metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m699-m700

Poly[[μ-(1-ammonio­ethane-1,1-di­yl)bis­­(hydrogenphospho­nato)]di­aqua­chloridodisodium]: a powder X-ray diffraction study

aDepartment of Chemistry, Atomic Energy Commission of Syria (AECS), PO Box 6091, Damascus, Syrian Arab Republic
*Correspondence e-mail: cscientific@aec.org.sy

(Received 9 April 2012; accepted 23 April 2012; online 28 April 2012)

The title compound, [Na2(C2H8NO6P2)Cl(H2O)2]n, has a polymeric two-dimensional structure extending parallel to (001). The asymmetric unit contains two Na+ cations located on a centre of symmetry and on a mirror plane, respectively, one half of a bis-phospho­nate anion (the entire anion is completed by mirror symmetry), one chloride anion on a mirror plane and one water mol­ecule in general positions. The two Na+ cations exhibit distorted octa­hedral NaCl2O4 coordination polyhedra, each consisting of two deprotonated O atoms of the bis-phospho­nate anion, of two water mol­ecules and of two chloride anions. Strong O—H⋯O hydrogen bonds between the –OH group and one of the free O atoms of the bis-phospho­nate anion connect adjacent layers along [100], supported by N—H⋯Cl inter­actions. Intra­layer O—H⋯O and N—H⋯O hydrogen bonds are also observed.

Related literature

For general background to the use of organic diphospho­nic acids as chelating agents in metal extraction and as drugs to prevent calcification and to inhibit bone resorption, see: Matczak-Jon & Videnova-Adrabinska (2005[Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458-2488.]); Tromelin et al. (1986[Tromelin, A., El Manouni, D. & Burgada, R. (1986). Phosphorus Sulfur Relat. Elem. 27, 301-312.]); Szabo et al. (2002[Szabo, Ch. M., Martin, M. B. & Oldfield, E. (2002). J. Med. Chem. 45, 2894-2903.]). For related structures, see: Bon et al. (2008[Bon, V. V., Dudko, A. V., Kozachkova, A. N. & Pekhnyo, V. I. (2008). Acta Cryst. E64, o2340.]); Maltezou et al. (2010[Maltezou, E., Stylianou, M., Roy, S., Drouza, Ch. & Keramidas, A. D. (2010). Bioinorg. Chem. Appl. pp. 2010-2017.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background and details of methods applied in data collection and Rietveld refinement, see: Thompson et al. (1987[Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.]); Finger et al. (1994[Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.]); Stephens (1999[Stephens, P. W. (1999). J. Appl. Cryst. 32, 281-289.]); Von Dreele (1997[Von Dreele, R. B. (1997). J. Appl. Cryst. 30, 517-525.]); Boultif & Louër (2004[Boultif, A. & Louër, D. (2004). J. Appl. Cryst. 37, 724-731.]); Rodriguez-Carvajal (2001[Rodriguez-Carvajal, J. (2001). FULLPROF. CEA/Saclay, France.]); Roisnel & Rodriguez-Carvajal (2001[Roisnel, T. & Rodriguez-Carvajal, J. (2001). Mater. Sci. Forum, 378-381, 118-123.]); Toby (2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]). For the Le Bail method, see: Le Bail et al. (1988[Le Bail, A., Duroy, H. & Fourquet, J. L. (1988). Mater. Res. Bull. 23, 447-452.]).

[Scheme 1]

Experimental

Crystal data
  • [Na2(C2H8NO6P2)Cl(H2O)2]

  • Mr = 321.50

  • Monoclinic, P 21 /m

  • a = 5.53806 (4) Å

  • b = 10.50365 (8) Å

  • c = 10.2096 (1) Å

  • β = 104.0764 (7)°

  • V = 576.06 (1) Å3

  • Z = 2

  • Cu Kα1 radiation

  • λ = 1.5406 Å

  • μ = 6.62 mm−1

  • T = 298 K

  • Flat sheet, 8 × 8 mm

Data collection
  • STOE Transmission STADI P diffractometer

  • Specimen mounting: powder loaded between two Mylar foils

  • Data collection mode: transmission

  • Scan method: step

  • Absorption correction: for a cylinder mounted on the φ axis Absorption/surface roughness correction: function number 4 in GSAS (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). GSAS. Report LAUR 86-748. LosAlamos National Laboratory, New Mexico, USA.]). Flat plate transmission absorption correction, terms = 0.51550 0.0000, correction is not refined. Tmin = 0.318, Tmax = 0.451

  • 2θmin = 7.00°, 2θmax = 91.98°, 2θstep = 0.02°

Refinement
  • Rp = 0.029

  • Rwp = 0.038

  • Rexp = 0.029

  • R(F2) = 0.0257

  • χ2 = 1.769

  • 4250 data points

  • 109 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 (2) 1.74 (2) 2.547 (6) 170 (4)
O1W—H1W⋯O1ii 0.82 (3) 2.18 (4) 2.978 (6) 166 (5)
O1W—H2W⋯O3iii 0.82 (2) 2.28 (3) 2.942 (6) 138 (3)
N1—H1N1⋯O2iv 0.87 (3) 2.02 (4) 2.848 (8) 158 (3)
N1—H2N1⋯Cl1 0.87 (3) 2.34 (1) 3.213 (9) 180 (3)
Symmetry codes: (i) -x, -y, -z; (ii) -x, -y, -z+1; (iii) -x+1, -y, -z+1; (iv) x+1, y, z.

Data collection: WinXPOW (Stoe & Cie, 1999[Stoe & Cie (1999). WinXPOW. Stoe & Cie, Darmstadt, Germany.]); cell refinement: GSAS (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). GSAS. Report LAUR 86-748. LosAlamos National Laboratory, New Mexico, USA.]); data reduction: WinXPOW; program(s) used to solve structure: EXPO2009 (Altomare et al., 2009[Altomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. & Rizzi, R. (2009). J. Appl. Cryst. 42, 1197-1202.]); program(s) used to refine structure: GSAS; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Organic diphosphonic acids are potentially very powerful chelating agents used in metal extractions and have been tested by the pharmaceutical industry for use as efficient drugs preventing calcification and inhibiting bone resorption (Tromelin et al., 1986; Matczak-Jon & Videnova-Adrabinska, 2005). Diphosphonic acids are used in the treatment of Paget disease, osteoporosis and tumoral osteolysis (Szabo et al., 2002). However, it is still not clearly understood why small structural modifications of the bisphosphonates may lead to extensive alterations in their physicochemical, biological and toxicological characteristics (Matczak-Jon & Videnova-Adrabinska, 2005). As a consequence of that, determination of the structure of the bisphosphonates is very important to understand the influence of structural modifications on complex-forming abilities and physiological activities and deriving structure properties relations in general. Structures of the disodium salt of tetrahydrofuranyl-2,2-bisphosphonic acid and of ammonium 1-ammonioethane-1,1-diylbis(hydrogenphosphonate) dihydrate have been reported previously (Maltezou et al., 2010; Bon et al., 2008).

In the present work we report the crystal structure of the sodium salt of 1-ammonioethane-1,1 diyl)bis(hydrogenphosphonate), {[Na2(C2H8NO6P2)Cl(H2O)2]}n, (I). Bond lengths and angles in the anion are comparable with the related structures (Maltezou et al., 2010; Bon et al., 2008) and are in their normal ranges (Allen et al., 1987).

A view of the asymmetric unit of compound (I) is shown in Fig. 1. It contains one half of the anionic bisphosphonate molecule (completed by mirror symmetry), one chloride anion, two Na+ cations and one water molecule. The anion is present in a zwitterionic form with two negative charges on the deprotonated O atoms of the phosphonate group and a postive charge on the protonated amino group. The two Na+ cations and the chloride anion occupy special positions on an inversion centre for one of the Na cation and on a mirror plane for the other Na+ cation and the chloride anion. The two cations exhibit distorted octahedral coordination geometries consisting of two deprotonated O atoms of the bisphosphonate anion and two water molecules in the equatorial plane and two chloride anions in axial positions. The coordination octahedra share faces to make up a linear array directed along [010]. These chains are connected to each other via chloride anions to form infinite sheets parallel to (001). The two-dimensional networks are stacked along [001]. The bisphosphonate anions are located above and below the layers, thereby insulating the Na+ cations in each layer. The layers are further connected by strong O—H···O hydrogen bonding between adjacent phosphonate groups, supported by N—H···Cl hydrogen bonds (Table 1). N—H···O and two Ow—H···O intralayer hydrogen bonds are also present (Fig. 2, Table 1).

Related literature top

For general background to the use of organic diphosphonic acids as chelating agents in metal extraction and as drugs to prevent calcification and to inhibit bone resorption, see: Matczak-Jon & Videnova-Adrabinska (2005); Tromelin et al. (1986); Szabo et al. (2002). For related structures, see: Bon et al. (2008); Maltezou et al. (2010). For standard bond lengths, see: Allen et al. (1987). For background and details of methods applied in data collection and Rietfeld refinement, see: Thompson et al. (1987); Finger et al. (1994); Stephens (1999); Von Dreele (1997); Boultif & Louër (2004); Rodriguez-Carvajal (2001); Roisnel & Rodriguez-Carvajal (2001); Toby (2001). For the LeBail method, see: Le Bail et al. (1988).

Experimental top

For syntheses of (I), a mixture of acetonitrile (150 ml) and phosphorous acid (16.8 g, 0.2 mol) in acetic acid (10 g, 0.167 mol) was heated at a temperature of 328-338 K and phosphorous trichloride (51.7 g, 0.334 mol) was added slowly under stirring. After completion of the addition, the reaction temperature was raised to 343 -348 K and the reaction continued for 24 h at the same temperature. The reaction mixture was cooled to 333-338 K and water (150 ml) was added slowly at the same temperature. The reaction temperature was then increased to 363-373 K and maintained for the next 4–6 h. The reaction mixture was then cooled to 328-338 K and the reaction mixture pH was adjusted to 4.4–4.8 with sodium hydroxide solution. The reaction mixture was cooled to 278-288 K and the aqueous layer containing the product was separated from the upper acetonitrile layer. The aqueous layer was cooled and maintained at 273-278 K for 3 h. The solid product was separated by filtration and washed with water and finally with methanol to produce the corresponding product, in 77% yield. Appearance: white powder. Melting point about 623 K.

Spectroscopic data of (I): 1H-NMR (D2O, p.p.m.): δ 1.46 (t, 3H, CH3, J=12.8 Hz). 13C{1H} NMR (D2O, p.p.m.): δ 18.2 (1 C; CH3), 54.7 (1 C; C– CH3). 31p{1H} NMR (D2O, p.p.m.): δ 14.53(2P; P—OH). IR (KBr, ν cm-1): 3442.2 (NH2), 3551.5 (OH), 2393.9 (POH), 1607.6 (O=P—O—H), 1199.5 (P=O). Analytical data for (I): Found: C, 8.00; H, 3.95; N, 4.06; Calculated C, 7.45; H, 4.06; N, 4.34

Refinement top

Except the P, Cl and Na atoms, all other atoms were refined with an isotropic displacement parameter. Several restraints on bonds lengths and angles were applied to H atoms. The H atoms of the NH3, OH groups and H atoms of water were located in a difference map. The methyl H atoms were positioned in their idealized geometries using a riding model with C—H = 0.97 Å. The coordinates of these H atoms were restrained to the distances N—H = 0.87 Å, O—H = 0.82 Å and Ow—H = 0.82 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom for methyl H atoms and to 1.5 times of the Ueq of the parent atom for NH3 and OH groups and Ow—H).

The final Rietveld plot of the X-ray diffraction pattern is given in Fig. 3.

Computing details top

Data collection: WinXPOW (Stoe & Cie, 1999); cell refinement: GSAS (Larson & Von Dreele, 2004); data reduction: WinXPOW (Stoe & Cie, 1999); program(s) used to solve structure: EXPO2009 (Altomare et al., 2009); program(s) used to refine structure: GSAS (Larson & Von Dreele, 2004); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius. Hydrogen bonding is shown as a dashed line.
[Figure 2] Fig. 2. View of crystal packing of (I), showing the formation of the three-dimensional network built from hydrogen bonds (dashed lines).
[Figure 3] Fig. 3. Final Rietveld plot of compound (I). Observed data points are indicated by dots, the best-fit profile (upper trace) and the difference pattern (lower trace) are solid lines. The vertical bars indicate the positions of Bragg peaks.
Poly[[µ-(1-ammonioethane-1,1- diyl)bis(hydrogenphosphonato)]diaquachloridodisodium] top
Crystal data top
[Na2(C2H8NO6P2)Cl(H2O)2]Dx = 1.854 Mg m3
Mr = 321.50Melting point: 623 K
Monoclinic, P21/mCu Kα1 radiation, λ = 1.5406 Å
Hall symbol: -P 2ybµ = 6.62 mm1
a = 5.53806 (4) ÅT = 298 K
b = 10.50365 (8) ÅParticle morphology: Fine powder
c = 10.2096 (1) Åwhite
β = 104.0764 (7)°flat sheet, 8 × 8 mm
V = 576.06 (1) Å3Specimen preparation: Prepared at 298 K and 101.3 kPa
Z = 2
Data collection top
STOE Transmission STADI P
diffractometer
Scan method: step
Radiation source: sealed X-ray tubeAbsorption correction: for a cylinder mounted on the ϕ axis
Absorption/surface roughness correction: function number 4 in GSAS (Larson & Von Dreele, 2004). Flat plate transmission absorption correction, terms = 0.51550 0.0000, correction is not refined.
Curved Ge(111) monochromatorTmin = 0.318, Tmax = 0.451
Specimen mounting: powder loaded between two Mylar foils2θmin = 7.00°, 2θmax = 91.98°, 2θstep = 0.02°
Data collection mode: transmission
Refinement top
Least-squares matrix: fullProfile function: CW Profile function number 4 with 21 terms Pseudovoigt profile coefficients as parameterized in Thompson et al. (1987) Asymmetry correction of Finger et al. (1994). Microstrain broadening by Stephens (1999). #1(GU) = 0.000 #2(GV) = 0.000 #3(GW) = 11.529 #4(GP) = 0.000 #5(LX) = 0.000 #6(ptec) = 2.91 #7(trns) = 0.00 #8(shft) = -1.5788 #9(sfec) = 0.00 #10(S/L) = 0.0215 #11(H/L) = 0.0215 #12(eta) = 0.6000 #13(S400 ) = 2.1E-01 #14(S040 ) = 2.3E-02 #15(S004 ) = 1.2E-02 #16(S220 ) = 4.2E-02 #17(S202 ) = 4.6E-02 #18(S022 ) = 1.7E-03 #19(S301 ) = 8.7E-02 #20(S103 ) = -3.8E-05 #21(S121 ) = 2.8E-03 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0
Rp = 0.029109 parameters
Rwp = 0.03810 restraints
Rexp = 0.0290 constraints
R(F2) = 0.0257H atoms treated by a mixture of independent and constrained refinement
χ2 = 1.769(Δ/σ)max = 0.08
4250 data pointsBackground function: GSAS Background function number 1 with 20 terms. Shifted Chebyshev function of 1st kind 1: 914.240 2: -1034.48 3: 577.328 4: -206.578 5: 31.4580 6: 15.1650 7: -17.0889 8: 0.311333 9: 15.3490 10: -12.5113 11: 3.19417 12: 9.78413 13: -11.5493 14: 7.63897 15: -0.448352 16: -4.70971 17: 6.05628 18: -4.89696 19: 6.60474 20: -2.48023
Excluded region(s): nonePreferred orientation correction: March-Dollase AXIS 1 Ratio= 1.12753 h= 0.000 k= 0.000 l= 1.000 Prefered orientation correction range: Min= 0.69761, Max= 1.19727
Crystal data top
[Na2(C2H8NO6P2)Cl(H2O)2]V = 576.06 (1) Å3
Mr = 321.50Z = 2
Monoclinic, P21/mCu Kα1 radiation, λ = 1.5406 Å
a = 5.53806 (4) ŵ = 6.62 mm1
b = 10.50365 (8) ÅT = 298 K
c = 10.2096 (1) Åflat sheet, 8 × 8 mm
β = 104.0764 (7)°
Data collection top
STOE Transmission STADI P
diffractometer
Absorption correction: for a cylinder mounted on the ϕ axis
Absorption/surface roughness correction: function number 4 in GSAS (Larson & Von Dreele, 2004). Flat plate transmission absorption correction, terms = 0.51550 0.0000, correction is not refined.
Specimen mounting: powder loaded between two Mylar foilsTmin = 0.318, Tmax = 0.451
Data collection mode: transmission2θmin = 7.00°, 2θmax = 91.98°, 2θstep = 0.02°
Scan method: step
Refinement top
Rp = 0.0294250 data points
Rwp = 0.038109 parameters
Rexp = 0.02910 restraints
R(F2) = 0.0257H atoms treated by a mixture of independent and constrained refinement
χ2 = 1.769
Special details top

Experimental. All chemical reagents and solvents were of commercial quality and used as received. NMR spectra were recorded on a Bruker Bio spin 400 spectrometer (400 MHz for 1H, 100 MHz for 13C, 162 MHz for 31P). Chemical shifts (δ) were expressed in p.p.m. relative to TMS as an internal standard. IR spectra were recorded on FTIR-JASCO 300E. Melting points were determined using a Stuart SMP3 melting point apparatus. The powder sample of compound (I) was slightly ground in a mortar, loaded into two foils of Mylar and fixed in the sample holder with a mask of suitable internal diameter (8.0 mm). X-ray powder diffraction patterns were obtained on a Stoe Stadi-P diffractometer with monochromatic Cu Kα1 radiation (λ = 1.5406 Å) selected using an incident-beam curved-crystal germanium Ge(111) monochromator, using the Stoe transmission geometry (horizontal set-up) with a linear position-sensitive detector (PSD). The pattern was scanned over the angular range 7–92° (2θ)

The sample was ground lightly in a mortar, loaded between two Mylar foils and fixed in the sample holder with a mask of 8.0 mm internal diameter.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.1295 (3)0.10112 (14)0.1805 (2)0.01656
Cl10.6926 (3)0.250.5220 (2)0.02613
Na10.50.00.50.03054
Na20.1724 (5)0.250.5042 (3)0.02699
O10.1724 (6)0.0974 (3)0.3308 (4)0.0137 (11)*
O20.1356 (6)0.0911 (3)0.0983 (4)0.0137 (11)*
O30.2987 (8)0.0041 (4)0.1397 (4)0.0164 (11)*
O1w0.2545 (8)0.0669 (4)0.6478 (5)0.0326 (13)*
N10.5321 (15)0.250.1977 (9)0.022 (2)*
C10.2590 (13)0.250.1280 (8)0.009 (3)*
C20.2359 (11)0.250.0250 (6)0.007 (2)*
H1c20.0613 (15)0.250.0726 (10)0.009 (3)*
H2c20.315 (2)0.1743 (6)0.0494 (10)0.009 (3)*
H1n10.608 (7)0.185 (3)0.173 (5)0.033 (3)*
H2n10.576 (11)0.250.2855 (10)0.033 (3)*
H30.252 (8)0.040 (3)0.0666 (19)0.0246 (17)*
H1w0.132 (5)0.021 (4)0.639 (5)0.0488 (19)*
H2w0.337 (7)0.077 (4)0.7255 (17)0.0488 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0136 (12)0.0168 (12)0.0188 (16)0.0016 (11)0.0031 (12)0.0026 (13)
Cl10.0162 (17)0.0362 (17)0.024 (2)0.00.0015 (16)0.0
Na10.037 (3)0.031 (3)0.031 (3)0.008 (2)0.022 (3)0.007 (3)
Na20.027 (2)0.030 (2)0.024 (3)0.00.004 (2)0.0
Geometric parameters (Å, º) top
P1—O11.495 (4)N1—H2n10.870 (14)
P1—O21.507 (4)Na1—Cl12.8226 (7)
P1—O31.570 (4)Na2—Cl1i2.707 (3)
P1—C11.853 (4)Na2—Cl12.842 (3)
C2—C11.537 (9)Na1—O12.408 (3)
C2—H1c20.971 (11)Na1—O1w2.370 (5)
C2—H2c20.969 (9)Na2—O12.389 (4)
N1—C11.507 (10)Na2—O1w2.394 (5)
N1—H1n10.87 (3)
O1—P1—O2117.4 (2)Cl1—Na1—O1w86.43 (10)
O1—P1—O3107.4 (2)Cl1—Na1—O1wiii93.57 (10)
O1—P1—C1110.0 (3)O1—Na2—O1ii84.3 (2)
O2—P1—O3111.5 (2)O1—Na2—O1w83.14 (14)
O2—P1—C1106.9 (3)O1—Na2—O1wii163.5 (2)
O3—P1—C1102.7 (3)O1w—Na2—O1wii106.9 (3)
P1—C1—P1ii115.1 (4)Cl1i—Na2—Cl1172.72 (18)
P1—C1—N1106.1 (4)Cl1i—Na2—O1103.11 (14)
P1—C1—C2110.6 (3)Cl1i—Na2—O1v92.54 (2)
N1—C1—C2107.8 (7)Cl1i—Na2—O1w90.14 (14)
C1—C2—H1c2109.6 (4)Cl1i—Na2—O1wv90.02 (3)
C1—C2—H2c2109.3 (4)Na1—Cl1—Na1vi136.97 (7)
H1c2—C2—H2c2109.3 (5)Na1—Cl1—Na268.74 (4)
H2c2—C2—H2c2ii110.1 (11)Na1—Cl1—Na2vii110.65 (4)
C1—N1—H1n1111 (4)Na2—Cl1—Na2vii172.72 (18)
C1—N1—H2n1119 (4)P1—O1—Na1130.6 (2)
H1n1—N1—H1n1ii103 (5)P1—O1—Na2135.7 (2)
H1n1—N1—H2n1105 (4)Na1—O1—Na283.63 (13)
O1—Na1—O1iii180.0Na1—O1w—Na284.34 (16)
O1—Na1—O1w83.23 (13)Na1—O1w—H1w110 (4)
O1—Na1—O1wiii96.77 (13)Na1—O1w—H2w113 (4)
O1w—Na1—O1wiii180.0Na2—O1w—H1w112 (4)
Cl1—Na1—Cl1iv180.0Na2—O1w—H2w118 (3)
Cl1—Na1—O182.29 (9)H1w—O1w—H2w116 (4)
Cl1—Na1—O1iii97.71 (9)
Na2—Cl1—Na1—O143.53 (11)Cl1—Na1—O1—Na250.23 (10)
Na2—Cl1—Na1—O1W40.11 (13)O1W—Na1—O1—P1174.5 (3)
Na1—Cl1—Na2—O143.99 (9)O1W—Na1—O1—Na237.07 (14)
Na1—Cl1—Na2—O1W39.68 (12)Cl1iv—Na1—O1—P181.8 (2)
O2—P1—O1—Na1142.2 (2)O1Wiii—Na1—O1—P15.5 (3)
O2—P1—O1—Na285.9 (3)O1Wiii—Na1—O1—Na2142.93 (14)
O3—P1—O1—Na115.7 (3)Cl1—Na1—O1W—Na245.75 (12)
O3—P1—O1—Na2147.7 (3)O1—Na1—O1W—Na236.91 (13)
C1—P1—O1—Na195.3 (3)O1iii—Na1—O1W—Na2143.09 (13)
C1—P1—O1—Na236.7 (4)Cl1—Na2—O1—P195.6 (3)
O1—P1—C1—N158.6 (5)Cl1—Na2—O1—Na149.77 (8)
O1—P1—C1—C2175.2 (4)O1W—Na2—O1—P1178.0 (3)
O1—P1—C1—P1ii58.5 (5)O1W—Na2—O1—Na136.65 (14)
O2—P1—C1—N1172.9 (4)Cl1i—Na2—O1—P189.4 (3)
O2—P1—C1—C256.3 (5)O1ii—Na2—O1—P112.7 (3)
O2—P1—C1—P1ii70.0 (5)O1ii—Na2—O1—Na1132.66 (13)
O3—P1—C1—N155.5 (5)Cl1—Na2—O1W—Na145.41 (11)
O3—P1—C1—C261.2 (5)O1—Na2—O1W—Na137.27 (14)
O3—P1—C1—P1ii172.6 (4)O1Wii—Na2—O1W—Na1129.37 (17)
Cl1—Na1—O1—P198.2 (2)
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z; (iii) x+1, y, z+1; (iv) x+1, y1/2, z+1; (v) x, y+3/2, z; (vi) x+1, y+1/2, z+1; (vii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2viii0.82 (2)1.74 (2)2.547 (6)170 (4)
O1W—H1W···O1ix0.82 (3)2.18 (4)2.978 (6)166 (5)
O1W—H2W···O3iii0.82 (2)2.28 (3)2.942 (6)138 (3)
N1—H1N1···O2vii0.87 (3)2.02 (4)2.848 (8)158 (3)
N1—H2N1···Cl10.87 (3)2.34 (1)3.213 (9)180 (3)
Symmetry codes: (iii) x+1, y, z+1; (vii) x+1, y, z; (viii) x, y, z; (ix) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Na2(C2H8NO6P2)Cl(H2O)2]
Mr321.50
Crystal system, space groupMonoclinic, P21/m
Temperature (K)298
a, b, c (Å)5.53806 (4), 10.50365 (8), 10.2096 (1)
β (°) 104.0764 (7)
V3)576.06 (1)
Z2
Radiation typeCu Kα1, λ = 1.5406 Å
µ (mm1)6.62
Specimen shape, size (mm)Flat sheet, 8 × 8
Data collection
DiffractometerSTOE Transmission STADI P
diffractometer
Specimen mountingPowder loaded between two Mylar foils
Data collection modeTransmission
Scan methodStep
Absorption correctionFor a cylinder mounted on the ϕ axis
Absorption/surface roughness correction: function number 4 in GSAS (Larson & Von Dreele, 2004). Flat plate transmission absorption correction, terms = 0.51550 0.0000, correction is not refined.
Tmin, Tmax0.318, 0.451
2θ values (°)2θmin = 7.00 2θmax = 91.98 2θstep = 0.02
Refinement
R factors and goodness of fitRp = 0.029, Rwp = 0.038, Rexp = 0.029, R(F2) = 0.0257, χ2 = 1.769
No. of data points4250
No. of parameters109
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement

Computer programs: WinXPOW (Stoe & Cie, 1999), GSAS (Larson & Von Dreele, 2004), EXPO2009 (Altomare et al., 2009), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.82 (2)1.74 (2)2.547 (6)170 (4)
O1W—H1W···O1ii0.82 (3)2.18 (4)2.978 (6)166 (5)
O1W—H2W···O3iii0.82 (2)2.28 (3)2.942 (6)138 (3)
N1—H1N1···O2iv0.87 (3)2.02 (4)2.848 (8)158 (3)
N1—H2N1···Cl10.87 (3)2.343 (10)3.213 (9)180 (3)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x+1, y, z.
 

Acknowledgements

The authors thank Professor I. Othman, Director General, and Professor T. Yassine, Head of Chemistry, for their support and encouragement.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. & Rizzi, R. (2009). J. Appl. Cryst. 42, 1197–1202.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBon, V. V., Dudko, A. V., Kozachkova, A. N. & Pekhnyo, V. I. (2008). Acta Cryst. E64, o2340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoultif, A. & Louër, D. (2004). J. Appl. Cryst. 37, 724–731.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFinger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2004). GSAS. Report LAUR 86-748. LosAlamos National Laboratory, New Mexico, USA.  Google Scholar
First citationLe Bail, A., Duroy, H. & Fourquet, J. L. (1988). Mater. Res. Bull. 23, 447–452.  CrossRef CAS Web of Science Google Scholar
First citationMaltezou, E., Stylianou, M., Roy, S., Drouza, Ch. & Keramidas, A. D. (2010). Bioinorg. Chem. Appl. pp. 2010–2017.  Google Scholar
First citationMatczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458–2488.  Web of Science CrossRef CAS Google Scholar
First citationRodriguez-Carvajal, J. (2001). FULLPROF. CEA/Saclay, France.  Google Scholar
First citationRoisnel, T. & Rodriguez-Carvajal, J. (2001). Mater. Sci. Forum, 378–381, 118–123.  CrossRef CAS Google Scholar
First citationStephens, P. W. (1999). J. Appl. Cryst. 32, 281–289.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). WinXPOW. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSzabo, Ch. M., Martin, M. B. & Oldfield, E. (2002). J. Med. Chem. 45, 2894–2903.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationThompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationToby, B. H. (2001). J. Appl. Cryst. 34, 210–213.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTromelin, A., El Manouni, D. & Burgada, R. (1986). Phosphorus Sulfur Relat. Elem. 27, 301–312.  CrossRef CAS Web of Science Google Scholar
First citationVon Dreele, R. B. (1997). J. Appl. Cryst. 30, 517–525.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m699-m700
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds