inorganic compounds
Dicobalt(II) lead(II) hydrogenphosphate(V) phosphate(V) hydroxide monohydrate
aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: m_zriouil@yahoo.fr
The title compound, Co2Pb(HPO4)(PO4)OH·H2O, which was synthesized under hydrothermal conditions, crystallizes in a new structure type. Except for two O atoms in general positions and two Co atoms on centres of symmetry, all other atoms in the (1 Pb, 2 Co, 2 P, 8 O and 4 H) are located on mirror planes. The structure is built up from two infinite linear chains, viz. 1∞[CoO2/1(H2O)2/2O2/2] and 1∞[CoO2/1(OH)2/2O2/2], of edge-sharing CoO6 octahedra running along [010]. Adjacent chains are linked to each other through PO4 and PO3(OH) tetrahedra, leading to the formation of layers parallel to (100). The three-dimensional framework is formed by stacking along [100] of adjacent layers that are held together by distorted PbO8 polyhedra. Hydrogen bonds of the type O—H⋯O involving the water molecule are very strong, while those O atoms involving the OH groups form weak bifurcated and trifurcated hydrogen bonds.
Related literature
For catalytic properties of phosphates, see: Cheetham et al. (1999); Clearfield (1988); Trad et al. (2010). For compounds with related structures, see: Yakubovich et al. (2001); Lee et al. (2008); Effenberger (1999); Britvin et al. (2002); Assani et al. (2010). For bond-valence analysis, see: Brown & Altermatt (1985). For background to the Inorganic Database (ICSD), see: Belsky et al. (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
The title compound, Co2Pb(HPO4)(PO4)OH.H2O, was obtained from the hydrothermal treatment of a reaction mixture of Pb(NO3)2, metallic cobalt and 85wt% phosphoric acid in the molar ratio Pb:Co:P = 1:3:3. The hydrothermal reaction was conducted in a 23 ml Teflon-lined autoclave under autogeneous pressure at 473 K for three days. The product was filtered off, washed with deionized water and air dried. The resulting product consists of pink crystals besides some pink powder.
The O-bound H atoms were initially located in a difference map and refined with O—H distance restraints of 0.86 (1). In a the last cycle they were refined in the riding model approximation with Uiso(H) set to 1.2Ueq(O). The highest remaining positive and negative electron densities observed in the final Fourier map are 0.76 Å and 0.78 Å, respectively, from Pb1.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).Fig. 1. A partial three-dimensional plot of the crystal structure of Co2Pb(HPO4)(PO4)OH.H2O. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes:(i) -x, y + 1/2, -z; (ii) -x, -y, -z; (iii) x, -y + 1/2, z; (iv) -x, -y, -z + 1; (v) -x - 1, -y, -z; (vi) x + 1, y, z; (vii) -x, -y + 1, -z + 1; (viii) x + 1, -y + 1/2, z + 1; (ix) x + 1, y + 1, z; (x) x, -y - 1/2, z; (xi) x - 1, y - 1, z; (xii) -x, y - 1/2, -z + 1; (xiii) -x - 1, y + 1/2, -z; | |
Fig. 2. A three-dimensional polyhedral view of the crystal structure of Co2Pb(HPO4)(PO4)OH.H2O, showing the stacking of layers along the [100] axis and the hydrogen bonding scheme (dashed lines). |
Co2Pb(HPO4)(PO4)OH·H2O | F(000) = 500 |
Mr = 551.02 | Dx = 4.807 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yb | Cell parameters from 1601 reflections |
a = 7.4299 (1) Å | θ = 2.5–33.5° |
b = 6.2949 (1) Å | µ = 26.83 mm−1 |
c = 8.9057 (1) Å | T = 296 K |
β = 113.936 (1)° | Prism, pink |
V = 380.70 (1) Å3 | 0.18 × 0.12 × 0.08 mm |
Z = 2 |
Bruker X8 APEXII diffractometer | 1601 independent reflections |
Radiation source: fine-focus sealed tube | 1558 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ϕ and ω scans | θmax = 33.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1999) | h = −9→11 |
Tmin = 0.029, Tmax = 0.117 | k = −9→9 |
8321 measured reflections | l = −13→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.016 | H-atom parameters constrained |
wR(F2) = 0.039 | w = 1/[σ2(Fo2) + (0.0153P)2 + 0.885P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.001 |
1601 reflections | Δρmax = 1.76 e Å−3 |
86 parameters | Δρmin = −1.49 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0061 (3) |
Co2Pb(HPO4)(PO4)OH·H2O | V = 380.70 (1) Å3 |
Mr = 551.02 | Z = 2 |
Monoclinic, P21/m | Mo Kα radiation |
a = 7.4299 (1) Å | µ = 26.83 mm−1 |
b = 6.2949 (1) Å | T = 296 K |
c = 8.9057 (1) Å | 0.18 × 0.12 × 0.08 mm |
β = 113.936 (1)° |
Bruker X8 APEXII diffractometer | 1601 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1999) | 1558 reflections with I > 2σ(I) |
Tmin = 0.029, Tmax = 0.117 | Rint = 0.027 |
8321 measured reflections |
R[F2 > 2σ(F2)] = 0.016 | 0 restraints |
wR(F2) = 0.039 | H-atom parameters constrained |
S = 1.11 | Δρmax = 1.76 e Å−3 |
1601 reflections | Δρmin = −1.49 e Å−3 |
86 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pb1 | 0.006473 (17) | 0.2500 | 0.232477 (15) | 0.01414 (5) | |
Co1 | −0.5000 | 0.0000 | 0.0000 | 0.00717 (8) | |
Co2 | 0.5000 | 0.5000 | 0.5000 | 0.00859 (8) | |
P1 | −0.22391 (12) | −0.2500 | 0.32517 (9) | 0.00646 (13) | |
P2 | −0.21025 (11) | 0.2500 | −0.16270 (9) | 0.00642 (13) | |
O1 | −0.3205 (3) | −0.2500 | 0.4478 (3) | 0.0088 (4) | |
O2 | 0.0058 (4) | −0.2500 | 0.4403 (3) | 0.0145 (5) | |
H2 | 0.0642 | −0.2500 | 0.3744 | 0.017* | |
O3 | −0.2656 (2) | −0.0469 (3) | 0.2228 (2) | 0.0102 (3) | |
O4 | 0.0041 (4) | 0.2500 | −0.0355 (3) | 0.0160 (5) | |
O5 | −0.3411 (3) | 0.2500 | −0.0638 (3) | 0.0096 (4) | |
O6 | −0.2489 (3) | 0.0525 (3) | −0.2742 (2) | 0.0135 (3) | |
O7 | −0.4341 (4) | 0.2500 | 0.3936 (3) | 0.0100 (4) | |
H7 | −0.3197 | 0.2500 | 0.3910 | 0.012* | |
O8 | −0.6059 (3) | 0.2500 | 0.0885 (3) | 0.0086 (4) | |
H8A | −0.7322 | 0.2500 | 0.0522 | 0.010* | |
H8B | −0.5660 | 0.2500 | 0.1937 | 0.010* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pb1 | 0.01157 (7) | 0.02066 (8) | 0.01059 (7) | 0.000 | 0.00492 (4) | 0.000 |
Co1 | 0.00890 (17) | 0.00553 (19) | 0.00703 (16) | 0.00041 (14) | 0.00319 (14) | 0.00011 (13) |
Co2 | 0.01066 (18) | 0.0070 (2) | 0.00765 (16) | −0.00114 (14) | 0.00323 (14) | −0.00053 (13) |
P1 | 0.0091 (3) | 0.0062 (3) | 0.0048 (3) | 0.000 | 0.0035 (3) | 0.000 |
P2 | 0.0068 (3) | 0.0075 (3) | 0.0052 (3) | 0.000 | 0.0028 (2) | 0.000 |
O1 | 0.0122 (10) | 0.0082 (10) | 0.0084 (9) | 0.000 | 0.0067 (8) | 0.000 |
O2 | 0.0080 (10) | 0.0233 (14) | 0.0106 (10) | 0.000 | 0.0022 (8) | 0.000 |
O3 | 0.0119 (7) | 0.0090 (7) | 0.0083 (6) | −0.0011 (6) | 0.0027 (5) | 0.0010 (6) |
O4 | 0.0073 (10) | 0.0287 (15) | 0.0101 (10) | 0.000 | 0.0016 (8) | 0.000 |
O5 | 0.0110 (10) | 0.0101 (10) | 0.0105 (9) | 0.000 | 0.0071 (8) | 0.000 |
O6 | 0.0156 (8) | 0.0124 (8) | 0.0088 (6) | 0.0056 (7) | 0.0010 (6) | −0.0041 (6) |
O7 | 0.0113 (10) | 0.0130 (11) | 0.0074 (9) | 0.000 | 0.0055 (8) | 0.000 |
O8 | 0.0097 (9) | 0.0100 (10) | 0.0072 (9) | 0.000 | 0.0047 (8) | 0.000 |
Pb1—O4 | 2.380 (3) | P1—O1 | 1.531 (2) |
Pb1—O6i | 2.5429 (18) | P1—O2 | 1.595 (3) |
Pb1—O6ii | 2.5429 (18) | P2—O4 | 1.535 (3) |
Pb1—O3 | 2.7284 (17) | P2—O6 | 1.5432 (18) |
Pb1—O3iii | 2.7284 (17) | P2—O6iii | 1.5432 (18) |
Pb1—O5 | 2.846 (2) | P2—O5 | 1.554 (2) |
Pb1—O1iv | 2.857 (2) | O1—Co2xi | 2.2302 (16) |
Pb1—O2iv | 2.952 (3) | O1—Co2xii | 2.2302 (16) |
Co1—O8 | 2.0544 (14) | O1—Pb1iv | 2.857 (2) |
Co1—O8v | 2.0544 (14) | O2—Pb1iv | 2.952 (3) |
Co1—O3v | 2.0624 (16) | O2—H2 | 0.8600 |
Co1—O3 | 2.0624 (16) | O5—Co1xiii | 2.1766 (15) |
Co1—O5 | 2.1766 (15) | O6—Co2xiv | 2.1426 (17) |
Co1—O5v | 2.1766 (15) | O6—Pb1ii | 2.5429 (18) |
Co2—O7vi | 1.9978 (14) | O7—Co2xv | 1.9978 (14) |
Co2—O7vii | 1.9978 (14) | O7—Co2xii | 1.9978 (14) |
Co2—O6i | 2.1426 (17) | O7—H7 | 0.8600 |
Co2—O6viii | 2.1426 (17) | O7—H8B | 1.6474 |
Co2—O1ix | 2.2302 (16) | O8—Co1xiii | 2.0544 (14) |
Co2—O1iv | 2.2302 (16) | O8—H8A | 0.8600 |
P1—O3x | 1.5274 (18) | O8—H8B | 0.8600 |
P1—O3 | 1.5274 (18) | ||
O4—Pb1—O6i | 82.12 (5) | O3v—Co1—O5 | 88.92 (8) |
O4—Pb1—O6ii | 82.12 (5) | O3—Co1—O5 | 91.08 (8) |
O6i—Pb1—O6ii | 97.00 (9) | O8—Co1—O5v | 96.95 (6) |
O4—Pb1—O3 | 105.34 (5) | O8v—Co1—O5v | 83.05 (6) |
O6i—Pb1—O3 | 171.63 (5) | O3v—Co1—O5v | 91.08 (8) |
O6ii—Pb1—O3 | 87.90 (7) | O3—Co1—O5v | 88.92 (8) |
O4—Pb1—O3iii | 105.34 (5) | O5—Co1—O5v | 180.00 (12) |
O6i—Pb1—O3iii | 87.90 (7) | O7vi—Co2—O7vii | 180.0 |
O6ii—Pb1—O3iii | 171.63 (5) | O7vi—Co2—O6i | 87.93 (9) |
O3—Pb1—O3iii | 86.46 (8) | O7vii—Co2—O6i | 92.07 (9) |
O4—Pb1—O5 | 55.64 (7) | O7vi—Co2—O6viii | 92.07 (9) |
O6i—Pb1—O5 | 117.25 (4) | O7vii—Co2—O6viii | 87.93 (9) |
O6ii—Pb1—O5 | 117.25 (4) | O6i—Co2—O6viii | 180.0 |
O3—Pb1—O5 | 65.72 (4) | O7vi—Co2—O1ix | 100.06 (7) |
O3iii—Pb1—O5 | 65.72 (4) | O7vii—Co2—O1ix | 79.94 (7) |
O4—Pb1—O1iv | 132.09 (7) | O6i—Co2—O1ix | 93.55 (8) |
O6i—Pb1—O1iv | 67.09 (5) | O6viii—Co2—O1ix | 86.45 (8) |
O6ii—Pb1—O1iv | 67.09 (5) | O7vi—Co2—O1iv | 79.94 (7) |
O3—Pb1—O1iv | 109.06 (5) | O7vii—Co2—O1iv | 100.06 (7) |
O3iii—Pb1—O1iv | 109.06 (5) | O6i—Co2—O1iv | 86.45 (8) |
O5—Pb1—O1iv | 172.27 (6) | O6viii—Co2—O1iv | 93.55 (8) |
O4—Pb1—O2iv | 178.00 (7) | O1ix—Co2—O1iv | 180.0 |
O6i—Pb1—O2iv | 99.18 (5) | O3x—P1—O3 | 113.68 (14) |
O6ii—Pb1—O2iv | 99.18 (5) | O3x—P1—O1 | 112.68 (8) |
O3—Pb1—O2iv | 73.26 (5) | O3—P1—O1 | 112.68 (8) |
O3iii—Pb1—O2iv | 73.26 (5) | O3x—P1—O2 | 106.78 (8) |
O5—Pb1—O2iv | 122.36 (7) | O3—P1—O2 | 106.78 (8) |
O1iv—Pb1—O2iv | 49.91 (6) | O1—P1—O2 | 103.32 (13) |
O8—Co1—O8v | 180.00 (11) | O4—P2—O6 | 109.94 (9) |
O8—Co1—O3v | 87.37 (8) | O4—P2—O6iii | 109.94 (9) |
O8v—Co1—O3v | 92.63 (8) | O6—P2—O6iii | 107.30 (15) |
O8—Co1—O3 | 92.63 (8) | O4—P2—O5 | 106.40 (14) |
O8v—Co1—O3 | 87.37 (8) | O6—P2—O5 | 111.63 (9) |
O3v—Co1—O3 | 180.00 (13) | O6iii—P2—O5 | 111.63 (9) |
O8—Co1—O5 | 83.05 (6) | H8A—O8—H8B | 104.5 |
O8v—Co1—O5 | 96.95 (6) |
Symmetry codes: (i) −x, y+1/2, −z; (ii) −x, −y, −z; (iii) x, −y+1/2, z; (iv) −x, −y, −z+1; (v) −x−1, −y, −z; (vi) x+1, y, z; (vii) −x, −y+1, −z+1; (viii) x+1, −y+1/2, z+1; (ix) x+1, y+1, z; (x) x, −y−1/2, z; (xi) x−1, y−1, z; (xii) −x, y−1/2, −z+1; (xiii) −x−1, y+1/2, −z; (xiv) −x, y−1/2, −z; (xv) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O6ii | 0.86 | 2.28 | 3.027 (3) | 145 |
O2—H2···O6xiv | 0.86 | 2.28 | 3.027 (3) | 145 |
O7—H7···O2iv | 0.86 | 2.20 | 2.915 (3) | 140 |
O7—H7···O3 | 0.86 | 2.53 | 2.986 (2) | 114 |
O7—H7···O3iii | 0.86 | 2.53 | 2.986 (2) | 114 |
O8—H8A···O4xv | 0.86 | 1.79 | 2.649 (3) | 177 |
O8—H8B···O7 | 0.86 | 1.65 | 2.489 (3) | 165 |
Symmetry codes: (ii) −x, −y, −z; (iii) x, −y+1/2, z; (iv) −x, −y, −z+1; (xiv) −x, y−1/2, −z; (xv) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | Co2Pb(HPO4)(PO4)OH·H2O |
Mr | 551.02 |
Crystal system, space group | Monoclinic, P21/m |
Temperature (K) | 296 |
a, b, c (Å) | 7.4299 (1), 6.2949 (1), 8.9057 (1) |
β (°) | 113.936 (1) |
V (Å3) | 380.70 (1) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 26.83 |
Crystal size (mm) | 0.18 × 0.12 × 0.08 |
Data collection | |
Diffractometer | Bruker X8 APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1999) |
Tmin, Tmax | 0.029, 0.117 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8321, 1601, 1558 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.777 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.016, 0.039, 1.11 |
No. of reflections | 1601 |
No. of parameters | 86 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.76, −1.49 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O6i | 0.86 | 2.28 | 3.027 (3) | 144.7 |
O2—H2···O6ii | 0.86 | 2.28 | 3.027 (3) | 144.7 |
O7—H7···O2iii | 0.86 | 2.20 | 2.915 (3) | 140.0 |
O7—H7···O3 | 0.86 | 2.53 | 2.986 (2) | 114.4 |
O7—H7···O3iv | 0.86 | 2.53 | 2.986 (2) | 114.4 |
O8—H8A···O4v | 0.86 | 1.79 | 2.649 (3) | 176.6 |
O8—H8B···O7 | 0.86 | 1.65 | 2.489 (3) | 165.4 |
Symmetry codes: (i) −x, −y, −z; (ii) −x, y−1/2, −z; (iii) −x, −y, −z+1; (iv) x, −y+1/2, z; (v) x−1, y, z. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
References
Assani, A., Saadi, M. & El Ammari, L. (2010). Acta Cryst. E66, i44. Web of Science CrossRef IUCr Journals Google Scholar
Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364–369. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Britvin, S. N., Ferraris, G., Ivaldi, G., Bogdanova, A. N. & Chukanov, N. V. (2002). Neues Jahrb. Miner. Monatsh. 4, 160–168. Web of Science CrossRef Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 111, 3466–3492. CrossRef Google Scholar
Clearfield, A. (1988). Chem. Rev. 88, 125–148. CrossRef CAS Web of Science Google Scholar
Effenberger, H. (1999). J. Solid State Chem. 142, 6–13. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Lee, Y. H., Clegg, J. K., Lindoy, L. F., Lu, G. Q. M., Park, Y.-C. & Kim, Y. (2008). Acta Cryst. E64, i67–i68. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yakubovich, O. V., Massa, W., Liferovich, R. P. & McCammon, C. A. (2001). Can. Mineral. 39, 1317–1324. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal based phosphates are of great interest owing to either their remarkable diversity of structures or their properties and applications in catalysis, as ion-exchangers (Cheetham et al., 1999; Clearfield, 1988) or as positive electrode materials in lithium- and sodium-containing batteries (Trad et al., 2010)). Mainly, our focus of investigation is focused on orthophosphates with (mixed) divalent metals with general formula (M,M')3(PO4)2.nH2O (Assani et al., 2010). It has been pointed out that the structural diversity of this family of compounds depends on the size difference of the divalent cations (Effenberger, 1999) and on the degree of hydratation (Yakubovich et al., 2001; Lee et al., 2008. The highest water content known up to date is realised for Mg3(PO4)2.22H2O (Britvin et al., 2002). In this work, a new dicobalt lead phosphate(V)] with formula Co2Pb(HPO4)(PO4)OH.H2O, was hydrothermally synthesized and structurally characterized.
A search in the ICSD (Belsky et al., 2002) reveals that the crystal structure of this phosphate represents a new structure type. A plot of the crystal structure illustrating the most important coordination polyhedra and their mutual connections is represented in Fig. 1. All atoms are in special positions, except two oxygen atoms (O3,O6) in general position of the P21/m space group. The crystal structure is built up from three different types of polyhedra more or less distorted, viz. two PbO8 polyhedra (m symmetry), PO4 and PO3(OH) tetrahedra (both with m symmetry) and two CoO6 octahedra (both with 1 symmetry). The CoO6 octahedra share edges and form 1∞[Co(1)O2/1(H2O)2/2O2/2] and 1∞[Co(2)O2/1(OH)2/2O2/2] chains running parallel to [010], as shown in Fig. 2. Adjacent chains are connected by PO4 and HPO4 tetrahedra via vertices, leading to the formation of layers parallel to (100). These layers are in turn linked by sheets of distorted PbO8 polyhedra as also shown in Fig.2.
Bond valence sum calculations (Brown & Altermatt, 1985) for Pb12+, Co12+, Co22+, P15+ and P25+ ions are as expected, viz. 1.92, 2.03, 1.93, 5.05 and 5.05 valence units, respectively. The values of the bond valence sums calculated for the oxygen atoms show low values for O2, O7 and O8 when the contribution of H atoms are not considered (i.e. 1.23, 0.88 and 0.75 valence units, respectively). Hence these O atoms are associated with protons and are involved in O—H···O hydrogen bonding (Table 1). H atoms of the water molecule form very strong hydrogen bonds, especially O8–H8B···O7 with an D···A distance less than 2.5 Å. The H atom of the OH- group (O7) and the hydrogenphosphate group (O2) form weak bifurcated (O2) and trifurcated (O7) hydrogen bonds (Fig. 2, Table 1).