metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m650-m651

catena-Poly[[[aqua­(1,10-phenanthroline-κ2N,N′)manganese(II)]-{μ-4,4′-[(4-carb­­oxy­benz­yl)nitrilo]­dibenzoato-κ4O,O′:O′′,O′′′}] monohydrate]

aSchool of Chemical Engineering, Anhui University of Science and Technology, Huainan Anhui 232001, People's Republic of China
*Correspondence e-mail: jshu@aust.edu.cn

(Received 5 April 2012; accepted 17 April 2012; online 21 April 2012)

The title compound, {[Mn(C22H15NO6)(C12H8N2)(H2O]·H2O}n, was obtained under solvothermal conditions. The Mn2+ cation exhibits a distorted penta­gonal–bipyramidal MnN2O5 coordination sphere with the water O atom and one of the phenanthroline N atoms in the axial positions. The cation is bridged by the doubly deprotonated 4,4′-[(4-carb­­oxy­benz­yl)nitrilo]­dibenzoate ligand, generating a polymeric chain parallel to [100]. O—H⋯O hydrogen bonding, as well as ππ inter­actions between neighbouring phenanthroline ligands, with centroid–centroid distances of 3.695 (1) Å, lead to the construction of a three-dimensional network.

Related literature

For background to compounds with metal-organic-framework structures (MOFs), see: Corma et al. (2010[Corma, A., García, H. & Llabrés i Xamena, F. X. (2010). Chem. Rev. 110, 4606-4655.]); Feng et al. (2009[Feng, R., Jiang, F. L., Chen, L., Yan, C. F., Wu, M. Y. & Hong, M. C. (2009). Chem. Commun. 45, 5296-5298.]); Lin et al. (2010[Lin, J. B., Zhang, J. P. & Chen, X. M. (2010). J. Am. Chem. Soc. 132, 6654-6656.]); Ma et al. (2010[Ma, Y., Cheng, A. L. & Gao, E. Q. (2010). Cryst. Growth Des. 10, 2832-2834.]); Sarma et al. (2011[Sarma, R., Deka, H., Boudalis, A. K. & Baruah, J. B. (2011). Cryst. Growth Des. 11, 547-554.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C22H15NO6)(C12H8N2)(H2O]·H2O

  • Mr = 660.53

  • Monoclinic, P 21 /c

  • a = 15.142 (2) Å

  • b = 9.6734 (13) Å

  • c = 21.313 (3) Å

  • β = 107.445 (3)°

  • V = 2978.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 273 K

  • 0.32 × 0.27 × 0.23 mm

Data collection
  • Bruker APEX SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.851, Tmax = 0.891

  • 14335 measured reflections

  • 5235 independent reflections

  • 3488 reflections with I > 2σ(I)

  • Rint = 0.102

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.156

  • S = 0.95

  • 5235 reflections

  • 410 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 2.198 (2)
Mn1—O4i 2.210 (2)
Mn1—O9 2.235 (2)
Mn1—N1 2.258 (3)
Mn1—N2 2.274 (3)
Mn1—O2 2.389 (2)
Mn1—O3i 2.461 (3)
Symmetry code: (i) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8A⋯O4ii 0.85 1.96 2.798 (4) 170
O8—H8B⋯O11iii 0.85 2.43 2.872 (5) 113
O9—H9B⋯O1iv 0.85 2.09 2.745 (3) 134
O9—H9A⋯O3v 0.82 2.12 2.824 (3) 144
O12—H12⋯O8vi 0.82 1.81 2.605 (4) 165
Symmetry codes: (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) x-1, y-1, z-1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The construction of compounds with metal-organic framework structures (MOFs) from various molecular building blocks connected by coordination bonds or supramolecular contacts have been of intense interest due to their structures and topological features (Ma et al., 2010), as well as their promising applications in photochemistry areas (Feng et al., 2009), molecular magnetism (Sarma et al., 2011), heterogeneous catalysis (Corma et al., 2010), and molecular sorption (Lin et al., 2010). We recently designed and synthesized (4-carboxybenzyl)-4,4'-nitrilodibenzoic acid (H3L), a tripod carboxylate ligand. To test the ability of this ligand to give new architectures and topologies, we selected this ligand, 1,10-phenanthroline (phen), and an MnII salt to solvothermally synthesize the new coordination polymer [Mn(HL)(phen)(H2O)].H2O or [Mn(C22H15NO6)(C12H8N2)(H2O].H2O .

The asymmetric unit of the title compound contains one MnII ion, one HL2- anion, one phen ligand and one lattice water molecule (Fig. 1) The cation displays a distorted MnN2O5 coordination sphere that can be best described as pentagonal-bipyramidal. As shown in Figure 1, the MnII cation is coordinated by two pairs of chelating carboxylate O atoms from two HL2- ligands, one coordinating water, and two N atoms from one phen ligand. The Mn—N bond lengths are 2.258 (3) and 2.274 (3) Å, and the Mn—O lengths are in the range of 2.198 (2)–2.461 (3) Å. The dihedral angles between the three phenyl rings in the anion are 70.16 (18)°, 83.39 (19)° and 77.4 (12)°.

Neighboring MnII ions are linked by bridging HL2- anions to form a polymeric zigzag chain parallel to [100]. The distance between adjacent MnII cation withion the chain is 15.142 (1) Å (Figure 2). O—H···O hydrogen bonding between the carboxy group and the coordinating and free water molecules as donors and carboxylate O atoms and water O atoms as acceptors (Table 2) as well as ππ interactions between neighbouring phen groups with centroid-to-centroid distances of 3.695 (1) Å stabilize the three-dimensional set-up of the structure (Figure 3).

Related literature top

For background to compounds with metal-organic-framework structures (MOFs), see: Corma et al. (2010); Feng et al. (2009); Lin et al. (2010); Ma et al. (2010); Sarma et al. (2011).

Experimental top

A mixture of MnCl2.4H2O (10 mg), H3L (20 mg) and phen (10 mg) was dissolved in 9 ml of DMF/H2O(1:2, v/v). The final mixture was placed in a Parr Teflon-lined stainless steel vessel (15 ml) under autogenous pressure and heated at 363 K for 3 d. A large quantity of colorless crystals were obtained, which were washed with mother liquid, and dried under ambient conditions (yield: 71% based on phen).

Refinement top

The water H-atoms were located from a Fourier differnce map and were refined with distance restraintes of O—H = 0.85 (2) Å, and H—H distance of 1.45 (2) Å with Uiso(H) = 1.5Ueq(O). The C-bound H-atoms were placed in geometrically idealized positions and treated as riding: C—H = 0.93 and 0.96 Å for CH and CH2 H-atoms, respectively, with Uiso(H) = k τimes Ueq(C), where k = 1.5 for CH2 H-atoms, and k = 1.2 for all other H-atoms. The O atom of the solvent water molecule was refined with an isotropic displacement parameter.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the coordination of the MnII cation. Displacement ellipsoids are drawn at the 20% probability level. [Symmetry codes: (#1) 1 + x, y, z.]
[Figure 2] Fig. 2. A view of the polymeric zigzag chain expanding parallel to [100]; the phen ligands are arranged in parallel fashion.
[Figure 3] Fig. 3. A view of the three-dimensional network formed by O–H..O hydrogen bonding (green dotted lines) and ππ interactions (purple dotted lines).
catena-Poly[[[aqua(1,10-phenanthroline- κ2N,N')manganese(II)]-{µ-4,4'-[(4- carboxybenzyl)nitrilo]dibenzoato- κ4O,O':O'',O'''}] monohydrate] top
Crystal data top
[Mn(C22H15NO6)(C12H8N2)(H2O]·H2OF(000) = 1364
Mr = 660.53Dx = 1.473 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2883 reflections
a = 15.142 (2) Åθ = 2.3–27.9°
b = 9.6734 (13) ŵ = 0.50 mm1
c = 21.313 (3) ÅT = 273 K
β = 107.445 (3)°Block, colorless
V = 2978.4 (7) Å30.32 × 0.27 × 0.23 mm
Z = 4
Data collection top
Bruker APEX SMART CCD
diffractometer
5235 independent reflections
Radiation source: fine-focus sealed tube3488 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.102
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1817
Tmin = 0.851, Tmax = 0.891k = 1111
14335 measured reflectionsl = 2515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0787P)2]
where P = (Fo2 + 2Fc2)/3
5235 reflections(Δ/σ)max = 0.001
410 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Mn(C22H15NO6)(C12H8N2)(H2O]·H2OV = 2978.4 (7) Å3
Mr = 660.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.142 (2) ŵ = 0.50 mm1
b = 9.6734 (13) ÅT = 273 K
c = 21.313 (3) Å0.32 × 0.27 × 0.23 mm
β = 107.445 (3)°
Data collection top
Bruker APEX SMART CCD
diffractometer
5235 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3488 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.891Rint = 0.102
14335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 0.95Δρmax = 0.62 e Å3
5235 reflectionsΔρmin = 0.45 e Å3
410 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3740 (2)0.7528 (3)0.29214 (19)0.0385 (8)
C20.2736 (2)0.7716 (3)0.25997 (18)0.0412 (8)
C30.2389 (3)0.7855 (4)0.1934 (2)0.0543 (10)
H30.27920.79200.16810.065*
C40.1436 (3)0.7902 (4)0.1629 (2)0.0606 (11)
H40.12100.79550.11730.073*
C50.0817 (2)0.7869 (4)0.2000 (2)0.0528 (10)
C60.1170 (2)0.7801 (4)0.2663 (2)0.0531 (10)
H60.07730.78230.29220.064*
C70.2110 (2)0.7702 (3)0.2959 (2)0.0478 (9)
H70.23320.76220.34150.057*
C80.0824 (3)0.7829 (4)0.2049 (2)0.0564 (10)
C90.1346 (3)0.8984 (4)0.2073 (2)0.0589 (11)
H90.12260.98130.18930.071*
C100.2044 (3)0.8919 (4)0.2363 (2)0.0524 (10)
H100.23940.97020.23750.063*
C110.2229 (2)0.7697 (3)0.26370 (17)0.0415 (8)
C120.3046 (3)0.7581 (4)0.28836 (19)0.0469 (9)
C130.1686 (2)0.6567 (4)0.2626 (2)0.0511 (10)
H130.17870.57470.28220.061*
C140.0992 (3)0.6628 (4)0.2329 (2)0.0609 (11)
H140.06390.58470.23190.073*
C150.0547 (3)0.7657 (4)0.1000 (2)0.0675 (12)
H15A0.01720.81110.07640.081*
H15B0.11610.80620.08550.081*
C160.0618 (3)0.6100 (4)0.0825 (2)0.0592 (11)
C170.1327 (3)0.5656 (5)0.0317 (3)0.0939 (17)
H170.17430.62930.00640.113*
C180.1442 (3)0.4278 (5)0.0170 (3)0.099 (2)
H180.19640.39870.01600.119*
C190.0806 (3)0.3322 (4)0.0497 (2)0.0566 (10)
C200.0882 (3)0.1837 (5)0.0329 (2)0.0652 (12)
C210.0069 (3)0.3772 (5)0.0987 (2)0.0753 (13)
H210.03830.31480.12110.090*
C220.0016 (3)0.5167 (4)0.1156 (2)0.0707 (13)
H220.05170.54620.15020.085*
C230.5734 (3)1.0407 (4)0.3660 (2)0.0578 (10)
H230.55941.04780.32050.069*
C240.5840 (3)1.1605 (4)0.4018 (3)0.0762 (14)
H240.57801.24610.38100.091*
C250.6034 (4)1.1522 (4)0.4681 (3)0.0815 (15)
H250.61061.23250.49310.098*
C260.6127 (3)1.0233 (4)0.4988 (2)0.0615 (11)
C270.6320 (3)1.0064 (5)0.5675 (2)0.0796 (14)
H270.63851.08390.59430.096*
C280.6411 (3)0.8794 (5)0.5946 (2)0.0787 (14)
H280.65430.87090.63990.094*
C290.6310 (3)0.7583 (4)0.55564 (19)0.0551 (10)
C300.6373 (3)0.6263 (5)0.5807 (2)0.0684 (12)
H300.64860.61310.62560.082*
C310.6274 (4)0.5170 (5)0.5410 (2)0.0806 (15)
H310.63170.42760.55770.097*
C320.6105 (3)0.5400 (4)0.4740 (2)0.0673 (12)
H320.60620.46340.44690.081*
C330.6116 (2)0.7712 (4)0.48698 (16)0.0406 (8)
C340.6021 (2)0.9068 (3)0.45838 (18)0.0439 (9)
Mn10.55471 (3)0.71229 (5)0.33754 (2)0.03684 (19)
N10.58186 (19)0.9152 (3)0.39227 (14)0.0423 (7)
N20.60042 (19)0.6619 (3)0.44679 (14)0.0415 (7)
N30.0154 (2)0.7910 (4)0.16835 (18)0.0635 (9)
O10.43035 (16)0.7798 (2)0.26018 (12)0.0466 (6)
O20.40297 (16)0.7085 (2)0.34972 (13)0.0504 (6)
O30.37284 (18)0.8342 (3)0.26431 (14)0.0684 (8)
O40.30488 (16)0.6694 (3)0.33120 (14)0.0535 (7)
O80.8366 (2)0.9035 (3)0.94467 (16)0.0802 (9)*
H8A0.79880.87520.90890.096*
H8B0.87730.84170.95990.120*
O90.52533 (15)0.4896 (2)0.31171 (12)0.0470 (6)
H9B0.56220.46060.29140.056*
H9A0.47170.48080.28830.070*
O110.0275 (3)0.1014 (3)0.0524 (2)0.1007 (13)
O120.1701 (2)0.1488 (3)0.00651 (18)0.0895 (11)
H120.16990.06660.01580.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.041 (2)0.0294 (17)0.047 (2)0.0021 (14)0.0158 (18)0.0031 (16)
C20.041 (2)0.0359 (19)0.046 (2)0.0024 (15)0.0128 (18)0.0018 (17)
C30.053 (2)0.067 (3)0.046 (2)0.002 (2)0.018 (2)0.001 (2)
C40.057 (3)0.078 (3)0.040 (2)0.001 (2)0.003 (2)0.001 (2)
C50.039 (2)0.054 (2)0.066 (3)0.0064 (18)0.018 (2)0.000 (2)
C60.043 (2)0.059 (2)0.060 (3)0.0049 (18)0.019 (2)0.003 (2)
C70.043 (2)0.049 (2)0.054 (2)0.0046 (17)0.0185 (19)0.0010 (18)
C80.059 (2)0.056 (2)0.067 (3)0.003 (2)0.040 (2)0.000 (2)
C90.069 (3)0.051 (2)0.067 (3)0.001 (2)0.035 (2)0.009 (2)
C100.054 (2)0.046 (2)0.061 (3)0.0094 (17)0.023 (2)0.0004 (19)
C110.042 (2)0.044 (2)0.038 (2)0.0005 (16)0.0124 (17)0.0012 (17)
C120.045 (2)0.054 (2)0.042 (2)0.0016 (17)0.0130 (18)0.0084 (19)
C130.053 (2)0.045 (2)0.063 (3)0.0002 (18)0.029 (2)0.0066 (19)
C140.067 (3)0.047 (2)0.084 (3)0.0106 (19)0.045 (2)0.007 (2)
C150.059 (3)0.080 (3)0.063 (3)0.001 (2)0.018 (2)0.004 (2)
C160.063 (3)0.064 (3)0.057 (3)0.003 (2)0.027 (2)0.000 (2)
C170.068 (3)0.086 (4)0.110 (5)0.004 (3)0.001 (3)0.013 (3)
C180.069 (3)0.077 (4)0.136 (6)0.002 (3)0.007 (3)0.036 (3)
C190.060 (3)0.061 (3)0.055 (3)0.011 (2)0.027 (2)0.009 (2)
C200.065 (3)0.073 (3)0.060 (3)0.011 (2)0.022 (2)0.016 (2)
C210.082 (3)0.072 (3)0.064 (3)0.001 (2)0.010 (3)0.007 (3)
C220.071 (3)0.069 (3)0.062 (3)0.016 (2)0.004 (2)0.016 (2)
C230.075 (3)0.047 (2)0.054 (3)0.001 (2)0.024 (2)0.005 (2)
C240.112 (4)0.037 (2)0.081 (4)0.006 (2)0.032 (3)0.001 (2)
C250.125 (4)0.043 (3)0.073 (4)0.006 (3)0.024 (3)0.015 (3)
C260.082 (3)0.055 (3)0.047 (3)0.006 (2)0.018 (2)0.015 (2)
C270.110 (4)0.074 (3)0.049 (3)0.011 (3)0.015 (3)0.027 (3)
C280.100 (4)0.095 (4)0.033 (2)0.006 (3)0.008 (2)0.015 (3)
C290.063 (3)0.065 (3)0.036 (2)0.003 (2)0.013 (2)0.003 (2)
C300.086 (3)0.079 (3)0.037 (2)0.001 (3)0.015 (2)0.015 (2)
C310.125 (4)0.061 (3)0.051 (3)0.001 (3)0.019 (3)0.020 (2)
C320.112 (4)0.045 (2)0.044 (3)0.003 (2)0.022 (2)0.001 (2)
C330.042 (2)0.050 (2)0.0301 (19)0.0005 (16)0.0098 (16)0.0036 (17)
C340.049 (2)0.044 (2)0.037 (2)0.0039 (16)0.0098 (18)0.0060 (17)
Mn10.0429 (3)0.0387 (3)0.0309 (3)0.0016 (2)0.0141 (2)0.0008 (2)
N10.0543 (18)0.0370 (16)0.0385 (18)0.0025 (13)0.0183 (15)0.0005 (13)
N20.0516 (18)0.0366 (16)0.0367 (17)0.0020 (13)0.0141 (14)0.0019 (14)
N30.054 (2)0.083 (3)0.060 (2)0.0020 (18)0.0272 (18)0.0002 (19)
O10.0400 (14)0.0557 (15)0.0485 (15)0.0001 (11)0.0202 (12)0.0087 (12)
O20.0480 (15)0.0593 (16)0.0463 (17)0.0040 (12)0.0176 (13)0.0083 (13)
O30.0496 (17)0.101 (2)0.0576 (19)0.0240 (15)0.0211 (14)0.0105 (17)
O40.0480 (15)0.0631 (16)0.0564 (17)0.0011 (12)0.0260 (13)0.0070 (14)
O90.0466 (14)0.0496 (14)0.0474 (15)0.0012 (11)0.0180 (12)0.0133 (12)
O110.094 (3)0.069 (2)0.120 (3)0.0039 (19)0.002 (2)0.022 (2)
O120.081 (2)0.076 (2)0.105 (3)0.0160 (17)0.018 (2)0.027 (2)
Geometric parameters (Å, º) top
C1—O21.249 (4)C21—C221.394 (5)
C1—O11.268 (4)C21—H210.9300
C1—C21.480 (5)C22—H220.9300
C2—C31.363 (5)C23—N11.327 (4)
C2—C71.387 (5)C23—C241.370 (6)
C3—C41.395 (5)C23—H230.9300
C3—H30.9300C24—C251.357 (6)
C4—C51.397 (6)C24—H240.9300
C4—H40.9300C25—C261.396 (6)
C5—C61.354 (6)C25—H250.9300
C5—N31.423 (5)C26—C341.398 (5)
C6—C71.376 (5)C26—C271.413 (6)
C6—H60.9300C27—C281.347 (6)
C7—H70.9300C27—H270.9300
C8—C141.364 (5)C28—C291.417 (6)
C8—C91.380 (5)C28—H280.9300
C8—N31.454 (5)C29—C301.377 (6)
C9—C101.376 (5)C29—C331.409 (5)
C9—H90.9300C30—C311.334 (6)
C10—C111.384 (5)C30—H300.9300
C10—H100.9300C31—C321.390 (6)
C11—C131.372 (5)C31—H310.9300
C11—C121.486 (5)C32—N21.302 (4)
C12—O31.247 (4)C32—H320.9300
C12—O41.254 (4)C33—N21.340 (4)
C13—C141.381 (5)C33—C341.436 (5)
C13—H130.9300C34—N11.352 (4)
C14—H140.9300Mn1—O12.198 (2)
C15—N31.420 (5)Mn1—O4i2.210 (2)
C15—C161.548 (6)Mn1—O92.235 (2)
C15—H15A0.9700Mn1—N12.258 (3)
C15—H15B0.9700Mn1—N22.274 (3)
C16—C171.346 (6)Mn1—O22.389 (2)
C16—C221.352 (5)Mn1—O3i2.461 (3)
C17—C181.368 (6)O3—Mn1ii2.461 (3)
C17—H170.9300O4—Mn1ii2.210 (2)
C18—C191.367 (6)O8—H8A0.8501
C18—H180.9300O8—H8B0.8500
C19—C211.351 (5)O9—H9B0.8501
C19—C201.477 (6)O9—H9A0.8200
C20—O111.193 (5)O12—H120.8199
C20—O121.316 (5)
O2—C1—O1120.3 (3)C25—C24—C23118.8 (4)
O2—C1—C2120.4 (3)C25—C24—H24120.6
O1—C1—C2119.2 (3)C23—C24—H24120.6
C3—C2—C7117.5 (3)C24—C25—C26120.1 (4)
C3—C2—C1121.1 (4)C24—C25—H25119.9
C7—C2—C1121.4 (3)C26—C25—H25119.9
C2—C3—C4120.7 (4)C25—C26—C34117.0 (4)
C2—C3—H3119.6C25—C26—C27123.3 (4)
C4—C3—H3119.6C34—C26—C27119.7 (4)
C3—C4—C5120.7 (4)C28—C27—C26120.8 (4)
C3—C4—H4119.6C28—C27—H27119.6
C5—C4—H4119.6C26—C27—H27119.6
C6—C5—C4118.1 (3)C27—C28—C29121.6 (4)
C6—C5—N3121.7 (4)C27—C28—H28119.2
C4—C5—N3120.2 (4)C29—C28—H28119.2
C5—C6—C7120.8 (4)C30—C29—C33117.0 (4)
C5—C6—H6119.6C30—C29—C28123.8 (4)
C7—C6—H6119.6C33—C29—C28119.2 (4)
C6—C7—C2122.0 (4)C31—C30—C29120.5 (4)
C6—C7—H7119.0C31—C30—H30119.7
C2—C7—H7119.0C29—C30—H30119.7
C14—C8—C9119.2 (4)C30—C31—C32118.4 (4)
C14—C8—N3122.2 (4)C30—C31—H31120.8
C9—C8—N3118.4 (4)C32—C31—H31120.8
C10—C9—C8120.4 (4)N2—C32—C31124.3 (4)
C10—C9—H9119.8N2—C32—H32117.9
C8—C9—H9119.8C31—C32—H32117.9
C9—C10—C11120.6 (3)N2—C33—C29122.8 (3)
C9—C10—H10119.7N2—C33—C34118.2 (3)
C11—C10—H10119.7C29—C33—C34119.0 (3)
C13—C11—C10118.3 (3)N1—C34—C26122.9 (3)
C13—C11—C12120.8 (3)N1—C34—C33117.4 (3)
C10—C11—C12120.6 (3)C26—C34—C33119.7 (3)
O3—C12—O4121.3 (4)O1—Mn1—O4i129.32 (10)
O3—C12—C11119.0 (4)O1—Mn1—O992.24 (9)
O4—C12—C11119.6 (3)O4i—Mn1—O985.88 (9)
C11—C13—C14121.1 (3)O1—Mn1—N196.41 (10)
C11—C13—H13119.5O4i—Mn1—N199.52 (10)
C14—C13—H13119.5O9—Mn1—N1163.23 (10)
C8—C14—C13120.3 (4)O1—Mn1—N2139.57 (10)
C8—C14—H14119.8O4i—Mn1—N291.11 (10)
C13—C14—H14119.8O9—Mn1—N291.28 (9)
N3—C15—C16113.1 (4)N1—Mn1—N272.85 (10)
N3—C15—H15A109.0O1—Mn1—O256.65 (9)
C16—C15—H15A109.0O4i—Mn1—O2168.03 (9)
N3—C15—H15B109.0O9—Mn1—O283.40 (8)
C16—C15—H15B109.0N1—Mn1—O289.38 (9)
H15A—C15—H15B107.8N2—Mn1—O283.85 (9)
C17—C16—C22118.5 (4)O1—Mn1—O3i80.00 (9)
C17—C16—C15119.0 (4)O4i—Mn1—O3i55.33 (9)
C22—C16—C15122.4 (4)O9—Mn1—O3i113.53 (10)
C16—C17—C18120.8 (5)N1—Mn1—O3i82.21 (10)
C16—C17—H17119.6N2—Mn1—O3i134.06 (10)
C18—C17—H17119.6O2—Mn1—O3i134.63 (9)
C19—C18—C17121.4 (5)C23—N1—C34117.3 (3)
C19—C18—H18119.3C23—N1—Mn1126.7 (3)
C17—C18—H18119.3C34—N1—Mn1115.8 (2)
C21—C19—C18117.9 (4)C32—N2—C33117.0 (3)
C21—C19—C20119.2 (4)C32—N2—Mn1127.5 (3)
C18—C19—C20122.9 (4)C33—N2—Mn1115.3 (2)
O11—C20—O12122.1 (4)C15—N3—C5122.5 (4)
O11—C20—C19124.7 (4)C15—N3—C8113.3 (3)
O12—C20—C19113.2 (4)C5—N3—C8122.1 (4)
C19—C21—C22120.2 (4)C1—O1—Mn195.7 (2)
C19—C21—H21119.9C1—O2—Mn187.3 (2)
C22—C21—H21119.9C12—O3—Mn1ii85.9 (2)
C16—C22—C21121.0 (4)C12—O4—Mn1ii97.4 (2)
C16—C22—H22119.5H8A—O8—H8B109.5
C21—C22—H22119.5Mn1—O9—H9B109.3
N1—C23—C24123.9 (4)Mn1—O9—H9A109.8
N1—C23—H23118.0H9B—O9—H9A109.8
C24—C23—H23118.0C20—O12—H12109.4
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O4iii0.851.962.798 (4)170
O8—H8B···O11iv0.852.432.872 (5)113
O9—H9B···O1v0.852.092.745 (3)134
O9—H9A···O3vi0.822.122.824 (3)144
O12—H12···O8vii0.821.812.605 (4)165
Symmetry codes: (iii) x+1, y+3/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y1/2, z+1/2; (vi) x, y1/2, z+1/2; (vii) x1, y1, z1.

Experimental details

Crystal data
Chemical formula[Mn(C22H15NO6)(C12H8N2)(H2O]·H2O
Mr660.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)15.142 (2), 9.6734 (13), 21.313 (3)
β (°) 107.445 (3)
V3)2978.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.32 × 0.27 × 0.23
Data collection
DiffractometerBruker APEX SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.851, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
14335, 5235, 3488
Rint0.102
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.156, 0.95
No. of reflections5235
No. of parameters410
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.45

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Mn1—O12.198 (2)Mn1—N22.274 (3)
Mn1—O4i2.210 (2)Mn1—O22.389 (2)
Mn1—O92.235 (2)Mn1—O3i2.461 (3)
Mn1—N12.258 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O4ii0.851.962.798 (4)169.5
O8—H8B···O11iii0.852.432.872 (5)113.2
O9—H9B···O1iv0.852.092.745 (3)133.8
O9—H9A···O3v0.822.122.824 (3)143.5
O12—H12···O8vi0.821.812.605 (4)164.8
Symmetry codes: (ii) x+1, y+3/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1, y1/2, z+1/2; (v) x, y1/2, z+1/2; (vi) x1, y1, z1.
 

Acknowledgements

This work was supported by grants from the Natural Science Foundation of China (No. 21071004) and the Start-up Foundation of Anhui University of Science and Technology (No. 11227).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorma, A., García, H. & Llabrés i Xamena, F. X. (2010). Chem. Rev. 110, 4606–4655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFeng, R., Jiang, F. L., Chen, L., Yan, C. F., Wu, M. Y. & Hong, M. C. (2009). Chem. Commun. 45, 5296–5298.  Web of Science CSD CrossRef Google Scholar
First citationLin, J. B., Zhang, J. P. & Chen, X. M. (2010). J. Am. Chem. Soc. 132, 6654–6656.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMa, Y., Cheng, A. L. & Gao, E. Q. (2010). Cryst. Growth Des. 10, 2832–2834.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarma, R., Deka, H., Boudalis, A. K. & Baruah, J. B. (2011). Cryst. Growth Des. 11, 547–554.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m650-m651
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds