metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis­(methane­sulfonato-κO)(5,10,15,20-tetra­phenyl­porphyrinato-κ4N,N′,N′′,N′′′)tin(IV) chloro­form tris­­olvate

aDepartment of Applied Chemistry, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi 730-701, Republic of Korea
*Correspondence e-mail: hjk@kumoh.ac.kr

(Received 16 March 2012; accepted 11 April 2012; online 18 April 2012)

In the crystal structure of the title compound, [Sn(C44H28N4)(CH3O3S)2]·3CHCl3, the SnIV ion is located on an inversion center and is octa­hedrally coordinated. The porphyrin N atoms occupy the equatorial positions while the axial positions are occupied by the O atoms of the methane­sulfonate anions. The phenyl rings make dihedral angles of 77.02 (13) and 87.89 (14)° with the porphyrin ring. Of the three solvent chloro­form mol­ecules, one is disordered over a twofold rotation axis. In the crystal a three-dimensional assembly is accomplished via C—H⋯O hydrogen bonds between the H atoms of the phenyl groups in the porphyrin ring and the O atoms of the methane­sulfonate ligands.

Related literature

For general background to tin(IV) porphyrin chemistry, see: Arnold & Blok (2004[Arnold, D. P. & Blok, J. (2004). Coord. Chem. Rev. 248, 299-319.]). For the preparation of related tin porphyrins, see: Kim et al. (2004[Kim, H. J., Park, K.-M., Ahn, T. K., Kim, S. K., Kim, K. S., Kim, D. & Kim, H.-J. (2004). Chem. Commun. pp. 2594-2595.], 2005[Kim, H.-J., Jo, H. J., Kim, J., Kim, S.-Y., Kim, D. & Kim, K. (2005). CrystEngComm, 7, 417-420.], 2007[Kim, H. J., Jeon, W. S., Lim, J. H., Hong, C. S. & Kim, H.-J. (2007). Polyhedron, 26, 2517-2522.], 2009[Kim, S. H., Kim, H., Kim, K. & Kim, H.-J. (2009). J. Porphyrins Phthalocyanines, 13, 805-810.]). For related structures, see: Liu et al. (1996[Liu, I.-C., Lin, C.-C., Chen, J.-H. & Wang, S.-S. (1996). Polyhedron, 15, 459-463.]); Smith et al. (1991[Smith, G., Arnold, D. P., Kennard, C. H. L. & Mak, T. C. W. (1991). Polyhedron, 10, 509-516.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C44H28N4)(CH3O3S)2]·3CHCl3

  • Mr = 1279.69

  • Monoclinic, C 2/c

  • a = 25.379 (2) Å

  • b = 11.6269 (9) Å

  • c = 20.860 (3) Å

  • β = 120.934 (1)°

  • V = 5279.9 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 150 K

  • 0.26 × 0.19 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.765, Tmax = 0.848

  • 22613 measured reflections

  • 5192 independent reflections

  • 4525 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.04

  • 5192 reflections

  • 331 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O2i 0.95 2.55 3.280 (4) 134
C24—H24A⋯O2ii 1.00 2.35 3.191 (4) 141
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In tin(IV) porphyrin chemistry, a number of compounds have been synthesized through variation of the axial ligands such as hydroxide, alkoxides, halides, nitrate, perchlorate or carboxylates (Arnold & Blok, 2004). Among these compounds, hydroxido-tin(IV) porphyrins have been employed as useful precursors for the preparation of various tin(IV) prophyrin complexes bearing oxygen donor ligands preferentially (Kim et al., 2004, 2005, 2007, 2009). In this order, we have studied the reactivity behaviour of hydroxido-tin(IV) porphyrins with various acidic compounds including sulfonic acid derivatives. Here we report the synthesis, characterization and X-ray structural study of the title solvate [Sn(C44H28N4)(CH3SO3)2].3CHCl3 or [Sn(TPP)(CH3SO3)2].3CHCl3 (TPP = tetraphenylporphyrinato dianion).

The characterization of the title compound has been carried out with 1H NMR spectroscopy (see supplementary materials) as well as with X-ray crystal structure analysis. The molecular structure of Sn(TPP)(CH3SO3)2 shown in Figure 1 exhibits an octahedral geometry around the tin(IV) ion (site symmetry 1). The equatorial plane is formed by four N atoms of the porphyrin ring while the axial positions are occupied by methanesulfonate groups. The methanesulfonate groups are unidentately coordinating to the tin atom. The bond lengths, Sn1—N1 = 2.074 (2), Sn1—N2 = 2.081 (2) Å and angles, N1—Sn1—N2 = 89.99 (8)°, N1—Sn1—N2i = 90.01 (8)°, N1—Sn1—N1i = 180.00 (7)° and O1—Sn1—O1i = 180.0°, associated with these atoms well corroborate the fact related to an octahedral coordination environment around the tin atom. The bond length Sn—Omethanesulfonato (2.1184 (18) Å) is significantly longer than Sn—Oacetato (2.086 (5) Å) in Sn(TPP)(CH3CO2)2 (Liu et al., 1996), which reflects a less basic character of the methanesulfonate group than of the acetate group. On comparison with the reported Sn(TPP) complex bearing CF3SO3- groups (Smith et al., 1991), this comound crystallizes as a diaqua-complex where the two water molecules are coordinating to the tin atom at the axial sites while the two CF3SO3- groups act as counter anions. The comparative study of these two anionic sulfonate groups evidently reveals that the methanesulfonate anion has a more basic character than the trifluoromethanesulfonate anion.

In the crystal structure of [Sn(C44H28N4)(CH3SO3)2].3CHCl3 the presence of intramolecular and intermolecular hydrogen bonding (which lies in the range of moderate to weak bonding) is evident. The molecular structure shows the presence of one intramolecular hydrogen bond (C11—H11A···O3 = 2.846 Å) between the phenyl H11A atom and the O3 atom of the methanesulfonato ligand. Two additional hydrogen bonds (C20—H20A···O3 = 2.626, C19—H19A···O3 = 3.012 Å) involving H19A, H20A atoms of the phenyl groups and O3 atoms of the methanesulfonato ligands form a chain structure along the b-axis (Figure 2). Further, these adjacent one-dimensional chains interact with each other via additional hydrogen bonds, resulting in two-dimensional (C8—H8A···O2 = 2.552, C8—H8A···O1 = 2.769 Å) (Figure 3) and three-dimensional (C10—H10A···O3 = 3.065 Å) (Figure 4) structural motifs. The view of three-dimensional supramolecular assembly along the b-axis (in ac-plane) displays the presence of infinite channels which are filled by chloroform molecules. The asymmetric unit is associated with two chloroform molecules present in the three-dimensional channels as free solvent molecules. Another chloroform molecules in the asymmetric unit is present in a weakly hydrogen-bonded state (C24—H24A···O3 = 2.720, C24—H24A···O2 = 2.352 Å) with the oxygen atoms of the methanesulfonato ligands of adjacent asymmetric units.

Related literature top

For general background to tin(IV) porphyrin chemistry, see: Arnold & Blok (2004). For the preparation of related tin porphyrins, see: Kim et al. (2004, 2005, 2007, 2009). For related structures, see: Liu et al. (1996); Smith et al. (1991).

Experimental top

A mixture of Sn(TPP)(OH)2 (0.150 g, 1.96 × 10 -4 mol) and methanesulfonic acid (0.0376 g, 3.92 × 10 -4 mol) in dry chloroform (20 ml) was stirred at room temperature for 8 h. The solvent was removed and the crude material was stirred in dry hexane for 4 h. The precipitated compound was filtered and dried in vacuo. The product was further recrystallized by slow diffusion of n-hexane into a chloroform solution of the compound. Yield: 75%. Mp > 300° C. 1H NMR (400 MHz, CDCl3, SiMe4): δ -0.50 (6H, s, CH3), 7.79–7.86 (12H, Ar—H), 8.29 (8H, d, 3JH—H = 6.56 Hz, Ar—H), 9.17 (8H, s, 4JH—Sn = 14.8 Hz, β-pyrrolic H).

Refinement top

The occupancy of chlorine atom has been distributed at two atomic sites in the ratios of 50:50 with total site occupancy of 1.00. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were added to their geometrically ideal positions.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of [Sn(C44H28N4)(CH3SO3)2].3CHCl3 with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. [Symmetry codes: (A) -x, -y, -z; (B) -x, y, -z + 0.5.]
[Figure 2] Fig. 2. View of the one-dimensional chain along the b-axis. Hydrogen-bonding interactions are drawn with dashed lines.
[Figure 3] Fig. 3. View along the a-axis of the two-dimensional structure. Hydrogen-bond interactions are drawn with dashed lines.
[Figure 4] Fig. 4. View along b-axis of the three-dimensional structure. Hydrogen-bond interactions are drawn with dashed lines.
Bis(methanesulfonato-κO)(5,10,15,20-tetraphenylporphyrinato- κ4N,N'',N'',N''')tin(IV) chloroform trisolvate top
Crystal data top
[Sn(C44H28N4)(CH3O3S)2]·3CHCl3F(000) = 2568
Mr = 1279.69Dx = 1.610 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9494 reflections
a = 25.379 (2) Åθ = 2.5–27.6°
b = 11.6269 (9) ŵ = 1.07 mm1
c = 20.860 (3) ÅT = 150 K
β = 120.934 (1)°Block, violet
V = 5279.9 (9) Å30.26 × 0.19 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5192 independent reflections
Radiation source: Turbo X-ray4525 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.035
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3131
Tmin = 0.765, Tmax = 0.848k = 1414
22613 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0404P)2 + 12.8121P]
where P = (Fo2 + 2Fc2)/3
5192 reflections(Δ/σ)max < 0.001
331 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
[Sn(C44H28N4)(CH3O3S)2]·3CHCl3V = 5279.9 (9) Å3
Mr = 1279.69Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.379 (2) ŵ = 1.07 mm1
b = 11.6269 (9) ÅT = 150 K
c = 20.860 (3) Å0.26 × 0.19 × 0.16 mm
β = 120.934 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5192 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4525 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.848Rint = 0.035
22613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0404P)2 + 12.8121P]
where P = (Fo2 + 2Fc2)/3
5192 reflectionsΔρmax = 0.91 e Å3
331 parametersΔρmin = 0.86 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.00000.00000.00000.02057 (8)
S10.14343 (3)0.07734 (6)0.12355 (4)0.02780 (15)
O10.07563 (8)0.07458 (16)0.09584 (10)0.0297 (4)
O20.16993 (10)0.03546 (19)0.14721 (12)0.0408 (5)
O30.15589 (10)0.13277 (19)0.07136 (12)0.0416 (5)
N10.05688 (9)0.08286 (17)0.02948 (11)0.0233 (4)
N20.00374 (9)0.14274 (17)0.06239 (11)0.0228 (4)
C10.08282 (12)0.1898 (2)0.00474 (14)0.0256 (5)
C20.12325 (13)0.2100 (2)0.03274 (15)0.0299 (6)
H2A0.14650.27790.02550.036*
C30.12243 (12)0.1162 (2)0.07092 (15)0.0291 (6)
H3A0.14560.10580.09460.035*
C40.08066 (12)0.0349 (2)0.06968 (14)0.0250 (5)
C50.06792 (12)0.0747 (2)0.10157 (14)0.0247 (5)
C60.10283 (12)0.1116 (2)0.13798 (14)0.0261 (5)
C70.08757 (13)0.0719 (3)0.20824 (15)0.0335 (6)
H7A0.05430.01990.23420.040*
C80.12063 (14)0.1076 (3)0.24057 (17)0.0408 (7)
H8A0.10930.08150.28920.049*
C90.16933 (15)0.1800 (3)0.20320 (19)0.0429 (8)
H9A0.19220.20310.22540.051*
C100.18547 (16)0.2199 (3)0.1334 (2)0.0464 (8)
H10A0.21940.27060.10760.056*
C110.15213 (14)0.1861 (3)0.10063 (17)0.0372 (7)
H11A0.16320.21410.05250.045*
C120.02762 (11)0.1554 (2)0.09967 (13)0.0239 (5)
C130.01197 (12)0.2649 (2)0.13580 (15)0.0279 (6)
H13A0.02680.29580.16570.033*
C140.02779 (12)0.3169 (2)0.12005 (15)0.0271 (5)
H14A0.04600.39040.13720.033*
C150.03759 (11)0.2412 (2)0.07293 (14)0.0239 (5)
C160.07386 (11)0.2634 (2)0.04160 (14)0.0243 (5)
C170.10721 (12)0.3760 (2)0.06105 (14)0.0248 (5)
C180.08175 (16)0.4711 (3)0.0177 (2)0.0612 (12)
H18A0.04170.46640.02530.073*
C190.11340 (17)0.5748 (3)0.0354 (2)0.0643 (12)
H19A0.09470.64050.00480.077*
C200.17068 (14)0.5828 (2)0.09582 (18)0.0375 (7)
H20A0.19260.65340.10770.045*
C210.19643 (16)0.4888 (3)0.1391 (2)0.0595 (11)
H21A0.23660.49400.18190.071*
C220.16519 (15)0.3853 (3)0.1222 (2)0.0525 (9)
H22A0.18410.32020.15310.063*
C230.17079 (15)0.1659 (3)0.20286 (17)0.0421 (7)
H23A0.21540.17520.22650.063*
H23B0.15090.24140.18780.063*
H23C0.16130.13040.23840.063*
C240.22194 (17)0.5661 (3)0.3870 (2)0.0504 (8)
H24A0.26470.54320.40160.061*
Cl10.17224 (7)0.51173 (11)0.29855 (8)0.0916 (4)
Cl20.20717 (7)0.51221 (9)0.45494 (8)0.0788 (4)
Cl30.21860 (5)0.71697 (8)0.38628 (6)0.0621 (3)
C250.0212 (4)0.6766 (7)0.2678 (6)0.070 (2)0.50
H250.06220.69070.31380.084*0.50
Cl40.02877 (7)0.75684 (14)0.20677 (9)0.1048 (5)
Cl50.0137 (3)0.5484 (3)0.2778 (3)0.146 (3)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02249 (13)0.01973 (13)0.02126 (13)0.00515 (9)0.01251 (10)0.00170 (9)
S10.0274 (3)0.0302 (3)0.0260 (3)0.0002 (3)0.0140 (3)0.0005 (3)
O10.0265 (9)0.0327 (10)0.0275 (10)0.0020 (8)0.0122 (8)0.0053 (8)
O20.0397 (12)0.0418 (11)0.0446 (12)0.0139 (10)0.0244 (10)0.0095 (10)
O30.0509 (13)0.0439 (12)0.0353 (11)0.0098 (10)0.0259 (10)0.0010 (9)
N10.0262 (11)0.0218 (10)0.0237 (11)0.0053 (8)0.0140 (9)0.0017 (8)
N20.0259 (11)0.0218 (10)0.0241 (11)0.0060 (8)0.0152 (9)0.0030 (8)
C10.0266 (13)0.0231 (12)0.0258 (13)0.0050 (10)0.0126 (11)0.0008 (10)
C20.0332 (14)0.0280 (13)0.0348 (15)0.0083 (11)0.0220 (12)0.0005 (11)
C30.0315 (14)0.0304 (14)0.0322 (14)0.0073 (11)0.0213 (12)0.0028 (11)
C40.0256 (13)0.0277 (12)0.0233 (13)0.0044 (10)0.0137 (11)0.0011 (10)
C50.0261 (13)0.0280 (13)0.0212 (12)0.0025 (10)0.0131 (11)0.0002 (10)
C60.0280 (13)0.0268 (13)0.0277 (13)0.0093 (10)0.0173 (11)0.0062 (10)
C70.0316 (14)0.0431 (16)0.0285 (14)0.0044 (12)0.0174 (12)0.0006 (12)
C80.0428 (17)0.0565 (19)0.0331 (16)0.0188 (15)0.0267 (14)0.0111 (14)
C90.0468 (18)0.0452 (18)0.056 (2)0.0129 (15)0.0406 (17)0.0177 (15)
C100.0442 (18)0.0385 (17)0.068 (2)0.0040 (14)0.0366 (18)0.0015 (16)
C110.0398 (16)0.0370 (16)0.0408 (17)0.0028 (13)0.0250 (14)0.0057 (13)
C120.0270 (13)0.0249 (12)0.0202 (12)0.0012 (10)0.0124 (10)0.0002 (10)
C130.0297 (13)0.0272 (13)0.0290 (14)0.0026 (11)0.0167 (12)0.0045 (11)
C140.0305 (13)0.0211 (12)0.0286 (13)0.0039 (10)0.0143 (11)0.0027 (10)
C150.0235 (12)0.0222 (12)0.0230 (12)0.0034 (10)0.0098 (10)0.0005 (10)
C160.0247 (12)0.0220 (12)0.0249 (13)0.0036 (10)0.0119 (11)0.0006 (10)
C170.0272 (13)0.0219 (12)0.0293 (13)0.0052 (10)0.0174 (11)0.0025 (10)
C180.0387 (18)0.0378 (18)0.063 (2)0.0121 (15)0.0052 (17)0.0162 (17)
C190.049 (2)0.0291 (16)0.074 (3)0.0094 (15)0.0023 (19)0.0189 (17)
C200.0394 (16)0.0238 (13)0.0507 (18)0.0099 (12)0.0242 (15)0.0067 (13)
C210.0374 (18)0.0354 (18)0.063 (2)0.0132 (14)0.0052 (17)0.0039 (16)
C220.0418 (18)0.0301 (16)0.052 (2)0.0078 (13)0.0004 (16)0.0109 (14)
C230.0398 (17)0.0498 (18)0.0309 (15)0.0100 (14)0.0140 (13)0.0115 (14)
C240.056 (2)0.053 (2)0.055 (2)0.0161 (17)0.0373 (18)0.0061 (17)
Cl10.0975 (10)0.0843 (9)0.0691 (8)0.0046 (7)0.0257 (7)0.0116 (6)
Cl20.1253 (11)0.0547 (6)0.0981 (9)0.0140 (6)0.0872 (9)0.0121 (5)
Cl30.0740 (6)0.0512 (5)0.0733 (6)0.0138 (5)0.0466 (6)0.0105 (5)
C250.059 (5)0.060 (5)0.083 (7)0.006 (3)0.031 (5)0.009 (4)
Cl40.0796 (9)0.1124 (11)0.1096 (11)0.0073 (8)0.0395 (8)0.0276 (9)
Cl50.169 (6)0.0757 (16)0.248 (8)0.053 (3)0.146 (6)0.069 (3)
Geometric parameters (Å, º) top
Sn1—N12.074 (2)C12—C131.427 (4)
Sn1—N1i2.074 (2)C13—C141.354 (4)
Sn1—N2i2.081 (2)C13—H13A0.9500
Sn1—N22.081 (2)C14—C151.433 (4)
Sn1—O12.1184 (18)C14—H14A0.9500
Sn1—O1i2.1185 (18)C15—C161.400 (4)
S1—O31.434 (2)C16—C1i1.394 (4)
S1—O21.440 (2)C16—C171.498 (3)
S1—O11.5077 (19)C17—C181.363 (4)
S1—C231.760 (3)C17—C221.369 (4)
N1—C11.377 (3)C18—C191.389 (5)
N1—C41.378 (3)C18—H18A0.9500
N2—C121.377 (3)C19—C201.352 (5)
N2—C151.380 (3)C19—H19A0.9500
C1—C16i1.394 (4)C20—C211.353 (4)
C1—C21.437 (4)C20—H20A0.9500
C2—C31.344 (4)C21—C221.383 (4)
C2—H2A0.9500C21—H21A0.9500
C3—C41.431 (3)C22—H22A0.9500
C3—H3A0.9500C23—H23A0.9800
C4—C51.397 (4)C23—H23B0.9800
C5—C121.403 (3)C23—H23C0.9800
C5—C61.496 (4)C24—Cl11.733 (4)
C6—C111.386 (4)C24—Cl21.756 (4)
C6—C71.388 (4)C24—Cl31.756 (4)
C7—C81.383 (4)C24—H24A1.0000
C7—H7A0.9500C25—Cl51.530 (9)
C8—C91.361 (5)C25—Cl41.667 (10)
C8—H8A0.9500C25—Cl4ii1.858 (9)
C9—C101.374 (5)C25—H251.0000
C9—H9A0.9500Cl4—C25ii1.858 (9)
C10—C111.390 (4)Cl5—Cl5ii0.999 (10)
C10—H10A0.9500Cl5—C25ii1.745 (9)
C11—H11A0.9500
N1—Sn1—N1i180.00 (7)C6—C11—C10120.1 (3)
N1—Sn1—N2i90.01 (8)C6—C11—H11A119.9
N1i—Sn1—N2i89.99 (8)C10—C11—H11A119.9
N1—Sn1—N289.99 (8)N2—C12—C5125.8 (2)
N1i—Sn1—N290.01 (8)N2—C12—C13108.0 (2)
N2i—Sn1—N2180.0C5—C12—C13126.2 (2)
N1—Sn1—O187.77 (8)C14—C13—C12108.1 (2)
N1i—Sn1—O192.23 (8)C14—C13—H13A126.0
N2i—Sn1—O189.52 (8)C12—C13—H13A126.0
N2—Sn1—O190.48 (8)C13—C14—C15107.8 (2)
N1—Sn1—O1i92.23 (8)C13—C14—H14A126.1
N1i—Sn1—O1i87.77 (8)C15—C14—H14A126.1
N2i—Sn1—O1i90.47 (8)N2—C15—C16125.7 (2)
N2—Sn1—O1i89.53 (8)N2—C15—C14107.8 (2)
O1—Sn1—O1i180.0C16—C15—C14126.5 (2)
O3—S1—O2115.02 (13)C1i—C16—C15126.3 (2)
O3—S1—O1111.86 (12)C1i—C16—C17117.0 (2)
O2—S1—O1110.60 (12)C15—C16—C17116.7 (2)
O3—S1—C23108.45 (14)C18—C17—C22118.0 (3)
O2—S1—C23108.75 (15)C18—C17—C16121.4 (2)
O1—S1—C23101.19 (13)C22—C17—C16120.6 (2)
S1—O1—Sn1132.25 (11)C17—C18—C19121.0 (3)
C1—N1—C4108.6 (2)C17—C18—H18A119.5
C1—N1—Sn1125.42 (17)C19—C18—H18A119.5
C4—N1—Sn1125.57 (16)C20—C19—C18120.3 (3)
C12—N2—C15108.3 (2)C20—C19—H19A119.8
C12—N2—Sn1125.80 (16)C18—C19—H19A119.8
C15—N2—Sn1125.87 (16)C19—C20—C21119.1 (3)
N1—C1—C16i126.7 (2)C19—C20—H20A120.4
N1—C1—C2107.4 (2)C21—C20—H20A120.4
C16i—C1—C2125.9 (2)C20—C21—C22121.0 (3)
C3—C2—C1108.1 (2)C20—C21—H21A119.5
C3—C2—H2A125.9C22—C21—H21A119.5
C1—C2—H2A125.9C17—C22—C21120.5 (3)
C2—C3—C4108.2 (2)C17—C22—H22A119.8
C2—C3—H3A125.9C21—C22—H22A119.8
C4—C3—H3A125.9S1—C23—H23A109.5
N1—C4—C5126.3 (2)S1—C23—H23B109.5
N1—C4—C3107.7 (2)H23A—C23—H23B109.5
C5—C4—C3125.9 (2)S1—C23—H23C109.5
C4—C5—C12126.2 (2)H23A—C23—H23C109.5
C4—C5—C6116.8 (2)H23B—C23—H23C109.5
C12—C5—C6117.0 (2)Cl1—C24—Cl2112.9 (2)
C11—C6—C7118.9 (3)Cl1—C24—Cl3110.4 (2)
C11—C6—C5119.5 (2)Cl2—C24—Cl3109.52 (19)
C7—C6—C5121.6 (2)Cl1—C24—H24A107.9
C8—C7—C6120.3 (3)Cl2—C24—H24A107.9
C8—C7—H7A119.8Cl3—C24—H24A107.9
C6—C7—H7A119.8Cl5—C25—Cl4136.0 (7)
C9—C8—C7120.4 (3)Cl5—C25—Cl4ii107.4 (6)
C9—C8—H8A119.8Cl4—C25—Cl4ii107.5 (4)
C7—C8—H8A119.8Cl5—C25—H2599.8
C8—C9—C10120.2 (3)Cl4—C25—H2599.8
C8—C9—H9A119.9Cl4ii—C25—H2599.8
C10—C9—H9A119.9C25—Cl4—C25ii30.5 (5)
C9—C10—C11120.0 (3)Cl5ii—Cl5—C2584.5 (4)
C9—C10—H10A120.0Cl5ii—Cl5—C25ii60.8 (4)
C11—C10—H10A120.0C25—Cl5—C25ii32.7 (6)
O3—S1—O1—Sn160.68 (19)C6—C7—C8—C91.5 (4)
O2—S1—O1—Sn168.94 (18)C7—C8—C9—C101.2 (5)
C23—S1—O1—Sn1175.95 (16)C8—C9—C10—C110.2 (5)
N1—Sn1—O1—S1172.62 (16)C7—C6—C11—C100.0 (4)
N1i—Sn1—O1—S17.38 (16)C5—C6—C11—C10179.2 (3)
N2i—Sn1—O1—S182.59 (16)C9—C10—C11—C60.4 (5)
N2—Sn1—O1—S197.41 (16)C15—N2—C12—C5178.9 (2)
N2i—Sn1—N1—C12.8 (2)Sn1—N2—C12—C50.5 (4)
N2—Sn1—N1—C1177.2 (2)C15—N2—C12—C131.0 (3)
O1—Sn1—N1—C192.3 (2)Sn1—N2—C12—C13179.53 (17)
O1i—Sn1—N1—C187.7 (2)C4—C5—C12—N23.9 (4)
N2i—Sn1—N1—C4174.7 (2)C6—C5—C12—N2173.0 (2)
N2—Sn1—N1—C45.3 (2)C4—C5—C12—C13176.2 (3)
O1—Sn1—N1—C495.8 (2)C6—C5—C12—C136.9 (4)
O1i—Sn1—N1—C484.2 (2)N2—C12—C13—C140.3 (3)
N1—Sn1—N2—C123.1 (2)C5—C12—C13—C14179.6 (3)
N1i—Sn1—N2—C12176.9 (2)C12—C13—C14—C150.5 (3)
O1—Sn1—N2—C1290.9 (2)C12—N2—C15—C16177.5 (2)
O1i—Sn1—N2—C1289.1 (2)Sn1—N2—C15—C162.0 (4)
N1—Sn1—N2—C15177.5 (2)C12—N2—C15—C141.3 (3)
N1i—Sn1—N2—C152.5 (2)Sn1—N2—C15—C14179.23 (16)
O1—Sn1—N2—C1589.8 (2)C13—C14—C15—N21.1 (3)
O1i—Sn1—N2—C1590.2 (2)C13—C14—C15—C16177.6 (3)
C4—N1—C1—C16i175.8 (3)N2—C15—C16—C1i0.9 (4)
Sn1—N1—C1—C16i2.8 (4)C14—C15—C16—C1i179.4 (3)
C4—N1—C1—C21.6 (3)N2—C15—C16—C17179.5 (2)
Sn1—N1—C1—C2174.65 (17)C14—C15—C16—C171.9 (4)
N1—C1—C2—C31.8 (3)C1i—C16—C17—C1889.4 (4)
C16i—C1—C2—C3175.7 (3)C15—C16—C17—C1891.8 (4)
C1—C2—C3—C41.2 (3)C1i—C16—C17—C2288.7 (4)
C1—N1—C4—C5177.3 (2)C15—C16—C17—C2290.1 (3)
Sn1—N1—C4—C54.2 (4)C22—C17—C18—C190.7 (6)
C1—N1—C4—C30.9 (3)C16—C17—C18—C19178.9 (4)
Sn1—N1—C4—C3173.93 (17)C17—C18—C19—C200.8 (7)
C2—C3—C4—N10.2 (3)C18—C19—C20—C210.6 (7)
C2—C3—C4—C5178.4 (3)C19—C20—C21—C220.3 (7)
N1—C4—C5—C121.2 (4)C18—C17—C22—C210.4 (6)
C3—C4—C5—C12179.1 (3)C16—C17—C22—C21178.6 (4)
N1—C4—C5—C6175.6 (2)C20—C21—C22—C170.2 (7)
C3—C4—C5—C62.2 (4)Cl5—C25—Cl4—C25ii80.4 (10)
C4—C5—C6—C11101.8 (3)Cl4ii—C25—Cl4—C25ii60.6 (7)
C12—C5—C6—C1175.3 (3)Cl4—C25—Cl5—Cl5ii39.6 (13)
C4—C5—C6—C777.4 (3)Cl4ii—C25—Cl5—Cl5ii101.5 (9)
C12—C5—C6—C7105.5 (3)Cl4—C25—Cl5—C25ii80.3 (14)
C11—C6—C7—C80.9 (4)Cl4ii—C25—Cl5—C25ii60.8 (10)
C5—C6—C7—C8179.9 (3)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2ii0.952.553.280 (4)134
C24—H24A···O2iii1.002.353.191 (4)141
Symmetry codes: (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(C44H28N4)(CH3O3S)2]·3CHCl3
Mr1279.69
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)25.379 (2), 11.6269 (9), 20.860 (3)
β (°) 120.934 (1)
V3)5279.9 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.26 × 0.19 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.765, 0.848
No. of measured, independent and
observed [I > 2σ(I)] reflections
22613, 5192, 4525
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.04
No. of reflections5192
No. of parameters331
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0404P)2 + 12.8121P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.91, 0.86

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.952.553.280 (4)133.5
C24—H24A···O2ii1.002.353.191 (4)140.8
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by Kumoh National Institute of Technology.

References

First citationArnold, D. P. & Blok, J. (2004). Coord. Chem. Rev. 248, 299–319.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKim, H. J., Jeon, W. S., Lim, J. H., Hong, C. S. & Kim, H.-J. (2007). Polyhedron, 26, 2517–2522.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, H.-J., Jo, H. J., Kim, J., Kim, S.-Y., Kim, D. & Kim, K. (2005). CrystEngComm, 7, 417–420.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, S. H., Kim, H., Kim, K. & Kim, H.-J. (2009). J. Porphyrins Phthalocyanines, 13, 805–810.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, H. J., Park, K.-M., Ahn, T. K., Kim, S. K., Kim, K. S., Kim, D. & Kim, H.-J. (2004). Chem. Commun. pp. 2594–2595.  Web of Science CSD CrossRef Google Scholar
First citationLiu, I.-C., Lin, C.-C., Chen, J.-H. & Wang, S.-S. (1996). Polyhedron, 15, 459–463.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Arnold, D. P., Kennard, C. H. L. & Mak, T. C. W. (1991). Polyhedron, 10, 509–516.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds