metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m596-m597

Bis{2-[(4-chloro­phen­yl)imino­meth­yl]pyrrol-1-ido-κ2N,N′}bis­­(di­methyl­amido-κN)titanium(IV) toluene monosolvate

aQinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, People's Republic of China, and bKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
*Correspondence e-mail: liyahong@suda.edu.cn

(Received 28 March 2012; accepted 5 April 2012; online 18 April 2012)

The mononuclear title compound, [Ti(C11H8ClN2)2(C2H6N)2]·C7H8, was synthesized by the reaction of N-(4-chloro­phen­yl)-2-pyrrolylcarbaldimine with Ti(C2H6N)4. The TiIV ion is situated on a twofold rotation axis and displays a distorted octa­hedral geometry defined by four N atoms from two 2-[(4-chloro­phen­yl)imino­meth­yl]pyrrol-1-ide ligands and two N atoms from two dimethyl­amine ligands. The Ti—Npyrrole bond length [2.1041 (19) Å] is longer than the Ti—Ndimethyl­amine bond length [1.9013 (19) Å]; the imine N atom exhibits the longest Ti—N bond [2.3152 (17) Å]. The toluene solvent mol­ecule is located on a twofold rotation axis running through the C atom of the methyl group. Consequently, the H atoms of the latter are rotationally disordered. The compound contains no markable hydrogen-bonding inter­actions.

Related literature

For the synthesis of N-(4-chloro­phen­yl)-2-pyrrolylcarbald­imine and its oxidovanadium(IV) complexes, see: Mozaffar et al. (2010[Mozaffar, A., Mohammad Hadi, G., Susan, T., Khosro, M. & Fatemeh, M. (2010). J. Chem. Sci. 122, 539-548.]). For the synthesis of titanium amido complexes and their applications in hydro­amination reactions, see: Ramanathan et al. (2004[Ramanathan, B., Keith, A. J., Armstrong, D. & Odom, A. L. (2004). Org. Lett. 6, 2957-2960.]); Cao et al. (2001[Cao, C., Ciszewski, J. T. & Odom, A. L. (2001). Organometallics, 20, 5011-5013.]); Bexrud et al. (2007[Bexrud, J. A., Li, C. & Schafer, L. L. (2007). Organometallics, 26, 6366-6372.]); Tillack et al. (2005[Tillack, A., Khedkar, V., Jiao, H. & Beller, M. (2005). Eur. J. Org. Chem. pp. 5001-5012.]); Braunschweig & Breitling (2006[Braunschweig, H. & Breitling, F. M. (2006). Coord. Chem. Rev. 250, 2691-2720.]); Zhao et al. (2012[Zhao, Y., Lin, M., Chen, Z., Pei, H., Li, Y., Chen, Y., Wang, X., Li, L., Cao, Y., Zhang, Y. & Li, W. (2012). RSC Adv. 2, 144-150.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti(C11H8ClN2)2(C2H6N)2]·C7H8

  • Mr = 635.48

  • Orthorhombic, P 21 21 2

  • a = 11.1952 (4) Å

  • b = 13.8545 (6) Å

  • c = 10.4651 (3) Å

  • V = 1623.18 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 296 K

  • 0.27 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.886, Tmax = 0.914

  • 7377 measured reflections

  • 3172 independent reflections

  • 2855 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.103

  • S = 1.04

  • 3172 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.81 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1338 Friedel pairs

  • Flack parameter: 0.00 (3)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The ligand N-(4-chlorophenyl)-2-pyrrolylcarbaldimine can be synthesized by the reaction of 4-chloroaniline and 2-pyrrolaldehyde. The ligand has been used in the synthesis of oxidovanadium(IV) complexes (Mozaffar et al., 2010). Herein we report the synthesis and crystal structure of a titanium amido complex [Ti(C11H8N2Cl)2(C2H6N)2](C6H5CH3), (I). Such titanium amido complexes were employed as catalysts in the hydroamination of alkynes (Ramanathan et al., 2004; Cao et al., 2001; Bexrud et al., 2007; Tillack et al., 2005; Braunschweig & Breitling, 2006; Zhao et al., 2012).

The molecular structure of (I) is shown in Fig. 1. The TiIV ion has site symmetry 2 and displays a distorted octahedral geometry. It is coordinated by four N atoms from two symmetry-related bidentate N-(4-chlorophenyl)-2-pyrrolylcarbaldimine ligands and two nitrogen atoms from two dimethylamino ions. Two pyrrolyl N atoms from two coordinating N-(4-chlorophenyl)-2-pyrrolylcarbaldimine molecules occupying trans positions in the equatorial plane. The dihedral angle between the pyrrolcarbaldiimine and chlorophenyl moieties in the bidentate ligand is 44.90 (10)° . There is a solvate toluene molecule present that is also located on a twofold rotation axis. Since the methyl group of the solvate toluene lies on a special position of higher symmetry than the molecular can possess, the H atoms of this group are rotationally disordered.

The compound contains no remarkable hydrogen bonding interactions. In the crystal packing, the complexes form channels parallel to [001] where the solvent molecules are located.

Related literature top

For the synthesis of N-(4-chlorophenyl)-2-pyrrolylcarbaldimine and its oxidovanadium(IV) complexes, see: Mozaffar et al. (2010). For the synthesis of titanium amido complexes and their applications in hydroamination reactions, see: Ramanathan et al. (2004); Cao et al. (2001); Bexrud et al. (2007); Tillack et al. (2005); Braunschweig & Breitling (2006); Zhao et al. (2012).

Experimental top

To a solution of Ti(NMe2)4 (0.112 g, 0.5 mmol) in THF (2 ml) was added N-(4-chlorophenyl)-2-pyrrolylcarbaldimine (0.204 g, 1 mmol) in THF (3 ml). After stirring at room temperature overnight, volatiles were removed in vacuo, resulting in an orange solid (0.246 g, 91%). Single crystals of (I) were grown from a toluene/hexane (1:1) solution at 238 K.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 Å for aromatic H atoms, 0.96 Å for CH3 type H atoms and 0.98 Å for CH type H atoms, respectively. Uiso(H) values were set at 1.5Ueq(C) for methyl H atoms, and 1.2Ueq(C) for the rest of the H atoms. The methyl group of the solvent molecule lies on a twofold rotation axis; consequently, the H atoms of this methyl group are disordered and were refined with an occupancy of 0.5.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and displacement ellipsoids at the 30% probability level. [Symmetry code: A) -x + 1, -y, z.]
[Figure 2] Fig. 2. The packing diagram of the compound in a view down [001].
Bis{2-[(4-chlorophenyl)iminomethyl]pyrrol-1-ido- κ2N,N'}bis(dimethylamido-κN)titanium(IV) toluene monosolvate top
Crystal data top
[Ti(C11H8ClN2)2(C2H6N)2]·C7H8F(000) = 664
Mr = 635.48Dx = 1.300 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 3510 reflections
a = 11.1952 (4) Åθ = 2.7–25.3°
b = 13.8545 (6) ŵ = 0.46 mm1
c = 10.4651 (3) ÅT = 296 K
V = 1623.18 (10) Å3Block, red
Z = 20.27 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3172 independent reflections
Radiation source: fine-focus sealed tube2855 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.886, Tmax = 0.914k = 617
7377 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.167P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3172 reflectionsΔρmax = 0.24 e Å3
191 parametersΔρmin = 0.81 e Å3
0 restraintsAbsolute structure: Flack (1983), 1338 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
[Ti(C11H8ClN2)2(C2H6N)2]·C7H8V = 1623.18 (10) Å3
Mr = 635.48Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 11.1952 (4) ŵ = 0.46 mm1
b = 13.8545 (6) ÅT = 296 K
c = 10.4651 (3) Å0.27 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3172 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2855 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.914Rint = 0.021
7377 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.103Δρmax = 0.24 e Å3
S = 1.04Δρmin = 0.81 e Å3
3172 reflectionsAbsolute structure: Flack (1983), 1338 Friedel pairs
191 parametersAbsolute structure parameter: 0.00 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti0.50000.00000.00125 (4)0.03946 (15)
N30.37242 (16)0.00104 (15)0.17286 (15)0.0444 (4)
N10.52139 (16)0.14665 (13)0.04575 (18)0.0468 (4)
C70.32052 (19)0.07660 (18)0.2402 (2)0.0438 (5)
N20.37235 (18)0.00986 (16)0.12037 (17)0.0511 (4)
C80.25902 (18)0.14699 (16)0.1737 (2)0.0458 (5)
H80.25540.14400.08500.055*
C90.2030 (2)0.22161 (18)0.2368 (2)0.0515 (5)
H90.16060.26810.19150.062*
C20.5137 (3)0.30613 (18)0.0851 (3)0.0651 (7)
H20.49530.37120.07620.078*
C130.3605 (2)0.08821 (17)0.2195 (2)0.0506 (5)
H130.31710.09850.29400.061*
C10.4781 (2)0.23225 (17)0.0050 (2)0.0551 (6)
H10.43070.24040.06720.066*
C120.3297 (2)0.0845 (2)0.3729 (2)0.0594 (7)
H120.37340.03920.41870.071*
C110.2741 (3)0.1593 (2)0.4364 (2)0.0673 (7)
H110.27960.16420.52480.081*
C30.5818 (3)0.2653 (2)0.1808 (3)0.0642 (7)
H30.61790.29720.24870.077*
C100.2107 (2)0.22629 (19)0.3680 (2)0.0549 (6)
C50.2535 (2)0.0300 (2)0.1037 (3)0.0651 (7)
H5A0.19730.02150.09140.098*
H5B0.25260.07160.03040.098*
H5C0.23180.06630.17840.098*
C40.5856 (2)0.16622 (17)0.1551 (2)0.0505 (5)
C141.00000.00000.3423 (7)0.135 (2)
C150.9586 (4)0.0770 (4)0.4130 (6)0.1245 (18)
H150.93090.13110.36960.149*
C160.9561 (4)0.0779 (4)0.5446 (6)0.1265 (17)
H160.92510.13040.58880.152*
C60.3784 (3)0.0670 (2)0.2366 (3)0.0746 (8)
H6A0.36310.02640.30910.112*
H6B0.45650.09500.24440.112*
H6C0.31960.11740.23320.112*
C171.00000.00000.6079 (7)0.117 (2)
H171.00000.00000.69680.141*
Cl0.13535 (9)0.31837 (6)0.44888 (7)0.0879 (3)
C181.00000.00000.2026 (6)0.135 (2)
H18A0.95180.05240.17200.203*0.50
H18B0.96790.06000.17200.203*0.50
H18C1.08030.00750.17200.203*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti0.0425 (3)0.0420 (3)0.0339 (2)0.0016 (2)0.0000.000
N30.0455 (9)0.0466 (9)0.0413 (8)0.0013 (10)0.0007 (7)0.0020 (9)
N10.0506 (10)0.0436 (10)0.0464 (9)0.0002 (8)0.0061 (8)0.0025 (8)
C70.0420 (10)0.0498 (12)0.0397 (10)0.0017 (10)0.0044 (9)0.0029 (9)
N20.0529 (10)0.0574 (12)0.0431 (8)0.0072 (10)0.0077 (8)0.0005 (9)
C80.0482 (12)0.0519 (13)0.0374 (10)0.0034 (10)0.0014 (9)0.0001 (9)
C90.0559 (13)0.0489 (13)0.0497 (13)0.0044 (11)0.0017 (11)0.0017 (10)
C20.0718 (17)0.0404 (12)0.0831 (17)0.0009 (13)0.0133 (15)0.0038 (12)
C130.0515 (12)0.0522 (14)0.0482 (12)0.0038 (11)0.0060 (10)0.0076 (10)
C10.0579 (13)0.0496 (13)0.0579 (12)0.0034 (10)0.0104 (13)0.0122 (11)
C120.0698 (15)0.0671 (17)0.0412 (12)0.0118 (13)0.0048 (11)0.0051 (12)
C110.091 (2)0.0747 (18)0.0364 (11)0.0136 (16)0.0008 (12)0.0040 (12)
C30.0696 (16)0.0471 (14)0.0760 (17)0.0076 (12)0.0056 (14)0.0090 (13)
C100.0634 (14)0.0534 (14)0.0480 (13)0.0037 (12)0.0050 (11)0.0074 (11)
C50.0571 (15)0.0772 (18)0.0611 (15)0.0017 (13)0.0155 (12)0.0110 (12)
C40.0526 (12)0.0466 (13)0.0524 (12)0.0073 (11)0.0042 (10)0.0051 (10)
C140.126 (3)0.178 (5)0.102 (3)0.114 (4)0.0000.000
C150.095 (3)0.124 (4)0.154 (5)0.039 (3)0.043 (3)0.027 (3)
C160.094 (3)0.144 (5)0.141 (4)0.012 (3)0.015 (3)0.020 (4)
C60.087 (2)0.084 (2)0.0535 (14)0.0153 (17)0.0109 (15)0.0142 (14)
C170.094 (4)0.153 (6)0.104 (4)0.016 (5)0.0000.000
Cl0.1167 (7)0.0798 (5)0.0672 (4)0.0314 (5)0.0061 (4)0.0202 (4)
C180.126 (3)0.178 (5)0.102 (3)0.114 (4)0.0000.000
Geometric parameters (Å, º) top
Ti—N2i1.9013 (19)C12—H120.9300
Ti—N21.9013 (19)C11—C101.370 (4)
Ti—N12.1041 (19)C11—H110.9300
Ti—N1i2.1042 (19)C3—C41.399 (4)
Ti—N3i2.3152 (17)C3—H30.9300
Ti—N32.3152 (17)C10—Cl1.748 (3)
N3—C131.309 (3)C5—H5A0.9600
N3—C71.411 (3)C5—H5B0.9600
N1—C11.350 (3)C5—H5C0.9600
N1—C41.378 (3)C4—C13i1.409 (3)
C7—C81.382 (3)C14—C151.378 (6)
C7—C121.397 (3)C14—C15ii1.378 (6)
N2—C51.452 (3)C14—C181.462 (8)
N2—C61.453 (3)C15—C161.377 (8)
C8—C91.378 (3)C15—H150.9300
C8—H80.9300C16—C171.359 (6)
C9—C101.376 (3)C16—H160.9300
C9—H90.9300C6—H6A0.9600
C2—C31.379 (4)C6—H6B0.9600
C2—C11.382 (4)C6—H6C0.9600
C2—H20.9300C17—C16ii1.359 (6)
C13—C4i1.409 (3)C17—H170.9300
C13—H130.9300C18—H18A0.9600
C1—H10.9300C18—H18B0.9600
C12—C111.378 (4)C18—H18C0.9600
N2i—Ti—N298.06 (12)C7—C12—H12119.8
N2i—Ti—N197.88 (8)C10—C11—C12119.4 (2)
N2—Ti—N199.75 (8)C10—C11—H11120.3
N2i—Ti—N1i99.76 (8)C12—C11—H11120.3
N2—Ti—N1i97.88 (8)C2—C3—C4106.3 (3)
N1—Ti—N1i152.96 (10)C2—C3—H3126.9
N2i—Ti—N3i93.02 (7)C4—C3—H3126.9
N2—Ti—N3i168.31 (8)C11—C10—C9121.4 (2)
N1—Ti—N3i74.92 (8)C11—C10—Cl119.41 (19)
N1i—Ti—N3i83.81 (7)C9—C10—Cl119.1 (2)
N2i—Ti—N3168.31 (8)N2—C5—H5A109.5
N2—Ti—N393.02 (7)N2—C5—H5B109.5
N1—Ti—N383.81 (7)H5A—C5—H5B109.5
N1i—Ti—N374.92 (8)N2—C5—H5C109.5
N3i—Ti—N376.19 (8)H5A—C5—H5C109.5
C13—N3—C7118.36 (19)H5B—C5—H5C109.5
C13—N3—Ti111.21 (16)N1—C4—C3109.6 (2)
C7—N3—Ti129.97 (15)N1—C4—C13i118.0 (2)
C1—N1—C4106.1 (2)C3—C4—C13i132.4 (2)
C1—N1—Ti137.17 (17)C15—C14—C15ii115.0 (7)
C4—N1—Ti116.32 (15)C15—C14—C18122.5 (3)
C8—C7—C12118.8 (2)C15ii—C14—C18122.5 (3)
C8—C7—N3119.42 (19)C16—C15—C14123.4 (6)
C12—C7—N3121.8 (2)C16—C15—H15118.3
C5—N2—C6110.5 (2)C14—C15—H15118.3
C5—N2—Ti125.68 (17)C17—C16—C15118.2 (6)
C6—N2—Ti123.6 (2)C17—C16—H16120.9
C9—C8—C7121.0 (2)C15—C16—H16120.9
C9—C8—H8119.5N2—C6—H6A109.5
C7—C8—H8119.5N2—C6—H6B109.5
C10—C9—C8119.0 (2)H6A—C6—H6B109.5
C10—C9—H9120.5N2—C6—H6C109.5
C8—C9—H9120.5H6A—C6—H6C109.5
C3—C2—C1107.2 (2)H6B—C6—H6C109.5
C3—C2—H2126.4C16ii—C17—C16121.6 (7)
C1—C2—H2126.4C16ii—C17—H17119.2
N3—C13—C4i119.1 (2)C16—C17—H17119.2
N3—C13—H13120.5C14—C18—H18A109.5
C4i—C13—H13120.5C14—C18—H18B109.5
N1—C1—C2110.8 (2)H18A—C18—H18B109.5
N1—C1—H1124.6C14—C18—H18C109.5
C2—C1—H1124.6H18A—C18—H18C109.5
C11—C12—C7120.3 (2)H18B—C18—H18C109.5
C11—C12—H12119.8
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Ti(C11H8ClN2)2(C2H6N)2]·C7H8
Mr635.48
Crystal system, space groupOrthorhombic, P21212
Temperature (K)296
a, b, c (Å)11.1952 (4), 13.8545 (6), 10.4651 (3)
V3)1623.18 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.27 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.886, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
7377, 3172, 2855
Rint0.021
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.103, 1.04
No. of reflections3172
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.81
Absolute structureFlack (1983), 1338 Friedel pairs
Absolute structure parameter0.00 (3)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors appreciate financial support from the Hundreds of Talents Program (2005012) of the CAS, the Natural Science Foundation of China (20872105), the Qinglan Project of Jiangsu Province (Bu109805) and the Open Project of the Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education of Lanzhou University (LZUMMM2010003).

References

First citationBexrud, J. A., Li, C. & Schafer, L. L. (2007). Organometallics, 26, 6366–6372.  Web of Science CSD CrossRef CAS Google Scholar
First citationBraunschweig, H. & Breitling, F. M. (2006). Coord. Chem. Rev. 250, 2691–2720.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, C., Ciszewski, J. T. & Odom, A. L. (2001). Organometallics, 20, 5011–5013.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMozaffar, A., Mohammad Hadi, G., Susan, T., Khosro, M. & Fatemeh, M. (2010). J. Chem. Sci. 122, 539–548.  Google Scholar
First citationRamanathan, B., Keith, A. J., Armstrong, D. & Odom, A. L. (2004). Org. Lett. 6, 2957–2960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTillack, A., Khedkar, V., Jiao, H. & Beller, M. (2005). Eur. J. Org. Chem. pp. 5001–5012.  Web of Science CrossRef Google Scholar
First citationZhao, Y., Lin, M., Chen, Z., Pei, H., Li, Y., Chen, Y., Wang, X., Li, L., Cao, Y., Zhang, Y. & Li, W. (2012). RSC Adv. 2, 144–150.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m596-m597
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds