inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Garnet-type Mn3Cr2(GeO4)3

aInstitut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
*Correspondence e-mail: rainer.niewa@iac.uni-stuttgart.de

(Received 11 April 2012; accepted 17 April 2012; online 21 April 2012)

Single crystals of garnet-type trimanganese(II) dichrom­i­um(III) tris­[orthogermanate(IV)], MnII3CrIII2(GeO4)3, were obtained by utilizing a chemical transport reaction. Corres­ponding to the mineral garnet with the general formula AII3BIII2(SiO4)3, each of the four elements occupies only one crystallographically distinct position. Mn2+ occupies the respective A position (Wyckoff site 24c, site symmetry 2.22), being surrounded by eight O atoms that form a distorted cube [d(Mn—O) = 2.291 (2) and 2.422 (2) Å, 4× each], while Cr3+ on the B position (Wyckoff site 16a, site symmetry .-3.) is situated in a slightly distorted octa­hedron of six O2− anions [d(Cr—O) = 1.972 (2) Å, 6×]. In addition, the O atoms on general site 96h form isolated [GeO4]4− tetra­hedra with Ge4+ on site 24d [site symmetry -4..; d(Ge—O) = 1.744 (2) Å, 4×].

Related literature

For general background to garnets, see: Geller (1967[Geller, S. (1967). Z. Kristallogr. 125, 1-47.]); Geusic et al. (1964[Geusic, J. E., Marcos, H. M. & van Uitert, L. G. (1964). Appl. Phys. Lett. 4, 182-184.]); Menzer (1925[Menzer, G. (1925). Centralbl. Mineral. A, pp. 344-345.], 1926[Menzer, G. (1926). Z. Kristallogr. 63, 157-158.], 1928[Menzer, G. (1928). Z. Kristallogr. 69, 300-396.]); Nishikawa (1917[Nishikawa, Sh. (1917). Proc. Math. Phys. Soc. Tokyo, 9, 194-197.]); Novak & Gibbs (1971[Novak, G. A. & Gibbs, G. V. (1971). Am. Mineral. 56, 791-825.]). For synthetic details, see: Binnewies et al. (2011[Binnewies, M., Glaum, R., Schmidt, M. & Schmidt, P. (2011). Chemische Transportreaktionen, 1st ed. Berlin: de Gruyter.]); Pajączkowska & Majcher (1985[Pajączkowska, A. & Majcher, K. (1985). J. Cryst. Growth, 71, 810-812.], 1986[Pajączkowska, A. & Majcher, K. (1986). J. Mater. Sci. Lett. 5, 487-488.]); Pajączk­owska et al. (1986[Pajączkowska, A., Jasiołek, G. & Majcher, K. (1986). J. Cryst. Growth, 79, 417-420.]). For isotypic structures, see: Andrut & Wildner (2002[Andrut, M. & Wildner, M. (2002). Phys. Chem. Miner. 29, 595-608.]); Belov et al. (1972[Belov, K. P., Mamsurova, D. G., Mill', B. V. & Sokolov, V. I. (1972). Pis'ma Zh. Eksp. Teor. Fiz. 16, 173-176.]); Fursenko (1981[Fursenko, B. A. (1981). Bull. Miner. 104, 418-422.]); Geller et al. (1960[Geller, S., Miller, C. E. & Treuting, R. G. (1960). Acta Cryst. 13, 179-186.]); Golosovskii et al. (1976[Golosovskii, I. V., Plakhii, V. P., Smirnov, O. P., Chernenkov, Yu. P., Kovalev, A. V. & Bedrizova, M. N. (1976). Pis'ma Zh. Eksp. Teor. Fiz. 24, 461-464.]); Lind & Geller (1969[Lind, M. D. & Geller, S. (1969). Z. Kristallogr. 129, 427-434.]); Prandl (1973[Prandl, W. (1973). Phys. Status Solidi B, 55, K159-K163.]); Tauber et al. (1958a[Tauber, A., Banks, E. & Kedesdy, H. (1958a). Acta Cryst. 11, 893-894.],b[Tauber, A., Banks, E. & Kedesdy, H. H. (1958b). J. Appl. Phys. 29, 385-387.], 1961[Tauber, A., Whinfrey, C. G. & Banks, E. (1961). J. Phys. Chem. Solids, 21, 25-32.]); Wildner & Andrut (2001[Wildner, M. & Andrut, M. (2001). Am. Mineral. 86, 1231-1251.]).

Experimental

Crystal data
  • Mn3Cr2(GeO4)3

  • Mr = 678.59

  • Cubic, [I a \overline 3d ]

  • a = 12.0001 (3) Å

  • V = 1728.04 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 17.01 mm−1

  • T = 293 K

  • 0.18 × 0.15 × 0.09 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: numerical (HABITUS; Herrendorf & Bärnighausen, 1997[Herrendorf, W. & Bärnighausen, H. (1997). HABITUS. Universities of Karlsruhe and Giessen, Germany.]) Tmin = 0.063, Tmax = 0.201

  • 7635 measured reflections

  • 277 independent reflections

  • 265 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.068

  • S = 1.26

  • 277 reflections

  • 18 parameters

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.72 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Garnet can be found among the very early attempts to solve crystal structures with the help of X-ray diffraction (Nishikawa, 1917), soon being followed by the understanding of the regular structure (Menzer, 1925, 1926) and the variability of garnet in a systematic way (Menzer, 1928; Geller, 1967; Novak & Gibbs, 1971). The variability of the garnet-type structure led for example to the well known Nd:YAG lasers (Y3Al5O12:Nd3+; Geusic et al., 1964). A much more apparent variation is of course the replacement of Si by Ge (Tauber et al., 1961; Geller, 1967), resulting in germanate garnets that are accessible via chemical transport reactions. The latter are an elegant way to grow crystals (Binnewies et al., 2011) when other methods deliver only fine powders or require very high temperatures if the growth from melts is necessary.

The formation of garnet-type Mn3Cr2(GeO4)3 by chemical transport reactions was already successfully demonstrated for transporting agents like Cl2, CCl4, SCl4 and TeCl4 (Pajączkowska & Majcher, 1985, Pajączkowska et al. 1986; Mn3Fe2(GeO4)3: Pajączkowska & Majcher, 1986). While only 0.5 mm edge length as a maximum crystal size was stated when TeCl4 was used as a transporting agent, we achieved sizes of up to 4 mm within twelve days with the same agent. Quite interestingly Pajączkowska & Majcher (1985) determined only the unit-cell dimensions by using powder X-ray diffraction (a = 12.030 (1) Å), but not the structural details. The same germanate Mn3Cr2(GeO4)3 was already presented before, but each time again only by mentioning the unit-cell dimensions, being obtained by powder diffraction (Tauber et al., 1958a (a = 12.027 Å); Tauber et al., 1958b (a = 12.027 Å); Geller et al., 1960 (a = 12.027 (3) Å); Belov et al., 1972 (a = 12.028 (4) Å)). In addition some experiments on the magnetic properties have been conducted (Tauber et al., 1958b; Belov et al., 1972; Golosovskii et al. 1976), but again without the determination of structural details of Mn3Cr2(GeO4)3. Golosovskii et al. (1976) conducted neutron diffraction experiments and discussed the magnetic structure. They achieved results similar to the ones obtained for the spessartite-type germanate garnet Mn3Al2(GeO4)3 by Prandl (1973), thus finding confirmation for Mn2+ on site 24i where it is eightfold coordinated by oxygen.

The obtained dark green garnet-type Mn3Cr2(GeO4)3 (see Fig. 1) crystallizes isotypically with regular garnets. While Mn2+, Cr3+ and Ge4+ are located on the special sites 24c, 16a and 24d, oxygen is found on general site 96h. Manganese(II) is eightfold coordinated by oxygen in a distorted cube (Fig. 2) with Mn–O distances of 2.291 (2) and 2.422 (2) Å (4× each). These values are in good agreement with those reported for Mn3Fe2(GeO4)3 (2.303 (7) and 2.421 (7) Å; Lind & Geller, 1969). For additional comparison the analogous garnet Mn3Cr2(SiO4)3 would be of interest, but once more only the unit-cell parameters, determined by powder diffraction, are mentioned (a = 11.766 (2) Å; synthesis at 80 kbar/1273 K; Fursenko, 1981). The green color of Mn3Cr2(GeO4)3 may be taken as an indicator for the +III oxidation state of chromium. Oxygen surrounds chromium(III) in a slightly distorted octahedron (Fig. 3) with d(Cr—O) = 1.972 (2) Å (6×), whereas 1.9942 (6) Å is reported for chromium on the same position in synthetic uvarovite (Ca3Cr2(SiO4)3; Andrut & Wildner, 2002; for natural uvarovite, see: Wildner & Andrut, 2001). Due to the slight distortion, the (O—Cr—O) angles within the [CrO6] octahedra deviate from 90°, viz 86.33 (8)° and 93.67 (8)°. Completing the description of the cation environments, Ge4+ is situated in slightly elongated tetrahedra of four O2– anions where d(Ge—O) = 1.744 (2) Å, and the angles (O—Ge—O) are found to be 99.02 (14)° (2×) and 114.93 (7)° (4×). This is again similar to the values detected for Mn3Fe2(GeO4)3 (d(Ge—O) = 1.766 (7) Å, (O—Ge—O) = 98.8 (5)° (2×) and 115.1 (3)° (4×); Lind & Geller, 1969). Keeping in mind only a single site is occupied by oxygen, the structure of garnets might be described as two interpenetrating networks in Mn3Cr2(GeO4)3, the first made up of edge sharing [CrO6] octahedra and [GeO4]4– tetrahedra (Fig. 2 & 3), while the second consists of groups of three edge sharing [MnO8] polyhedra (see Fig. 2), with each distorted [MnO8] cube being part of two of these units of three polyhedra. Therefore, each [MnO8] polyhedron shares four edges with four [MnO8] polyhedra, four edges with four [CrO6] octahedra, and two edges and four vertices with six [GeO4]4– tetrahedra.

Related literature top

For general background to garnets, see: Geller (1967); Geusic et al. (1964); Menzer (1925, 1926, 1928); Nishikawa (1917); Novak & Gibbs (1971). For synthetic details, see: Binnewies et al. (2011); Pajączkowska & Majcher (1985, 1986); Pajączkowska et al. (1986). For isotypic structures, see: Andrut & Wildner (2002); Belov et al. (1972); Fursenko (1981); Geller et al. (1960); Golosovskii et al. (1976); Lind & Geller (1969); Prandl (1973); Tauber et al. (1958a,b, 1961); Wildner & Andrut (2001).

Experimental top

MnO, Cr2O3 and GeO2 (molar ratios of 3:1:3; MnO (Riedel-de Haën, rein): 212.8 mg, Cr2O3 (Riedel-de Haën, rein): 152.0 mg, GeO2 (ChemPur, 99.999%): 313.8 mg) and the transporting agent TeCl4 (Alfa-Aesar, 99.9%; 8.5 mg ml-1) were brought into a fused silica ampule (length: 120 mm, inner diameter: 16 mm) and sealed under vacuum. The following transport reaction was conducted within twelve days in a two-zone tube furnace with a temperature gradient of 70 K (T2 = 1293 K, T1 = 1223 K, with the transport direction T2 T1). Subsequent to the cooling to a temperature of 673 K within five hours, ambient temperature was reached by quenching in water. The obtained crystals had a size of up to 4 mm and shapes that are typically observed in garnets, i.e. derived from rhombic dodecahedra with often truncated edges. Larger crystals appear virtually black and opaque while smaller ones are transparent and dark green in color (see Fig. 1).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Dark green crystals of garnet-type MnII3CrIII2(GeO4)3 in the shape of rhombic dodecahedra, often with truncated edges. The photograph shows the crystals as they were grown after twelve days.
[Figure 2] Fig. 2. Overview of the structure of MnII3CrIII2(GeO4)3. For a better understanding only a group of three edge-connected distorted cubes [MnO8], representing the polyhedra about Mn2+, are drawn besides [CrO6] octahedra and [GeO4]4– tetrahedra (displacement ellipsoids are drawn at the 95% probability level).
[Figure 3] Fig. 3. The network of vertex sharing [CrO6] octahedra and [GeO4]4– tetrahedra in the neso germanate Mn3Cr2(GeO4)3 (displacement ellipsoids are drawn at the 95% probability level).
Trimanganese(II) dichromium(III) tris[orthogermanate(IV)] top
Crystal data top
Mn3Cr2(GeO4)3Dx = 5.217 Mg m3
Mr = 678.59Mo Kα radiation, λ = 0.71073 Å
Cubic, Ia3dCell parameters from 6052 reflections
Hall symbol: -I 4bd 2c 3θ = 0.4–40.3°
a = 12.0001 (3) ŵ = 17.01 mm1
V = 1728.04 (7) Å3T = 293 K
Z = 8Truncated rhombic dodecahedron, dark green
F(000) = 25200.18 × 0.15 × 0.09 mm
Data collection top
Nonius KappaCCD
diffractometer
277 independent reflections
Radiation source: fine-focus sealed tube265 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
ω scansθmax = 33.1°, θmin = 4.2°
Absorption correction: numerical
(HABITUS; Herrendorf & Bärnighausen, 1997)
h = 1816
Tmin = 0.063, Tmax = 0.201k = 1815
7635 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0115P)2 + 25.1758P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max < 0.001
S = 1.26Δρmax = 0.63 e Å3
277 reflectionsΔρmin = 0.72 e Å3
18 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0031 (2)
Crystal data top
Mn3Cr2(GeO4)3Z = 8
Mr = 678.59Mo Kα radiation
Cubic, Ia3dµ = 17.01 mm1
a = 12.0001 (3) ÅT = 293 K
V = 1728.04 (7) Å30.18 × 0.15 × 0.09 mm
Data collection top
Nonius KappaCCD
diffractometer
277 independent reflections
Absorption correction: numerical
(HABITUS; Herrendorf & Bärnighausen, 1997)
265 reflections with I > 2σ(I)
Tmin = 0.063, Tmax = 0.201Rint = 0.084
7635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0115P)2 + 25.1758P]
where P = (Fo2 + 2Fc2)/3
S = 1.26Δρmax = 0.63 e Å3
277 reflectionsΔρmin = 0.72 e Å3
18 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.12500.00000.25000.0080 (3)
Cr0.00000.00000.00000.0023 (3)
Ge0.37500.00000.25000.0045 (2)
O0.03061 (17)0.05245 (18)0.65268 (17)0.0065 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0039 (4)0.0100 (3)0.0100 (3)0.0000.0000.0019 (3)
Cr0.0023 (3)0.0023 (3)0.0023 (3)0.00006 (17)0.00006 (17)0.00006 (17)
Ge0.0036 (3)0.0050 (3)0.0050 (3)0.0000.0000.000
O0.0068 (9)0.0082 (9)0.0044 (8)0.0016 (7)0.0018 (7)0.0006 (7)
Geometric parameters (Å, º) top
Mn—Oi2.291 (2)Cr—Oxi1.972 (2)
Mn—Oii2.291 (2)Cr—Oxii1.972 (2)
Mn—Oiii2.291 (2)Cr—Oii1.972 (2)
Mn—Oiv2.291 (2)Ge—Oxiii1.744 (2)
Mn—Ov2.422 (2)Ge—Oiii1.744 (2)
Mn—Ovi2.422 (2)Ge—Oi1.744 (2)
Mn—Ovii2.422 (2)Ge—Oxiv1.744 (2)
Mn—Oviii2.422 (2)O—Gexv1.744 (2)
Cr—Oviii1.972 (2)O—Crx1.972 (2)
Cr—Oix1.972 (2)O—Mniv2.291 (2)
Cr—Ox1.972 (2)O—Mnxvi2.422 (2)
Oi—Mn—Oii112.61 (10)Ov—Mn—Gexvii97.88 (5)
Oi—Mn—Oiii70.78 (10)Ovi—Mn—Gexvii82.12 (5)
Oii—Mn—Oiii160.86 (10)Ovii—Mn—Gexvii82.12 (5)
Oi—Mn—Oiv160.86 (10)Oviii—Mn—Gexvii97.88 (5)
Oii—Mn—Oiv70.78 (10)Oviii—Cr—Oix180.00 (17)
Oiii—Mn—Oiv112.61 (10)Oviii—Cr—Ox93.67 (8)
Oi—Mn—Ov94.58 (6)Oix—Cr—Ox86.33 (8)
Oii—Mn—Ov124.69 (4)Oviii—Cr—Oxi93.67 (8)
Oiii—Mn—Ov72.34 (8)Oix—Cr—Oxi86.33 (8)
Oiv—Mn—Ov69.78 (10)Ox—Cr—Oxi86.33 (8)
Oi—Mn—Ovi124.69 (4)Oviii—Cr—Oxii86.33 (8)
Oii—Mn—Ovi94.58 (6)Oix—Cr—Oxii93.67 (8)
Oiii—Mn—Ovi69.78 (10)Ox—Cr—Oxii93.67 (8)
Oiv—Mn—Ovi72.34 (8)Oxi—Cr—Oxii180.00 (17)
Ov—Mn—Ovi108.41 (10)Oviii—Cr—Oii86.33 (8)
Oi—Mn—Ovii69.78 (10)Oix—Cr—Oii93.67 (8)
Oii—Mn—Ovii72.34 (8)Ox—Cr—Oii180.00 (17)
Oiii—Mn—Ovii124.69 (4)Oxi—Cr—Oii93.67 (8)
Oiv—Mn—Ovii94.58 (6)Oxii—Cr—Oii86.33 (8)
Ov—Mn—Ovii73.85 (10)Oxiii—Ge—Oiii114.93 (7)
Ovi—Mn—Ovii164.23 (10)Oxiii—Ge—Oi114.93 (7)
Oi—Mn—Oviii72.34 (8)Oiii—Ge—Oi99.02 (14)
Oii—Mn—Oviii69.78 (10)Oxiii—Ge—Oxiv99.02 (14)
Oiii—Mn—Oviii94.58 (6)Oiii—Ge—Oxiv114.93 (7)
Oiv—Mn—Oviii124.69 (4)Oi—Ge—Oxiv114.93 (7)
Ov—Mn—Oviii164.23 (10)Oxiii—Ge—Mn130.49 (7)
Ovi—Mn—Oviii73.85 (10)Oiii—Ge—Mn49.51 (7)
Ovii—Mn—Oviii108.41 (10)Oi—Ge—Mn49.51 (7)
Oi—Mn—Ge35.39 (5)Oxiv—Ge—Mn130.49 (7)
Oii—Mn—Ge144.61 (5)Oxiii—Ge—Mnxviii49.51 (7)
Oiii—Mn—Ge35.39 (5)Oiii—Ge—Mnxviii130.49 (7)
Oiv—Mn—Ge144.61 (5)Oi—Ge—Mnxviii130.49 (7)
Ov—Mn—Ge82.12 (5)Oxiv—Ge—Mnxviii49.51 (7)
Ovi—Mn—Ge97.88 (5)Gexv—O—Crx128.90 (11)
Ovii—Mn—Ge97.88 (5)Gexv—O—Mniv95.10 (9)
Oviii—Mn—Ge82.12 (5)Crx—O—Mniv103.54 (9)
Oi—Mn—Gexvii144.61 (5)Gexv—O—Mnxvi122.92 (10)
Oii—Mn—Gexvii35.39 (5)Crx—O—Mnxvi99.02 (8)
Oiii—Mn—Gexvii144.61 (5)Mniv—O—Mnxvi102.43 (8)
Oiv—Mn—Gexvii35.39 (5)
Symmetry codes: (i) x+1/4, z+3/4, y+1/4; (ii) x, y, z1/2; (iii) x+1/4, z3/4, y+1/4; (iv) x, y, z+1; (v) z1/2, x, y+1/2; (vi) z+3/4, y1/4, x+1/4; (vii) z+3/4, y+1/4, x+1/4; (viii) z1/2, x, y; (ix) z+1/2, x, y; (x) x, y, z+1/2; (xi) y, z+1/2, x; (xii) y, z1/2, x; (xiii) x+1/2, y, z+1; (xiv) x+1/2, y, z1/2; (xv) x+1/2, y, z+1/2; (xvi) y, z, x+1/2; (xvii) x1/2, y, z+1/2; (xviii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaMn3Cr2(GeO4)3
Mr678.59
Crystal system, space groupCubic, Ia3d
Temperature (K)293
a (Å)12.0001 (3)
V3)1728.04 (7)
Z8
Radiation typeMo Kα
µ (mm1)17.01
Crystal size (mm)0.18 × 0.15 × 0.09
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionNumerical
(HABITUS; Herrendorf & Bärnighausen, 1997)
Tmin, Tmax0.063, 0.201
No. of measured, independent and
observed [I > 2σ(I)] reflections
7635, 277, 265
Rint0.084
(sin θ/λ)max1)0.768
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.26
No. of reflections277
No. of parameters18
w = 1/[σ2(Fo2) + (0.0115P)2 + 25.1758P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.63, 0.72

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2012), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the state of Baden-Württemberg (Stuttgart) for financial support. This work was also supported by the German Research Foundation (DFG) within the funding program Open Access Publishing.

References

First citationAndrut, M. & Wildner, M. (2002). Phys. Chem. Miner. 29, 595–608.  Web of Science CrossRef CAS Google Scholar
First citationBelov, K. P., Mamsurova, D. G., Mill', B. V. & Sokolov, V. I. (1972). Pis'ma Zh. Eksp. Teor. Fiz. 16, 173–176.  CAS Google Scholar
First citationBinnewies, M., Glaum, R., Schmidt, M. & Schmidt, P. (2011). Chemische Transportreaktionen, 1st ed. Berlin: de Gruyter.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFursenko, B. A. (1981). Bull. Miner. 104, 418–422.  CAS Google Scholar
First citationGeller, S. (1967). Z. Kristallogr. 125, 1–47.  CrossRef CAS Web of Science Google Scholar
First citationGeller, S., Miller, C. E. & Treuting, R. G. (1960). Acta Cryst. 13, 179–186.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGeusic, J. E., Marcos, H. M. & van Uitert, L. G. (1964). Appl. Phys. Lett. 4, 182–184.  CrossRef CAS Web of Science Google Scholar
First citationGolosovskii, I. V., Plakhii, V. P., Smirnov, O. P., Chernenkov, Yu. P., Kovalev, A. V. & Bedrizova, M. N. (1976). Pis'ma Zh. Eksp. Teor. Fiz. 24, 461–464.  CAS Google Scholar
First citationHerrendorf, W. & Bärnighausen, H. (1997). HABITUS. Universities of Karlsruhe and Giessen, Germany.  Google Scholar
First citationLind, M. D. & Geller, S. (1969). Z. Kristallogr. 129, 427–434.  CrossRef CAS Web of Science Google Scholar
First citationMenzer, G. (1925). Centralbl. Mineral. A, pp. 344–345.  Google Scholar
First citationMenzer, G. (1926). Z. Kristallogr. 63, 157–158.  CAS Google Scholar
First citationMenzer, G. (1928). Z. Kristallogr. 69, 300–396.  CAS Google Scholar
First citationNishikawa, Sh. (1917). Proc. Math. Phys. Soc. Tokyo, 9, 194–197.  CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNovak, G. A. & Gibbs, G. V. (1971). Am. Mineral. 56, 791–825.  CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPajączkowska, A., Jasiołek, G. & Majcher, K. (1986). J. Cryst. Growth, 79, 417–420.  Google Scholar
First citationPajączkowska, A. & Majcher, K. (1985). J. Cryst. Growth, 71, 810–812.  Google Scholar
First citationPajączkowska, A. & Majcher, K. (1986). J. Mater. Sci. Lett. 5, 487–488.  Google Scholar
First citationPrandl, W. (1973). Phys. Status Solidi B, 55, K159–K163.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTauber, A., Banks, E. & Kedesdy, H. (1958a). Acta Cryst. 11, 893–894.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationTauber, A., Banks, E. & Kedesdy, H. H. (1958b). J. Appl. Phys. 29, 385–387.  CrossRef CAS Web of Science Google Scholar
First citationTauber, A., Whinfrey, C. G. & Banks, E. (1961). J. Phys. Chem. Solids, 21, 25–32.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWildner, M. & Andrut, M. (2001). Am. Mineral. 86, 1231–1251.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds