metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m558-m559

Aqua­[1-(1,10-phenanthrolin-2-yl-κ2N,N′)-1H-pyrazol-3-amine-κN2](sulfato-κO)copper(II) methanol monosolvate dihydrate

aCollege of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, People's Republic of China, bSchool for Cadres of Shandong Bureau of Quality and Technical Supervision, Jinan 250014, People's Republic of China, and cShandong Academy of Medical Science Graduate Education Center, Jinan 250062, People's Republic of China
*Correspondence e-mail: shijingmin1955@gmail.com

(Received 12 March 2012; accepted 1 April 2012; online 13 April 2012)

In the title compound, [Cu(SO4)(C15H11N5)(H2O)]·CH3OH·2H2O, the CuII ion is in a distorted square-pyramidal geometry, in which three N atoms from the chelating 1-(1,10-phenanthrolin-2-yl)-1H-pyrazol-3-amine ligand and one O atom from a sulfate anion define the basal plane and the O atom from the coordinating water mol­ecule is located at the apex. In the crystal, hydrogen-bonding inter­actions involving the coordinating and solvent water mol­ecules, the methanol solvent mol­ecule and the amine group (one with an intra­molecular inter­action to one of the sulfate O atoms) of the complex are observed. ππ inter­actions between symmetry-related phenantroline moieties, with a shortest centroid–centroid inter­action of 3.573 (2)°, are also present.

Related literature

For related structures, see: Li et al. (2011a[Li, H., Zhang, S. D., Xie, L. M., Yu, L. & Shi, J. M. (2011a). J. Coord. Chem. 64, 1456-1468.],b[Li, H., Zhang, S. D., Xie, L. M., Yu, L. & Shi, J. M. (2011b). J. Coord. Chem. 64, 3595-3608.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(SO4)(C15H11N5)(H2O)]·CH4O·2H2O

  • Mr = 506.98

  • Monoclinic, P 21 /n

  • a = 8.0190 (13) Å

  • b = 18.489 (3) Å

  • c = 14.086 (2) Å

  • β = 104.551 (2)°

  • V = 2021.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 298 K

  • 0.22 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.772, Tmax = 0.876

  • 11702 measured reflections

  • 4394 independent reflections

  • 3434 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.119

  • S = 1.03

  • 4394 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O3 1.906 (2)
Cu1—N2 1.934 (2)
Cu1—N3 2.068 (2)
Cu1—N1 2.090 (2)
Cu1—O5 2.220 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H4⋯O7 0.89 1.79 2.671 (4) 167
O5—H5⋯O8 0.89 1.90 2.774 (4) 164
O6—H12⋯O1 0.85 1.89 2.668 (4) 152
O7—H6⋯O6 0.84 2.10 2.878 (5) 153
O7—H7⋯O4i 0.89 1.84 2.726 (4) 173
O8—H17⋯O6ii 0.90 2.07 2.906 (5) 154
O8—H18⋯O2iii 0.90 2.09 2.957 (4) 163
N5—H5A⋯O4 0.86 2.19 2.916 (4) 143
N5—H5B⋯O2ii 0.86 2.17 3.022 (4) 175
Symmetry codes: (i) x-1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 200[Bruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of 1,10-phenanthroline play an important role in coordination chemistry and many of such complexes have been reported with these types of derivatives as ligands, e.g. Li et al. (2011a,b) for closely related CuII complexes. To the best of our knowledge, there is no report for a complex with 1-(1,10-phenanthrolin-9-yl)-1H-pyrazol-3-amine as ligand. Herein we report the crystal of the solvated title complex, (I).

The molecular structure of (I) is shown in Fig. 1. The CuII ion is is a distorted square-pyramidal coordination geometry with the O atom of the water molecule at the apex and three N atoms from the ligand and one O atoms from the sulfate anion in the basal plane. The non-hydrogen atoms from the 1-(1,10-phenanthrolin-9-yl)-1H-pyrazol-3-amine ligand make an approximate plane within 0.074 Å (rms deviation) with a maximum deviation of 0.145 (3) Å for the N5 atom.

In the crystal, the uncoordinated water molecules, the methanol molecule and the metal complex are connected to each other by hydrogen bonding interactions as shown in Table 2 and Figure 2. The coordinating water molecule and the solvent water molecule (O5—H4···O7 and O5—H5···O8) interact, as well as the solvent water molecules with the methanol molecule (O7—H6···O6 and O8—H17···O6). The solvent water molecules are also donors to the free sulfate O atoms of the complex (O7—H7···O4; O8—H18···O2). The complex is also connected via its amine function as donor molecule to an the adjacent complex (N5—H5···O2).There is also an intramolecular hydrogen bond in the complex, which involves the amine group and the O atom from sulfate anion (N5—H5A···O4).

ππ interactions between symmetry-related phenantroline moieties with a shortest centroid to centroid interaction of 3.573 (2) Å may consolidate the crystal packing.

Related literature top

For related structures, see: Li et al. (2011a,b).

Experimental top

A 10 mL methanol solution of 1-(1,10-phenanthrolin-9-yl)-1H-pyrazol-3-amine (0.0549 g, 0.21 mmol) was added into a 10 mL water solution containing CuSO4.5H2O (0.0549 g, 0.22 mmol), and the resulting solution was stirred for a few minutes. Yellow single crystals were obtained after the filtrate had been allowed to stand at room temperature for about one week.

Refinement top

The positions of the H atoms of the water molecule and hydroxyl group were located in a difference map; other H atoms were placed in calculated positions. All H atoms were refined as riding with C—H = 0.96 Å, Uiso = 1.5Ueq(C) for methyl group; C—H = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic groups; N—H = 0.86 Å, Uiso = 1.2Ueq(N); O—H = 0.84-0.90 Å, Uiso = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids shown at the 30% probability level.
[Figure 2] Fig. 2. Unit cell of (I), showing the packing features consolidated by hydrogen bonding interactions
Aqua[1-(1,10-phenanthrolin-2-yl-κ2N,N')-1H-pyrazol-3- amine-κN2](sulfato-κO)copper(II) methanol monosolvate dihydrate top
Crystal data top
[Cu(SO4)(C15H11N5)(H2O)]·CH4O·2H2OF(000) = 1044
Mr = 506.98Dx = 1.666 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2683 reflections
a = 8.0190 (13) Åθ = 2.7–23.6°
b = 18.489 (3) ŵ = 1.24 mm1
c = 14.086 (2) ÅT = 298 K
β = 104.551 (2)°Prism, yellow
V = 2021.4 (6) Å30.22 × 0.15 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4394 independent reflections
Radiation source: fine-focus sealed tube3434 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 107
Tmin = 0.772, Tmax = 0.876k = 2319
11702 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.2654P]
where P = (Fo2 + 2Fc2)/3
4394 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu(SO4)(C15H11N5)(H2O)]·CH4O·2H2OV = 2021.4 (6) Å3
Mr = 506.98Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0190 (13) ŵ = 1.24 mm1
b = 18.489 (3) ÅT = 298 K
c = 14.086 (2) Å0.22 × 0.15 × 0.11 mm
β = 104.551 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4394 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3434 reflections with I > 2σ(I)
Tmin = 0.772, Tmax = 0.876Rint = 0.038
11702 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.03Δρmax = 0.52 e Å3
4394 reflectionsΔρmin = 0.31 e Å3
281 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1583 (4)0.18352 (19)0.0328 (3)0.0448 (8)
H10.17470.23130.01210.054*
C20.0344 (5)0.1677 (2)0.1206 (3)0.0554 (10)
H20.02720.20500.15790.066*
C30.0052 (5)0.0986 (2)0.1506 (3)0.0541 (10)
H30.07610.08830.20880.065*
C40.0969 (4)0.04186 (19)0.0944 (2)0.0423 (8)
C50.2197 (4)0.06290 (17)0.0093 (2)0.0353 (7)
C60.3202 (4)0.00945 (16)0.0501 (2)0.0352 (7)
C70.3036 (4)0.06449 (17)0.0284 (3)0.0427 (8)
C80.1765 (5)0.0840 (2)0.0580 (3)0.0532 (10)
H80.16090.13260.07490.064*
C90.0787 (5)0.0343 (2)0.1156 (3)0.0532 (10)
H90.00360.04950.17100.064*
C100.4149 (5)0.11097 (18)0.0962 (3)0.0506 (9)
H100.40660.16070.08600.061*
C110.5327 (5)0.08488 (17)0.1751 (3)0.0475 (9)
H110.60480.11590.21890.057*
C120.5431 (4)0.00930 (16)0.1890 (2)0.0362 (7)
C130.7915 (4)0.00404 (19)0.3364 (3)0.0481 (9)
H130.82150.04380.35230.058*
C140.8710 (5)0.0619 (2)0.3822 (3)0.0493 (9)
H140.96550.06220.43640.059*
C150.7838 (4)0.12364 (18)0.3324 (2)0.0385 (7)
C310.1612 (7)0.4606 (4)0.1058 (4)0.111 (2)
H31A0.23160.47330.16940.166*
H31B0.04420.47470.10120.166*
H31C0.20270.48520.05630.166*
Cu10.44408 (4)0.138051 (18)0.15183 (3)0.03011 (13)
N10.2516 (3)0.13245 (13)0.02083 (18)0.0343 (6)
N20.4373 (3)0.03481 (13)0.12916 (18)0.0334 (6)
N30.6532 (3)0.10168 (13)0.25914 (18)0.0347 (6)
N40.6587 (3)0.02680 (13)0.26229 (19)0.0370 (6)
N50.8209 (4)0.19272 (15)0.3524 (2)0.0529 (8)
H5A0.75960.22590.31740.063*
H5B0.90630.20440.40040.063*
O10.4992 (3)0.35921 (11)0.0990 (2)0.0515 (6)
O20.6055 (3)0.25862 (13)0.02490 (17)0.0525 (6)
O30.4648 (3)0.24075 (11)0.15597 (17)0.0434 (6)
O40.7439 (3)0.29447 (14)0.18900 (18)0.0538 (7)
O50.2591 (3)0.13987 (12)0.24556 (18)0.0480 (6)
H40.19730.18050.23470.072*
H50.31070.14230.30960.072*
O60.1687 (4)0.3845 (2)0.0919 (3)0.0984 (12)
H120.26110.36200.09150.148*
O70.0713 (4)0.2581 (2)0.1844 (3)0.1175 (16)
H60.12040.29720.17660.176*
H70.03860.26700.18280.176*
O80.3587 (5)0.1592 (2)0.4472 (3)0.1121 (14)
H170.45040.15980.49920.168*
H180.27260.17520.47200.168*
S10.58095 (10)0.28883 (4)0.11578 (6)0.03254 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (2)0.046 (2)0.0389 (18)0.0066 (15)0.0051 (15)0.0077 (15)
C20.046 (2)0.077 (3)0.0372 (19)0.0089 (19)0.0022 (16)0.0165 (19)
C30.0403 (19)0.086 (3)0.0324 (18)0.0197 (19)0.0020 (15)0.0022 (19)
C40.0389 (18)0.061 (2)0.0299 (16)0.0185 (16)0.0142 (14)0.0122 (15)
C50.0363 (17)0.0417 (17)0.0304 (15)0.0119 (14)0.0127 (13)0.0075 (13)
C60.0352 (16)0.0366 (16)0.0381 (17)0.0090 (13)0.0175 (14)0.0069 (14)
C70.0465 (19)0.0374 (17)0.053 (2)0.0135 (15)0.0298 (16)0.0170 (16)
C80.057 (2)0.048 (2)0.064 (3)0.0223 (18)0.032 (2)0.0255 (19)
C90.050 (2)0.070 (3)0.044 (2)0.0303 (19)0.0202 (17)0.0283 (19)
C100.061 (2)0.0277 (16)0.075 (3)0.0035 (16)0.039 (2)0.0118 (18)
C110.053 (2)0.0319 (17)0.064 (2)0.0059 (15)0.0256 (18)0.0052 (16)
C120.0389 (17)0.0307 (15)0.0439 (18)0.0049 (13)0.0199 (15)0.0023 (14)
C130.053 (2)0.048 (2)0.043 (2)0.0213 (17)0.0115 (17)0.0141 (17)
C140.049 (2)0.055 (2)0.0372 (18)0.0147 (17)0.0026 (16)0.0036 (16)
C150.0375 (17)0.0467 (19)0.0293 (16)0.0077 (14)0.0048 (14)0.0000 (14)
C310.090 (4)0.147 (6)0.096 (4)0.053 (4)0.026 (3)0.035 (4)
Cu10.0322 (2)0.0259 (2)0.0296 (2)0.00044 (14)0.00279 (15)0.00061 (14)
N10.0318 (13)0.0393 (14)0.0302 (13)0.0064 (11)0.0049 (11)0.0000 (11)
N20.0378 (14)0.0286 (13)0.0354 (14)0.0010 (10)0.0123 (12)0.0030 (11)
N30.0386 (15)0.0293 (13)0.0341 (14)0.0055 (11)0.0049 (11)0.0012 (11)
N40.0407 (15)0.0326 (14)0.0376 (14)0.0116 (11)0.0095 (12)0.0035 (11)
N50.0575 (19)0.0450 (17)0.0422 (17)0.0028 (14)0.0134 (15)0.0033 (14)
O10.0539 (15)0.0301 (12)0.0713 (18)0.0039 (10)0.0170 (13)0.0049 (11)
O20.0635 (16)0.0543 (15)0.0387 (13)0.0005 (12)0.0110 (12)0.0137 (11)
O30.0458 (13)0.0280 (11)0.0564 (15)0.0053 (9)0.0129 (11)0.0011 (10)
O40.0359 (13)0.0714 (17)0.0474 (15)0.0082 (12)0.0021 (11)0.0075 (12)
O50.0465 (14)0.0536 (15)0.0445 (14)0.0042 (11)0.0128 (11)0.0029 (11)
O60.054 (2)0.094 (3)0.153 (4)0.0053 (18)0.037 (2)0.015 (2)
O70.077 (2)0.103 (3)0.195 (4)0.046 (2)0.075 (3)0.068 (3)
O80.097 (3)0.176 (4)0.057 (2)0.041 (3)0.0068 (19)0.019 (2)
S10.0335 (4)0.0271 (4)0.0331 (4)0.0026 (3)0.0009 (3)0.0041 (3)
Geometric parameters (Å, º) top
C1—N11.318 (4)C14—C151.427 (4)
C1—C21.408 (5)C14—H140.9300
C1—H10.9300C15—N51.325 (4)
C2—C31.349 (6)C15—N31.336 (4)
C2—H20.9300C31—O61.424 (6)
C3—C41.404 (5)C31—H31A0.9600
C3—H30.9300C31—H31B0.9600
C4—C51.402 (4)C31—H31C0.9600
C4—C91.439 (5)Cu1—O31.906 (2)
C5—N11.358 (4)Cu1—N21.934 (2)
C5—C61.410 (4)Cu1—N32.068 (2)
C6—N21.348 (4)Cu1—N12.090 (2)
C6—C71.400 (4)Cu1—O52.220 (2)
C7—C101.421 (5)N3—N41.386 (3)
C7—C81.424 (5)N5—H5A0.8600
C8—C91.342 (5)N5—H5B0.8600
C8—H80.9300O1—S11.450 (2)
C9—H90.9300O2—S11.455 (2)
C10—C111.354 (5)O3—S11.498 (2)
C10—H100.9300O4—S11.451 (2)
C11—C121.411 (4)O5—H40.8913
C11—H110.9300O5—H50.8938
C12—N21.317 (4)O6—H120.8515
C12—N41.375 (4)O7—H60.8442
C13—C141.328 (5)O7—H70.8906
C13—N41.357 (4)O8—H170.8981
C13—H130.9300O8—H180.8983
N1—C1—C2121.9 (3)O6—C31—H31A109.5
N1—C1—H1119.1O6—C31—H31B109.5
C2—C1—H1119.1H31A—C31—H31B109.5
C3—C2—C1120.0 (4)O6—C31—H31C109.5
C3—C2—H2120.0H31A—C31—H31C109.5
C1—C2—H2120.0H31B—C31—H31C109.5
C2—C3—C4120.4 (3)O3—Cu1—N2170.82 (10)
C2—C3—H3119.8O3—Cu1—N3104.67 (10)
C4—C3—H3119.8N2—Cu1—N377.52 (10)
C5—C4—C3115.5 (3)O3—Cu1—N196.64 (10)
C5—C4—C9117.5 (3)N2—Cu1—N179.71 (10)
C3—C4—C9127.0 (3)N3—Cu1—N1155.91 (10)
N1—C5—C4124.5 (3)O3—Cu1—O591.88 (9)
N1—C5—C6116.3 (3)N2—Cu1—O596.76 (9)
C4—C5—C6119.2 (3)N3—Cu1—O596.34 (10)
N2—C6—C7121.9 (3)N1—Cu1—O594.02 (10)
N2—C6—C5115.0 (3)C1—N1—C5117.6 (3)
C7—C6—C5123.1 (3)C1—N1—Cu1131.1 (2)
C6—C7—C10115.8 (3)C5—N1—Cu1111.23 (19)
C6—C7—C8116.3 (3)C12—N2—C6121.1 (3)
C10—C7—C8127.9 (3)C12—N2—Cu1121.2 (2)
C9—C8—C7121.8 (3)C6—N2—Cu1117.7 (2)
C9—C8—H8119.1C15—N3—N4105.4 (2)
C7—C8—H8119.1C15—N3—Cu1143.2 (2)
C8—C9—C4122.1 (3)N4—N3—Cu1111.22 (18)
C8—C9—H9118.9C13—N4—C12132.7 (3)
C4—C9—H9118.9C13—N4—N3110.3 (3)
C11—C10—C7121.8 (3)C12—N4—N3116.8 (2)
C11—C10—H10119.1C15—N5—H5A120.0
C7—C10—H10119.1C15—N5—H5B120.0
C10—C11—C12118.1 (3)H5A—N5—H5B120.0
C10—C11—H11120.9S1—O3—Cu1129.60 (14)
C12—C11—H11120.9Cu1—O5—H4109.7
N2—C12—N4112.6 (3)Cu1—O5—H5113.0
N2—C12—C11121.2 (3)H4—O5—H5103.1
N4—C12—C11126.2 (3)C31—O6—H12123.5
C14—C13—N4108.2 (3)H6—O7—H7109.3
C14—C13—H13125.9H17—O8—H18103.3
N4—C13—H13125.9O1—S1—O4109.94 (15)
C13—C14—C15106.8 (3)O1—S1—O2110.92 (15)
C13—C14—H14126.6O4—S1—O2110.86 (15)
C15—C14—H14126.6O1—S1—O3107.19 (14)
N5—C15—N3123.2 (3)O4—S1—O3107.99 (14)
N5—C15—C14127.6 (3)O2—S1—O3109.84 (14)
N3—C15—C14109.2 (3)
N1—C1—C2—C31.8 (6)N4—C12—N2—C6176.8 (3)
C1—C2—C3—C40.4 (6)C11—C12—N2—C62.9 (4)
C2—C3—C4—C51.7 (5)N4—C12—N2—Cu13.3 (4)
C2—C3—C4—C9179.0 (3)C11—C12—N2—Cu1177.0 (2)
C3—C4—C5—N10.9 (5)C7—C6—N2—C120.9 (4)
C9—C4—C5—N1179.7 (3)C5—C6—N2—C12177.8 (3)
C3—C4—C5—C6178.5 (3)C7—C6—N2—Cu1179.0 (2)
C9—C4—C5—C60.9 (4)C5—C6—N2—Cu12.3 (3)
N1—C5—C6—N20.8 (4)N3—Cu1—N2—C125.9 (2)
C4—C5—C6—N2178.7 (3)N1—Cu1—N2—C12178.0 (2)
N1—C5—C6—C7179.5 (3)O5—Cu1—N2—C1289.1 (2)
C4—C5—C6—C70.1 (5)N3—Cu1—N2—C6174.2 (2)
N2—C6—C7—C101.4 (4)N1—Cu1—N2—C62.1 (2)
C5—C6—C7—C10179.9 (3)O5—Cu1—N2—C690.8 (2)
N2—C6—C7—C8179.2 (3)N5—C15—N3—N4179.5 (3)
C5—C6—C7—C80.5 (5)C14—C15—N3—N40.4 (3)
C6—C7—C8—C90.3 (5)N5—C15—N3—Cu15.7 (6)
C10—C7—C8—C9179.6 (3)C14—C15—N3—Cu1174.4 (3)
C7—C8—C9—C40.6 (5)O3—Cu1—N3—C157.6 (4)
C5—C4—C9—C81.2 (5)N2—Cu1—N3—C15178.4 (4)
C3—C4—C9—C8178.2 (3)N1—Cu1—N3—C15159.1 (3)
C6—C7—C10—C111.8 (5)O5—Cu1—N3—C1586.0 (4)
C8—C7—C10—C11178.9 (3)O3—Cu1—N3—N4177.80 (18)
C7—C10—C11—C120.0 (5)N2—Cu1—N3—N46.98 (18)
C10—C11—C12—N22.5 (5)N1—Cu1—N3—N426.3 (4)
C10—C11—C12—N4177.3 (3)O5—Cu1—N3—N488.58 (19)
N4—C13—C14—C151.0 (4)C14—C13—N4—C12175.1 (3)
C13—C14—C15—N5179.0 (3)C14—C13—N4—N30.8 (4)
C13—C14—C15—N30.8 (4)N2—C12—N4—C13177.5 (3)
C2—C1—N1—C52.6 (5)C11—C12—N4—C132.2 (6)
C2—C1—N1—Cu1179.4 (3)N2—C12—N4—N33.4 (4)
C4—C5—N1—C11.2 (5)C11—C12—N4—N3176.3 (3)
C6—C5—N1—C1179.3 (3)C15—N3—N4—C130.2 (3)
C4—C5—N1—Cu1179.7 (2)Cu1—N3—N4—C13176.9 (2)
C6—C5—N1—Cu10.9 (3)C15—N3—N4—C12175.6 (3)
O3—Cu1—N1—C18.8 (3)Cu1—N3—N4—C127.8 (3)
N2—Cu1—N1—C1179.8 (3)N3—Cu1—O3—S177.66 (19)
N3—Cu1—N1—C1161.0 (3)N1—Cu1—O3—S191.02 (19)
O5—Cu1—N1—C183.6 (3)O5—Cu1—O3—S1174.72 (18)
O3—Cu1—N1—C5173.1 (2)Cu1—O3—S1—O1155.30 (18)
N2—Cu1—N1—C51.6 (2)Cu1—O3—S1—O486.3 (2)
N3—Cu1—N1—C520.8 (4)Cu1—O3—S1—O234.7 (2)
O5—Cu1—N1—C594.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H4···O70.891.792.671 (4)167
O5—H5···O80.891.902.774 (4)164
O6—H12···O10.851.892.668 (4)152
O7—H6···O60.842.102.878 (5)153
O7—H7···O4i0.891.842.726 (4)173
O8—H17···O6ii0.902.072.906 (5)154
O8—H18···O2iii0.902.092.957 (4)163
N5—H5A···O40.862.192.916 (4)143
N5—H5B···O2ii0.862.173.022 (4)175
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(SO4)(C15H11N5)(H2O)]·CH4O·2H2O
Mr506.98
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.0190 (13), 18.489 (3), 14.086 (2)
β (°) 104.551 (2)
V3)2021.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.22 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.772, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
11702, 4394, 3434
Rint0.038
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.119, 1.03
No. of reflections4394
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.31

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O31.906 (2)Cu1—N12.090 (2)
Cu1—N21.934 (2)Cu1—O52.220 (2)
Cu1—N32.068 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H4···O70.891.792.671 (4)167.0
O5—H5···O80.891.902.774 (4)163.5
O6—H12···O10.851.892.668 (4)152.0
O7—H6···O60.842.102.878 (5)153.1
O7—H7···O4i0.891.842.726 (4)173.2
O8—H17···O6ii0.902.072.906 (5)153.9
O8—H18···O2iii0.902.092.957 (4)163.2
N5—H5A···O40.862.192.916 (4)142.5
N5—H5B···O2ii0.862.173.022 (4)174.5
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province of China (No. ZR2009BM026).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, H., Zhang, S. D., Xie, L. M., Yu, L. & Shi, J. M. (2011a). J. Coord. Chem. 64, 1456–1468.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, H., Zhang, S. D., Xie, L. M., Yu, L. & Shi, J. M. (2011b). J. Coord. Chem. 64, 3595–3608.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m558-m559
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds