metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m534-m535

{S-Benzyl 3-[(6-methyl­pyridin-2-yl-κN)methyl­­idene]di­thio­carbazato-κ2N3,S}zinc

aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
*Correspondence e-mail: thahira.begum@science.upm.edu.my

(Received 23 March 2012; accepted 28 March 2012; online 4 April 2012)

The title compound, [Zn(C15H14N3S2)2], contains two chemically equivalent Schiff base anions that are coordinated to the ZnII ion as tridentate N,N′,S-chelating ligands, creating a distorted octa­hedral environment [the smallest angle being 75.40 (6)° and the widest angle being 162.87 (6)°], with the two S atoms in cis positions. The dihedral angle between the mean planes of the two coordinating ligands is 85.65 (5)°. Weak C—H⋯S hydrogen bonds are also observed.

Related literature

For background to the coordination chemistry of hydrazine carbodithio­ates, see: Ravoof et al. (2010[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871-876.]). For the synthesis, see: Ali et al. (1997[Ali, M. A., Majumder, S. M. M., Butcher, R. J., Jasinski, J. P. & Jasinski, J. M. (1997). Polyhedron, 16(16), 2749-2754.]); Ravoof et al. (2004[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., Cowley, A. R. & Ali, M. A. (2004). Polyhedron, 23, 2491-2498.]). For related structures, see: Ali et al. (2001[Ali, M. A., Mirza, A. H., Butcher, R. J. & Tarafder, M. T. H. (2001). Inorg. Chim. Acta, 320, 1-6.]); Tarafder et al. (2001[Tarafder, M. T. H., Kasbollah, A., Crouse, K. A., Ali, M. A., Yamin, B. M. & Fun, H.-K. (2001). Polyhedron, 20, 2363-2370.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C15H14N3S2)2]

  • Mr = 666.24

  • Monoclinic, P 21 /c

  • a = 14.8931 (8) Å

  • b = 13.0630 (5) Å

  • c = 17.1706 (9) Å

  • β = 112.855 (6)°

  • V = 3078.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 150 K

  • 0.24 × 0.18 × 0.16 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.82, Tmax = 0.84

  • 20496 measured reflections

  • 7140 independent reflections

  • 5960 reflections with I > 2.0σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.076

  • S = 1.00

  • 7140 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N102 2.1032 (17)
Zn1—S105 2.4885 (6)
Zn1—N115 2.2692 (16)
Zn1—N202 2.1005 (16)
Zn1—S205 2.5263 (6)
Zn1—N215 2.2117 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C217—H2171⋯S105i 0.95 2.82 3.697 (3) 155
Symmetry code: (i) -x, -y+1, -z.

Data collection: Gemini User Manual (Oxford Diffraction, 2006[Oxford Diffraction (2006). Gemini User Manual. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The title compound was preferentially formed during the attempt to complex the tridentate Schiff base with zinc(II) saccharinate. The saccharinate anion was eliminated in this process and two tridentate deprotonated Schiff base moieties coordinated instead with the zinc(II) cation as determined by its infrared spectrum, elemental analysis and crystal structure analysis.

The bidentate ligands coordinate through their pyridine nitrogen, azomethine nitrogen and thiolate sulfur atoms. The environment around the ZnII ion is distorted octahedral (Fig. 1) with N—Zn—N, N—Zn—S and S—Zn—S angles between 75.40 (6)° and 162.87 (6)°. The deprotonation of the ligands is accompanied by their tautomerism to the iminothiolate forms. While coordinating in the iminothiolate form, the negative charge generated upon deprotonation is delocalized in the C—N—N—C system as observed by their intermediate bond lengths: C104—N103 = 1.311 (3) Å, N103—N102 = 1.384 (2) Å, N102—C101 = 1.276 (3) Å and C204—N203 = 1.311 (3) Å, N203—N202 =1.380 (3) Å, N202—C201 =1.281 (2) Å. Similar bond lengths and angles have been observed in the octahedral zinc(II) complex containing the pyridine-2-aldehyde Schiff base of S-benzyldithiocarbazate (Tarafder et al., 2001) for which C—N bond lengths ranging from 1.273 to 1.320 Å and N—N bond lengths of 1.374 to 1.379 Å were reported. In the title complex, the two ligands are coordinated to the zinc(II) ion in a meridional configuration, where the two thiolate S atoms (S105 & S205) and the two pyridine N atoms (N115 & N215) are cis to each other and the two azomethine N atoms trans (N102 & N202) as in other bis-ligand metal complexes of related NNS tridentate ligands (Tarafder et al., 2001). The angle between the planes defined by Zn1—S205—C204—N203—N202—C201—C214—N215 (minimum deviation: 0.001 and maximum deviation: 0.157 Å), and Zn1—S105—C104—N103 –N102—C101—C114—N115 (minimum deviation: 0.011 and maximum deviation: 0.212 Å) is 85.65 (5)° showing that the planes are almost orthogonal to each other thus defining an distorted octahedral arrangement.

The angle between the planes defined by the benzyl ring (C208—C213) and the pyridyl ring (C214—C219) is 84.39 (12)°; however, the angle between the planes defined by the corresponding benzyl (C108—C113) and pyridyl rings (C114—C119) in the other Schiff base moiety is 75.06 (12)°. Both planes of the benzyl ring moieties of the Schiff bases are slightly displaced at an angle of 15.05 (10)°, but the distance between them precludes ππ interaction. The pyridyl rings on both Schiff bases are almost orthogonal to each other at an angle of 85.06 (11)°.

The ZnII-donor atom bond lengths Zn—S [2.485 (6), 2.5263 (6) Å], Zn—Npy [2.2117 (17), 2.2692 (16) Å] and Zn—Nimine [2.1005 (16), 2.1032 (17) Å] compare well with a related octahedral ZnII complex containing a pyridine-2-aldehyde Schiff base of S-benzyldithiocarbazate with Zn—N distances between 2.126 and 2.347 Å and Zn—S distances between 2.4514 and 2.4540 Å which are normal for multidentate bonding (Tarafder et al., 2001). Although none of the bond angles in the complex conformed to the ideal values expected of a regular octahedral geometry, this appears to be common in six-coordinate metal complexes of Schiff base ligands derived from dithiocarbazic acid and is attributed to the restricted bite angles of the planar NNS tridentate ligands. (Ali et al., 2001; Tarafder et al., 2001). Weak C—H···S hydrogen bonds are observed and may consolidate the crystal packing (Fig. 2, Table 2).

Further background on the coordination chemistry of hydrazine carbodithioates is given by Ravoof et al. (2010).

Related literature top

For background to the coordination chemistry of hydrazine carbodithioates, see: Ravoof et al. (2010). For the synthesis, see: Ali et al. (1997); Ravoof et al. (2004). For related structures, see: Ali et al. (2001); Tarafder et al. (2001).

Experimental top

Zinc(II) saccharinate, [Zn(sac)2(H2O)4].2H2O was synthesized using a similar procedure as for the synthesis of Cu(II) saccharinate (Ravoof et al. (2004)). The title compound was synthesized following the procedure by Ali et al. (1997). The Schiff base was dissolved in acetonitrile (50 ml) and mixed with an equimolar quantity of zinc(II) saccharinate in acetonitrile (25 ml). The resulting mixture was heated on a water bath until the volume reduced to ca 30 ml. On standing overnight in the fridge, the mixture yielded yellow crystals suitable for X-ray analysis.

Refinement top

H atoms were all located in difference maps; those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 Å) and Uiso(H)(in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: Gemini User Manual (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Molecular packing diagram of the title compound viewed along the b axis. Hydrogen atoms are omitted for clarity.
{S-Benzyl 3-[(6-methylpyridin-2-yl-κN)methylidene]dithiocarbazato-κ2N3,S}zinc top
Crystal data top
[Zn(C15H14N3S2)2]F(000) = 1376
Mr = 666.24Dx = 1.438 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6730 reflections
a = 14.8931 (8) Åθ = 2–29°
b = 13.0630 (5) ŵ = 1.10 mm1
c = 17.1706 (9) ÅT = 150 K
β = 112.855 (6)°Prism, yellow
V = 3078.2 (3) Å30.24 × 0.18 × 0.16 mm
Z = 4
Data collection top
Oxford Diffraction Gemini
diffractometer
7140 independent reflections
Radiation source: sealed X-ray tube5960 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.040
ϕ scansθmax = 28.9°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 1916
Tmin = 0.82, Tmax = 0.84k = 1716
20496 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.076 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.02P)2 + 2.2P],
where P = (max(Fo2,0) + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
7140 reflectionsΔρmax = 0.60 e Å3
370 parametersΔρmin = 0.44 e Å3
0 restraints
Crystal data top
[Zn(C15H14N3S2)2]V = 3078.2 (3) Å3
Mr = 666.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.8931 (8) ŵ = 1.10 mm1
b = 13.0630 (5) ÅT = 150 K
c = 17.1706 (9) Å0.24 × 0.18 × 0.16 mm
β = 112.855 (6)°
Data collection top
Oxford Diffraction Gemini
diffractometer
7140 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
5960 reflections with I > 2.0σ(I)
Tmin = 0.82, Tmax = 0.84Rint = 0.040
20496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.00Δρmax = 0.60 e Å3
7140 reflectionsΔρmin = 0.44 e Å3
370 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105–107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.300629 (18)0.602950 (17)0.084816 (14)0.0209
C1010.27973 (16)0.77374 (16)0.03043 (13)0.0272
N1020.25268 (13)0.74645 (13)0.02846 (10)0.0231
N1030.20970 (14)0.81978 (13)0.06093 (11)0.0266
C1040.18607 (15)0.78256 (15)0.12131 (13)0.0238
S1050.20083 (4)0.66180 (4)0.16361 (3)0.0242
S1060.13026 (5)0.86700 (4)0.16857 (4)0.0303
C1070.1375 (2)0.99155 (16)0.12297 (15)0.0360
C1080.10104 (17)1.06947 (15)0.16809 (13)0.0254
C1090.00675 (19)1.10708 (19)0.13364 (16)0.0401
C1100.0244 (2)1.1781 (2)0.1783 (2)0.0518
C1110.0374 (2)1.2108 (2)0.25574 (18)0.0475
C1120.1300 (2)1.17467 (19)0.29026 (16)0.0419
C1130.16190 (18)1.10461 (17)0.24719 (14)0.0329
C1140.32420 (16)0.69782 (16)0.06656 (12)0.0254
N1150.33418 (12)0.60182 (13)0.03328 (10)0.0220
C1160.36939 (15)0.52813 (17)0.06804 (12)0.0249
C1170.39613 (17)0.54928 (19)0.13592 (13)0.0323
C1180.38820 (17)0.6466 (2)0.16798 (14)0.0353
C1190.35103 (17)0.72300 (19)0.13278 (13)0.0318
C1200.37826 (17)0.42206 (17)0.03333 (14)0.0310
C2010.33127 (15)0.39948 (15)0.16182 (12)0.0219
N2020.37232 (12)0.48744 (12)0.17189 (10)0.0193
N2030.45554 (12)0.50154 (12)0.24379 (10)0.0209
C2040.49345 (15)0.59270 (15)0.24628 (12)0.0201
S2050.46105 (4)0.68753 (4)0.17153 (3)0.0241
S2060.59395 (4)0.62465 (4)0.33815 (3)0.0270
C2070.60458 (17)0.51704 (16)0.40886 (13)0.0287
C2080.65317 (16)0.55374 (16)0.49885 (12)0.0251
C2090.75115 (17)0.53836 (17)0.54403 (13)0.0296
C2100.79462 (18)0.5666 (2)0.62843 (14)0.0378
C2110.7396 (2)0.6122 (2)0.66756 (15)0.0422
C2120.6416 (2)0.6308 (2)0.62209 (15)0.0430
C2130.59881 (18)0.60225 (18)0.53807 (15)0.0351
C2140.23803 (15)0.38605 (15)0.09042 (12)0.0216
N2150.20544 (12)0.46762 (13)0.03850 (10)0.0218
C2160.11911 (16)0.46101 (17)0.02648 (13)0.0266
C2170.06312 (18)0.37251 (19)0.04065 (15)0.0350
C2180.09638 (18)0.28982 (19)0.01244 (15)0.0388
C2190.18571 (17)0.29602 (17)0.07917 (14)0.0302
C2200.08524 (18)0.55213 (19)0.08347 (14)0.0369
H10110.27150.84240.05150.0327*
H10720.20721.00500.13350.0461*
H10710.09620.99130.06270.0454*
H10910.03631.08510.07960.0501*
H11010.08891.20350.15510.0624*
H11110.01501.25860.28660.0587*
H11210.17471.19740.34540.0517*
H11310.22761.08140.27160.0400*
H11710.42180.49640.15930.0404*
H11810.40760.66250.21320.0415*
H11910.34230.79150.15400.0399*
H12020.41770.38130.05270.0470*
H12010.40520.42160.02750.0468*
H12030.31610.39060.05100.0476*
H20110.35920.34490.19920.0266*
H20720.64310.46240.39660.0372*
H20710.53940.49360.39770.0362*
H20910.78930.50790.51730.0370*
H21010.86260.55540.65900.0470*
H21110.76940.63100.72600.0503*
H21210.60390.66450.64920.0506*
H21310.52990.61390.50590.0429*
H21710.00170.37130.08650.0417*
H21810.05750.22940.00360.0463*
H21910.21080.24070.11580.0359*
H22020.01920.54290.12290.0561*
H22010.08990.61260.04970.0562*
H22030.12770.56170.11330.0567*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02306 (14)0.01875 (12)0.02010 (12)0.00037 (10)0.00743 (10)0.00014 (9)
C1010.0334 (13)0.0240 (11)0.0244 (10)0.0000 (9)0.0116 (9)0.0036 (8)
N1020.0235 (10)0.0233 (9)0.0218 (8)0.0011 (7)0.0080 (7)0.0018 (7)
N1030.0333 (11)0.0199 (9)0.0291 (9)0.0036 (8)0.0149 (8)0.0010 (7)
C1040.0236 (11)0.0212 (10)0.0262 (10)0.0010 (9)0.0092 (9)0.0057 (8)
S1050.0270 (3)0.0210 (3)0.0275 (3)0.0008 (2)0.0137 (2)0.0007 (2)
S1060.0387 (3)0.0215 (3)0.0403 (3)0.0000 (2)0.0257 (3)0.0030 (2)
C1070.0553 (17)0.0231 (11)0.0379 (13)0.0020 (11)0.0271 (12)0.0009 (10)
C1080.0333 (13)0.0169 (10)0.0298 (11)0.0009 (9)0.0163 (10)0.0021 (8)
C1090.0324 (14)0.0358 (14)0.0423 (14)0.0022 (11)0.0038 (11)0.0000 (11)
C1100.0314 (15)0.0476 (16)0.076 (2)0.0186 (13)0.0209 (15)0.0102 (15)
C1110.061 (2)0.0376 (15)0.0544 (17)0.0121 (14)0.0335 (15)0.0045 (12)
C1120.0561 (18)0.0335 (13)0.0353 (13)0.0042 (12)0.0169 (12)0.0056 (11)
C1130.0322 (13)0.0313 (12)0.0318 (12)0.0081 (10)0.0087 (10)0.0022 (10)
C1140.0250 (12)0.0316 (11)0.0182 (9)0.0017 (9)0.0068 (8)0.0004 (8)
N1150.0209 (9)0.0264 (9)0.0177 (8)0.0019 (7)0.0064 (7)0.0024 (7)
C1160.0175 (11)0.0346 (12)0.0209 (10)0.0013 (9)0.0056 (8)0.0075 (9)
C1170.0267 (12)0.0474 (14)0.0253 (11)0.0007 (11)0.0128 (10)0.0083 (10)
C1180.0314 (13)0.0554 (16)0.0219 (10)0.0043 (12)0.0135 (10)0.0011 (10)
C1190.0343 (13)0.0409 (13)0.0214 (10)0.0023 (11)0.0120 (10)0.0039 (9)
C1200.0313 (13)0.0317 (12)0.0323 (12)0.0025 (10)0.0150 (10)0.0060 (9)
C2010.0264 (11)0.0183 (10)0.0214 (9)0.0001 (8)0.0098 (9)0.0004 (8)
N2020.0214 (9)0.0183 (8)0.0188 (8)0.0004 (7)0.0083 (7)0.0024 (6)
N2030.0205 (9)0.0215 (8)0.0191 (8)0.0013 (7)0.0061 (7)0.0005 (7)
C2040.0193 (10)0.0233 (10)0.0187 (9)0.0007 (8)0.0084 (8)0.0014 (8)
S2050.0259 (3)0.0211 (2)0.0236 (2)0.0033 (2)0.0079 (2)0.0020 (2)
S2060.0254 (3)0.0278 (3)0.0226 (2)0.0076 (2)0.0037 (2)0.0013 (2)
C2070.0316 (13)0.0248 (11)0.0248 (10)0.0040 (9)0.0057 (9)0.0027 (9)
C2080.0284 (12)0.0226 (10)0.0229 (10)0.0041 (9)0.0084 (9)0.0014 (8)
C2090.0291 (13)0.0298 (12)0.0292 (11)0.0011 (10)0.0106 (10)0.0059 (9)
C2100.0304 (14)0.0474 (15)0.0294 (12)0.0009 (11)0.0048 (10)0.0078 (11)
C2110.0447 (16)0.0558 (17)0.0248 (11)0.0060 (13)0.0123 (11)0.0100 (11)
C2120.0444 (16)0.0561 (17)0.0357 (13)0.0046 (13)0.0233 (12)0.0062 (12)
C2130.0287 (13)0.0452 (14)0.0332 (12)0.0035 (11)0.0140 (10)0.0039 (11)
C2140.0242 (11)0.0216 (10)0.0229 (10)0.0027 (8)0.0134 (9)0.0041 (8)
N2150.0232 (9)0.0227 (9)0.0213 (8)0.0010 (7)0.0106 (7)0.0034 (7)
C2160.0227 (11)0.0341 (12)0.0240 (10)0.0007 (9)0.0101 (9)0.0047 (9)
C2170.0258 (13)0.0433 (14)0.0315 (12)0.0091 (11)0.0064 (10)0.0085 (10)
C2180.0356 (15)0.0367 (14)0.0425 (14)0.0183 (11)0.0136 (12)0.0071 (11)
C2190.0328 (13)0.0266 (11)0.0310 (11)0.0065 (10)0.0120 (10)0.0015 (9)
C2200.0281 (13)0.0416 (14)0.0326 (12)0.0022 (11)0.0028 (10)0.0027 (11)
Geometric parameters (Å, º) top
Zn1—N1022.1032 (17)C120—H12020.944
Zn1—S1052.4885 (6)C120—H12010.963
Zn1—N1152.2692 (16)C120—H12030.948
Zn1—N2022.1005 (16)C201—N2021.281 (2)
Zn1—S2052.5263 (6)C201—C2141.463 (3)
Zn1—N2152.2117 (17)C201—H20110.942
C101—N1021.276 (3)N202—N2031.380 (2)
C101—C1141.458 (3)N203—C2041.312 (2)
C101—H10110.956C204—S2051.713 (2)
N102—N1031.384 (2)C204—S2061.752 (2)
N103—C1041.311 (3)S206—C2071.824 (2)
C104—S1051.715 (2)C207—C2081.507 (3)
C104—S1061.758 (2)C207—H20720.988
S106—C1071.827 (2)C207—H20710.964
C107—C1081.503 (3)C208—C2091.376 (3)
C107—H10720.998C208—C2131.391 (3)
C107—H10710.977C209—C2101.388 (3)
C108—C1091.385 (3)C209—H20910.945
C108—C1131.386 (3)C210—C2111.380 (3)
C109—C1101.393 (4)C210—H21010.953
C109—H10910.945C211—C2121.383 (4)
C110—C1111.359 (4)C211—H21110.958
C110—H11010.946C212—C2131.383 (3)
C111—C1121.356 (4)C212—H21210.962
C111—H11110.959C213—H21310.970
C112—C1131.373 (3)C214—N2151.353 (3)
C112—H11210.968C214—C2191.382 (3)
C113—H11310.953N215—C2161.338 (3)
C114—N1151.362 (3)C216—C2171.390 (3)
C114—C1191.383 (3)C216—C2201.498 (3)
N115—C1161.342 (3)C217—C2181.376 (3)
C116—C1171.398 (3)C217—H21710.948
C116—C1201.494 (3)C218—C2191.380 (3)
C117—C1181.372 (3)C218—H21810.955
C117—H11710.950C219—H21910.936
C118—C1191.389 (3)C220—H22020.960
C118—H11810.951C220—H22010.967
C119—H11910.956C220—H22030.964
N102—Zn1—S10578.87 (5)C114—C119—H1191119.7
N102—Zn1—N11575.40 (6)C116—C120—H1202110.7
S105—Zn1—N115150.83 (5)C116—C120—H1201111.9
N102—Zn1—N202162.87 (6)H1202—C120—H1201109.0
S105—Zn1—N20294.63 (5)C116—C120—H1203110.5
N115—Zn1—N202113.82 (6)H1202—C120—H1203107.8
N102—Zn1—S20587.46 (5)H1201—C120—H1203106.7
S105—Zn1—S20599.92 (2)N202—C201—C214117.93 (18)
N115—Zn1—S20592.49 (5)N202—C201—H2011121.7
N202—Zn1—S20577.98 (5)C214—C201—H2011120.3
N102—Zn1—N215119.43 (6)Zn1—N202—C201117.66 (14)
S105—Zn1—N21590.44 (4)Zn1—N202—N203124.91 (12)
N115—Zn1—N21590.36 (6)C201—N202—N203117.12 (16)
N202—Zn1—N21576.08 (6)N202—N203—C204112.08 (16)
S205—Zn1—N215152.73 (5)N203—C204—S205129.78 (16)
N102—C101—C114118.85 (19)N203—C204—S206116.88 (15)
N102—C101—H1011121.8S205—C204—S206113.33 (11)
C114—C101—H1011119.3Zn1—S205—C20492.99 (7)
Zn1—N102—C101117.28 (15)C204—S206—C207103.81 (10)
Zn1—N102—N103123.99 (13)S206—C207—C208108.68 (14)
C101—N102—N103117.62 (18)S206—C207—H2072108.8
N102—N103—C104111.73 (17)C208—C207—H2072111.1
N103—C104—S105130.28 (16)S206—C207—H2071107.0
N103—C104—S106116.92 (15)C208—C207—H2071110.5
S105—C104—S106112.80 (12)H2072—C207—H2071110.6
Zn1—S105—C10493.40 (7)C207—C208—C209120.9 (2)
C104—S106—C107104.10 (10)C207—C208—C213120.2 (2)
S106—C107—C108106.78 (15)C209—C208—C213118.9 (2)
S106—C107—H1072108.1C208—C209—C210120.8 (2)
C108—C107—H1072110.3C208—C209—H2091119.5
S106—C107—H1071109.5C210—C209—H2091119.6
C108—C107—H1071110.0C209—C210—C211119.9 (2)
H1072—C107—H1071112.1C209—C210—H2101119.9
C107—C108—C109122.0 (2)C211—C210—H2101120.2
C107—C108—C113120.0 (2)C210—C211—C212119.8 (2)
C109—C108—C113118.0 (2)C210—C211—H2111119.9
C108—C109—C110120.0 (2)C212—C211—H2111120.3
C108—C109—H1091120.0C211—C212—C213119.9 (2)
C110—C109—H1091120.0C211—C212—H2121119.5
C109—C110—C111120.3 (2)C213—C212—H2121120.6
C109—C110—H1101120.2C208—C213—C212120.6 (2)
C111—C110—H1101119.5C208—C213—H2131118.8
C110—C111—C112120.4 (2)C212—C213—H2131120.6
C110—C111—H1111119.8C201—C214—N215116.03 (17)
C112—C111—H1111119.8C201—C214—C219121.28 (19)
C111—C112—C113120.2 (2)N215—C214—C219122.66 (19)
C111—C112—H1121121.1Zn1—N215—C214112.14 (13)
C113—C112—H1121118.7Zn1—N215—C216128.71 (14)
C108—C113—C112121.1 (2)C214—N215—C216118.77 (18)
C108—C113—H1131119.7N215—C216—C217121.1 (2)
C112—C113—H1131119.2N215—C216—C220117.64 (19)
C101—C114—N115116.19 (18)C217—C216—C220121.3 (2)
C101—C114—C119120.8 (2)C216—C217—C218120.0 (2)
N115—C114—C119123.0 (2)C216—C217—H2171118.6
Zn1—N115—C114110.05 (13)C218—C217—H2171121.4
Zn1—N115—C116131.44 (14)C217—C218—C219119.1 (2)
C114—N115—C116118.14 (17)C217—C218—H2181120.2
N115—C116—C117121.1 (2)C219—C218—H2181120.7
N115—C116—C120118.50 (18)C214—C219—C218118.4 (2)
C117—C116—C120120.42 (19)C214—C219—H2191120.5
C116—C117—C118120.6 (2)C218—C219—H2191121.2
C116—C117—H1171120.0C216—C220—H2202110.7
C118—C117—H1171119.4C216—C220—H2201109.2
C117—C118—C119118.6 (2)H2202—C220—H2201110.0
C117—C118—H1181121.6C216—C220—H2203109.1
C119—C118—H1181119.8H2202—C220—H2203110.1
C118—C119—C114118.6 (2)H2201—C220—H2203107.7
C118—C119—H1191121.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C217—H2171···S105i0.952.823.697 (3)155
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(C15H14N3S2)2]
Mr666.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)14.8931 (8), 13.0630 (5), 17.1706 (9)
β (°) 112.855 (6)
V3)3078.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.24 × 0.18 × 0.16
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.82, 0.84
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
20496, 7140, 5960
Rint0.040
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.076, 1.00
No. of reflections7140
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.44

Computer programs: Gemini User Manual (Oxford Diffraction, 2006), CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Selected bond lengths (Å) top
Zn1—N1022.1032 (17)Zn1—N2022.1005 (16)
Zn1—S1052.4885 (6)Zn1—S2052.5263 (6)
Zn1—N1152.2692 (16)Zn1—N2152.2117 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C217—H2171···S105i0.952.823.697 (3)155
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

Support for this project came from Universiti Putra Malaysia (UPM) under their Research University Grant Scheme (RUGS No. 05–01–11–1243RU & RUGS No. 9174000), and the Malaysian Fundamental Research Grant Scheme (FRGS No. 01–03–11–986FR). SAO wishes to thank UPM for a Graduate Research Fellowship award.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAli, M. A., Majumder, S. M. M., Butcher, R. J., Jasinski, J. P. & Jasinski, J. M. (1997). Polyhedron, 16(16), 2749–2754.  CSD CrossRef Web of Science Google Scholar
First citationAli, M. A., Mirza, A. H., Butcher, R. J. & Tarafder, M. T. H. (2001). Inorg. Chim. Acta, 320, 1–6.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). Gemini User Manual. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., Cowley, A. R. & Ali, M. A. (2004). Polyhedron, 23, 2491–2498.  Web of Science CSD CrossRef CAS Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871–876.  Web of Science CSD CrossRef CAS Google Scholar
First citationTarafder, M. T. H., Kasbollah, A., Crouse, K. A., Ali, M. A., Yamin, B. M. & Fun, H.-K. (2001). Polyhedron, 20, 2363–2370.  Web of Science CSD CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m534-m535
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds