwitz, C. P. & Murray, R. W. (1988). Mol. Cryst. Liq. Cryst. 160, 389–404.  Google Scholar
First citationHuo, L. H., Cao, L. X., Wang, D. M., Cui, N. N., Zeng, G. F. & Xi, S. Q. (1999). Thin Solid Films, 350, 5–9.  Web of Science CrossRef CAS Google Scholar
First citationKhedkar, S. P. & Radhakrishnan, S. (1997). Thin Solid Films, 303, 167–172.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationOurari, A., Baameur, L., Bouet, G. & Khan, M. A. (2008). Electrochem. Commun. 10, 1736–1739.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. A., Tasker, P. A. & White, D. J. (2003). Coord. Chem. Rev. 241, 61–85.  Web of Science CrossRef CAS Google Scholar
First citationStejskal, J. & Gilbert, R. G. (2002). Pure Appl. Chem. 74, 857–867.  Web of Science CrossRef CAS Google Scholar
First citationWulff, G. & Akelah, A. (1979). Makromol. Chem. 179, 2647–2651.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1562
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds