metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{S-benzyl 3-[(6-methyl­pyridin-2-yl)methyl­­idene]di­thio­carbazato}nickel(II)

aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
*Correspondence e-mail: thahira.begum@science.upm.edu.my

(Received 16 April 2012; accepted 19 April 2012; online 25 April 2012)

The asymmetric unit of the title compound, [Ni(C15H14N3S2)2], consists of two independent mol­ecules with similar configurations. Each Ni2+ cation is coordinated in a cis-mode by two tridentate N,N′,S-chelating Schiff base ligands, creating a distorted octa­hedron [the smallest angle being 77.57 (7)° and the widest being 168.97 (7)° for one mol­ecule, and 78.04 (7) and 167.55 (7)° for the second mol­ecule]. The dihedral angle between the mean coordination planes of the two ligands is 86.76 (7)° for one and 89.99 (7)° for the second mol­ecule. ππ inter­actions between neighbouring pyridine rings with plane-to-plane distances of 3.540 (1) and 3.704 (1) Å are observed.

Related literature

For background to the coordination chemistry of hydrazine carbodithio­ates, see: Ravoof et al. (2010[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871-876.]). For the synthesis, see: Ravoof et al. (2004[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., Cowley, A. R. & Ali, M. A. (2004). Polyhedron, 23(16), 2491-2498.]). For related structures, see: Ali et al. (1997[Ali, M. A., Majumder, S. M. M., Butcher, R. J., Jasinski, J. P. & Jasinski, J. M. (1997). Polyhedron, 16, 2749-2754.], 1999[Ali, M. A., Butcher, R. J. & Bryan, J. C. (1999). Inorg. Chim. Acta, 287, 8-13.]); Omar et al. (2012[Omar, S. A., Ravoof, T. B. S. A., Mohamed Tahir, M. I. & Crouse, K. A. (2012). Acta Cryst. E68, m316-m317.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C15H14N3S2)2]

  • Mr = 659.57

  • Triclinic, [P \overline 1]

  • a = 12.3544 (9) Å

  • b = 15.6411 (6) Å

  • c = 16.9333 (10) Å

  • α = 69.520 (5)°

  • β = 87.516 (5)°

  • γ = 89.446 (5)°

  • V = 3062.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 150 K

  • 0.16 × 0.13 × 0.11 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.88, Tmax = 0.90

  • 23348 measured reflections

  • 13743 independent reflections

  • 11306 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.087

  • S = 0.97

  • 13696 reflections

  • 739 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N202 2.0139 (18)
Ni1—N102 2.0173 (17)
Ni1—N115 2.1761 (18)
Ni1—N215 2.1881 (18)
Ni1—S105 2.4062 (6)
Ni1—S205 2.4158 (6)
Ni2—N302 2.0085 (18)
Ni2—N402 2.0156 (18)
Ni2—N315 2.1604 (17)
Ni2—N415 2.1770 (18)
Ni2—S405 2.4202 (6)
Ni2—S305 2.4263 (6)

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The title compound, [Ni(C15H14N3S2)2], was preferentially formed by elimination of the saccharinate anion from nickel(II) saccharinate during an attempt to introduce S-benzyl-beta-N-(6-methylpyrid-2-yl) methylenedithiocarbazate (for details see experimental part). More background on the coordination chemistry of hydrazine carbodithioates is given by Ravoof et al. (2010).

In the structure of the title compound two independent molecules are in the asymmetric unit with similar configurations. The Ni2+ cations are coordinated by two tridentate ligands in form of distorted NiN4S2 octahedra with angles varying from 77.57 (7)° to 168.97 (7)°. The ligands are coordinating to the Ni2+ ions in their deprotonated mercaptide forms via the pyridine nitrogen atoms, the azomethine nitrogen atoms and the thiolate sulfur atoms. The deprotonation of the ligands is accompanied by their tautomerism to the iminothiolate forms. While coordinating in the iminothiolate form, the negative charge generated upon deprotonation is delocalized in the C—N—N—C system as observed by their intermediate bond lengths C(1-4)04—N(1-4)03 = 1.310 (3) to 1.314 (3) Å, N(1-4)03—N(1-4)02 = 1.382 (3) to 1.391 (3) Å and N(1-4)02—C(1-4)01 = 1.285 (3) to 1.289 (3) Å. Similar bond angles and bond lengths have been observed in the monohydrate Ni(II) complex of the same 6-methylpyridine-2-aldehyde Schiff base with C—N bonds ranging from 1.281 (3) Å to 1.358 (3) Å and N—N bonds ranging from 1.379 (2) to 1.386 (2) Å (Omar et al., 2012)

The two ligands coordinate to the nickel(II) ion in a cis mode (Fig. 1). Similar configurations have been observed in other bis-ligand metal complexes of related NNS-tridentate ligands (Ali et al., 1997, 1999). The angle between the planes defined by S205—C204—N203—N202—C201—C214—N215 (minimum deviation from the mean plane: 0.003 Å and maximum deviation 0.04 Å), and S105—C104—N103—N102—C101—C114—N115 (0.001 and 0.094 Å) is 86.76 (7)°. The angle between the corresponding planes in the molecule containing Ni2 is perfectly orthogonal with a value of 89.99 (7)°.

The bond lengths Ni1—S [2.4062 (6) – 2.4263 (6) Å], Ni1—Npy [2.1604 (17)—2.1881 (18) Å] and Ni1—Nimine [2.0085 (18)—2.0173 (17) Å] compare well with related complexes with octahedrally coordinated Ni2+ cations containing 6-methylpyridine-2-aldehyde Schiff bases of SR-dithiocarbazate (R = methyl or benzyl), where Ni—S bond lengths of 2.420 (6)–2.426 (5) Å, Ni-Npy bond lengths of 2.166 (2)–2.179 (2) Å and Ni-Nimine bond lengths of 2.016 (2)–2.019 (2) Å are observed (Omar et al., 2012; Ali et al., 1997, 1999).

None of the bond angles in the complex conform to the ideal values expected of a regular octahedral geometry, a trend that was observed in other related complexes indicating that distortion from ideal octahedral geometry is a common phenomenon in six-coordinate metal complexes of Schiff base ligands derived from dithiocarbazic acid and thiosemicarbazone ligands (Ali et al., 1997).

The packing of the structure (Fig. 2) is dominated by ππ interactions between neighbouring pyridine rings with plane-to-plane distances of 3.540 (1) and 3.704 (1) Å.

Related literature top

For background to the coordination chemistry of hydrazine carbodithioates, see: Ravoof et al. (2010). For the synthesis, see: Ravoof et al. (2004). For related structures, see: Ali et al. (1997, 1999); Omar et al. (2012).

Experimental top

Nickel(II) saccharinate, [Ni(sac)2(H2O)4].2H2O was prepared using a similar procedure used for the synthesis of Cu(II) saccharinate] (Ravoof et al., 2004). The 6-methyl-2-pyridine carboxaldehyde Schiff base of S-benzyldithiocarbazate was synthesized following the procedure given by Ali et al. (1997). [Ni(sac)2(H2O)4].2H2O (0.001 mol) was dissolved in ethanol (25 ml) and was mixed with a solution of the appropriate Schiff base (0.001 mol) in ethanol (50 ml). The resulting mixture was heated on a water bath until the volume reduced to 30 ml. On standing overnight, the mixture yielded crystals which were filtered off, washed with ethanol and dried in a desiccator over anhydrous silica gel. Upon recrystallization from acetonitrile, the solution yielded blackish green crystals suitable for X-ray analysis.

Refinement top

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 Å) and Uiso(H)(in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. Only one of the molecules in the asymmetric unit is shown.
[Figure 2] Fig. 2. Molecular packing diagram of the title compound viewed along the a axis. Hydrogen atoms are omitted for clarity.
Bis{S-benzyl 3-[(6-methylpyridin-2-yl)methylidene]dithiocarbazato}nickel(II) top
Crystal data top
[Ni(C15H14N3S2)2]Z = 4
Mr = 659.57F(000) = 1368
Triclinic, P1Dx = 1.430 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.3544 (9) ÅCell parameters from 10517 reflections
b = 15.6411 (6) Åθ = 2–29°
c = 16.9333 (10) ŵ = 0.94 mm1
α = 69.520 (5)°T = 150 K
β = 87.516 (5)°Plate, green–black
γ = 89.446 (5)°0.16 × 0.13 × 0.11 mm
V = 3062.4 (3) Å3
Data collection top
Oxford Diffraction Gemini
diffractometer
11306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 28.8°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 1416
Tmin = 0.88, Tmax = 0.90k = 2020
23348 measured reflectionsl = 1922
13743 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.087 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.03P)2 + 1.88P],
where P = (max(Fo2,0) + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
13696 reflectionsΔρmax = 0.52 e Å3
739 parametersΔρmin = 0.51 e Å3
0 restraints
Crystal data top
[Ni(C15H14N3S2)2]γ = 89.446 (5)°
Mr = 659.57V = 3062.4 (3) Å3
Triclinic, P1Z = 4
a = 12.3544 (9) ÅMo Kα radiation
b = 15.6411 (6) ŵ = 0.94 mm1
c = 16.9333 (10) ÅT = 150 K
α = 69.520 (5)°0.16 × 0.13 × 0.11 mm
β = 87.516 (5)°
Data collection top
Oxford Diffraction Gemini
diffractometer
13743 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
11306 reflections with I > 2σ(I)
Tmin = 0.88, Tmax = 0.90Rint = 0.035
23348 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 0.97Δρmax = 0.52 e Å3
13696 reflectionsΔρmin = 0.51 e Å3
739 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A. M., 1986. J. Appl. Cryst. 105–107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.12017 (2)0.224568 (18)0.553643 (17)0.0162
Ni20.61915 (2)0.219821 (18)0.928595 (17)0.0174
C1011.24970 (17)0.22929 (14)0.40808 (14)0.0187
N1021.24657 (14)0.26047 (12)0.46896 (11)0.0170
N1031.33713 (14)0.30674 (12)0.47823 (12)0.0198
C1041.32700 (17)0.33182 (14)0.54446 (14)0.0181
S1051.21898 (4)0.31606 (4)0.61479 (4)0.0203
S1061.44856 (5)0.38628 (4)0.55348 (4)0.0282
C1071.4177 (2)0.43003 (19)0.63824 (17)0.0330
C1081.51814 (18)0.42759 (16)0.68628 (15)0.0234
C1091.5573 (2)0.34505 (16)0.73939 (16)0.0294
C1101.6484 (2)0.34216 (18)0.78491 (16)0.0334
C1111.7012 (2)0.42240 (19)0.77766 (16)0.0328
C1121.6632 (2)0.50489 (17)0.72499 (16)0.0305
C1131.57170 (19)0.50737 (16)0.67944 (15)0.0264
C1141.15435 (17)0.17925 (14)0.39935 (14)0.0184
N1151.07218 (14)0.16983 (12)0.45855 (11)0.0179
C1160.98108 (18)0.12688 (14)0.45174 (14)0.0212
C1170.97130 (19)0.09107 (15)0.38745 (15)0.0261
C1181.0556 (2)0.09912 (16)0.32930 (15)0.0281
C1191.14910 (19)0.14487 (15)0.33469 (14)0.0237
C1200.88963 (19)0.11928 (18)0.51433 (16)0.0309
C2010.93232 (18)0.22883 (15)0.65720 (14)0.0226
N2021.01608 (14)0.18004 (12)0.65462 (11)0.0192
N2031.03247 (15)0.10453 (12)0.72600 (11)0.0213
C2041.12170 (17)0.06187 (14)0.71794 (13)0.0184
S2051.21361 (4)0.08743 (4)0.63423 (3)0.0195
S2061.15372 (5)0.03460 (4)0.80431 (4)0.0238
C2071.0465 (2)0.03433 (18)0.88156 (15)0.0311
C2081.07025 (18)0.10703 (16)0.96397 (15)0.0245
C2091.0385 (2)0.19663 (18)0.98112 (17)0.0332
C2101.0589 (2)0.26306 (18)1.05803 (19)0.0395
C2111.1103 (2)0.23981 (19)1.11871 (17)0.0396
C2121.1437 (2)0.1512 (2)1.10169 (16)0.0384
C2131.1249 (2)0.08537 (18)1.02436 (16)0.0302
C2140.91452 (18)0.30912 (15)0.58346 (14)0.0223
N2150.99131 (14)0.32631 (12)0.51951 (11)0.0191
C2160.97919 (19)0.40004 (15)0.45035 (14)0.0233
C2170.8910 (2)0.45799 (16)0.44331 (16)0.0306
C2180.8139 (2)0.44024 (17)0.50790 (17)0.0337
C2190.8249 (2)0.36452 (17)0.57980 (16)0.0300
C2201.0647 (2)0.41814 (17)0.38081 (15)0.0306
C3010.41885 (18)0.17359 (16)0.84699 (15)0.0236
N3020.51384 (14)0.14061 (12)0.84787 (11)0.0190
N3030.53850 (15)0.05580 (12)0.78730 (12)0.0231
C3040.63767 (18)0.02988 (14)0.79341 (14)0.0202
S3050.73372 (5)0.08661 (4)0.86234 (4)0.0240
S3060.68046 (5)0.07864 (4)0.72420 (4)0.0289
C3070.5694 (2)0.11920 (16)0.65294 (15)0.0283
C3080.58840 (18)0.10579 (15)0.56976 (15)0.0232
C3090.62070 (17)0.02120 (15)0.56667 (15)0.0232
C3100.63576 (18)0.00845 (17)0.49040 (16)0.0271
C3110.61756 (19)0.07902 (18)0.41605 (16)0.0310
C3120.5841 (2)0.16278 (18)0.41823 (16)0.0350
C3130.5701 (2)0.17619 (16)0.49494 (16)0.0295
C3140.39307 (18)0.26258 (16)0.91029 (14)0.0228
N3150.47294 (14)0.30143 (12)0.96410 (11)0.0196
C3160.45432 (18)0.38407 (15)1.02323 (14)0.0229
C3170.3556 (2)0.42943 (17)1.02960 (16)0.0302
C3180.2753 (2)0.38965 (19)0.97532 (17)0.0357
C3190.2935 (2)0.30439 (18)0.91437 (16)0.0329
C3200.5417 (2)0.42539 (16)1.08248 (16)0.0298
C4010.77504 (18)0.27479 (15)1.05556 (14)0.0220
N4020.74818 (14)0.28841 (12)0.98833 (11)0.0188
N4030.82005 (14)0.33770 (12)0.95551 (12)0.0209
C4040.78566 (17)0.34309 (14)0.88505 (14)0.0192
S4050.66807 (4)0.30251 (4)0.83542 (4)0.0217
S4060.86870 (5)0.39769 (4)0.83081 (4)0.0260
C4070.99658 (19)0.41463 (19)0.88374 (15)0.0304
C4081.08930 (18)0.40465 (16)0.82007 (15)0.0231
C4091.1586 (2)0.47663 (18)0.82676 (17)0.0336
C4101.2456 (2)0.4667 (2)0.76938 (19)0.0450
C4111.2633 (2)0.3847 (2)0.7050 (2)0.0476
C4121.1951 (2)0.3128 (2)0.69777 (19)0.0430
C4131.1083 (2)0.32230 (17)0.75497 (17)0.0316
C4140.70273 (18)0.22005 (15)1.08827 (14)0.0213
N4150.61173 (14)0.18980 (12)1.04492 (11)0.0189
C4160.54162 (18)0.13981 (15)1.07363 (14)0.0209
C4170.5635 (2)0.11748 (15)1.14437 (15)0.0258
C4180.6563 (2)0.14756 (16)1.18746 (15)0.0275
C4190.72743 (19)0.20058 (16)1.15916 (15)0.0255
C4200.43978 (19)0.10927 (17)1.02746 (16)0.0274
H10111.31000.23760.37050.0218*
H10721.39220.49400.61330.0421*
H10711.35950.39170.67380.0413*
H10911.52100.28970.74510.0348*
H11011.67530.28540.82130.0398*
H11111.76450.42060.80930.0389*
H11211.69890.55950.72090.0368*
H11311.54490.56530.64250.0325*
H11710.90450.06160.38480.0312*
H11811.04950.07250.28550.0342*
H11911.20860.15320.29480.0291*
H12020.83490.08020.50730.0462*
H12010.91320.09340.57160.0460*
H12030.85940.17950.50470.0461*
H20110.88390.21250.70520.0276*
H20721.04780.02580.88750.0392*
H20710.97780.04660.86060.0391*
H20910.99990.21190.94040.0417*
H21011.03680.32381.06830.0477*
H21111.12190.28511.17190.0486*
H21211.17840.13461.14360.0463*
H21311.14820.02371.01240.0381*
H21710.88570.50960.39260.0370*
H21810.75410.47950.50340.0418*
H21910.77150.34880.62620.0367*
H22021.04770.47200.33490.0482*
H22011.13400.42590.40140.0487*
H22031.07030.36780.36040.0480*
H30110.36700.14010.80670.0297*
H30720.56180.18430.64330.0349*
H30710.50170.08740.68080.0346*
H30910.63210.02760.61830.0286*
H31010.65750.05050.48990.0321*
H31110.62670.06960.36410.0389*
H31210.57080.21240.36730.0426*
H31310.54670.23440.49730.0374*
H31710.34500.48821.07210.0364*
H31810.20830.42080.98090.0415*
H31910.23860.27450.87590.0412*
H32020.51960.48521.11870.0452*
H32010.55680.38851.11540.0457*
H32030.60680.42981.05120.0448*
H40110.84080.29981.08390.0276*
H40720.99800.47510.92840.0388*
H40711.00300.36760.90900.0385*
H40911.14630.53440.87170.0420*
H41011.29220.51610.77490.0549*
H41111.32120.37880.66560.0560*
H41211.20700.25650.65360.0518*
H41311.06300.27160.74930.0391*
H41710.51260.08221.16280.0322*
H41810.67080.13191.23470.0350*
H41910.79250.22461.18800.0334*
H42020.39780.07331.05370.0416*
H42010.39840.16251.03030.0404*
H42030.45630.07240.96930.0401*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01624 (14)0.01809 (14)0.01484 (14)0.00187 (10)0.00013 (11)0.00648 (11)
Ni20.01612 (14)0.02080 (14)0.01658 (14)0.00033 (11)0.00106 (11)0.00804 (12)
C1010.0200 (11)0.0201 (10)0.0169 (11)0.0011 (8)0.0025 (9)0.0079 (9)
N1020.0164 (9)0.0185 (9)0.0160 (9)0.0023 (7)0.0016 (7)0.0057 (8)
N1030.0176 (9)0.0211 (9)0.0225 (10)0.0059 (7)0.0010 (8)0.0097 (8)
C1040.0181 (11)0.0160 (10)0.0207 (11)0.0001 (8)0.0054 (9)0.0065 (9)
S1050.0217 (3)0.0228 (3)0.0195 (3)0.0022 (2)0.0007 (2)0.0110 (2)
S1060.0221 (3)0.0372 (3)0.0338 (3)0.0084 (2)0.0006 (3)0.0229 (3)
C1070.0255 (13)0.0455 (15)0.0424 (16)0.0034 (11)0.0090 (11)0.0326 (14)
C1080.0220 (11)0.0308 (12)0.0213 (12)0.0045 (9)0.0000 (9)0.0141 (10)
C1090.0322 (13)0.0245 (12)0.0330 (14)0.0068 (10)0.0025 (11)0.0123 (11)
C1100.0363 (15)0.0329 (14)0.0267 (13)0.0060 (11)0.0033 (11)0.0051 (12)
C1110.0262 (13)0.0497 (16)0.0287 (13)0.0013 (12)0.0072 (11)0.0209 (13)
C1120.0284 (13)0.0356 (14)0.0338 (14)0.0105 (11)0.0001 (11)0.0198 (12)
C1130.0330 (13)0.0254 (12)0.0223 (12)0.0035 (10)0.0032 (10)0.0098 (10)
C1140.0212 (11)0.0168 (10)0.0177 (11)0.0000 (8)0.0030 (9)0.0065 (9)
N1150.0196 (9)0.0174 (9)0.0175 (9)0.0016 (7)0.0025 (7)0.0067 (8)
C1160.0218 (11)0.0175 (10)0.0214 (11)0.0016 (9)0.0050 (9)0.0025 (9)
C1170.0269 (12)0.0241 (12)0.0284 (13)0.0070 (10)0.0076 (10)0.0095 (11)
C1180.0362 (14)0.0262 (12)0.0252 (12)0.0032 (10)0.0081 (11)0.0124 (11)
C1190.0302 (13)0.0224 (11)0.0192 (11)0.0027 (9)0.0006 (10)0.0079 (10)
C1200.0238 (12)0.0378 (14)0.0333 (14)0.0097 (11)0.0001 (11)0.0151 (12)
C2010.0193 (11)0.0285 (12)0.0192 (11)0.0021 (9)0.0027 (9)0.0078 (10)
N2020.0177 (9)0.0211 (9)0.0175 (9)0.0011 (7)0.0013 (7)0.0051 (8)
N2030.0227 (10)0.0215 (9)0.0153 (9)0.0011 (8)0.0002 (8)0.0009 (8)
C2040.0194 (11)0.0202 (10)0.0158 (10)0.0023 (8)0.0005 (9)0.0065 (9)
S2050.0197 (3)0.0206 (3)0.0185 (3)0.0005 (2)0.0016 (2)0.0074 (2)
S2060.0234 (3)0.0244 (3)0.0193 (3)0.0040 (2)0.0010 (2)0.0025 (2)
C2070.0259 (13)0.0417 (15)0.0180 (12)0.0081 (11)0.0028 (10)0.0014 (11)
C2080.0191 (11)0.0298 (12)0.0200 (11)0.0032 (9)0.0032 (9)0.0037 (10)
C2090.0293 (13)0.0369 (14)0.0316 (14)0.0003 (11)0.0007 (11)0.0100 (12)
C2100.0332 (15)0.0271 (13)0.0463 (17)0.0006 (11)0.0078 (13)0.0007 (13)
C2110.0332 (15)0.0447 (16)0.0244 (13)0.0103 (12)0.0009 (11)0.0085 (13)
C2120.0356 (15)0.0555 (18)0.0212 (13)0.0065 (13)0.0058 (11)0.0095 (13)
C2130.0309 (13)0.0332 (13)0.0252 (13)0.0015 (11)0.0022 (11)0.0091 (11)
C2140.0213 (11)0.0254 (12)0.0208 (11)0.0014 (9)0.0005 (9)0.0089 (10)
N2150.0202 (9)0.0203 (9)0.0171 (9)0.0000 (7)0.0031 (8)0.0065 (8)
C2160.0292 (12)0.0213 (11)0.0199 (11)0.0001 (9)0.0041 (10)0.0073 (10)
C2170.0375 (14)0.0255 (12)0.0275 (13)0.0094 (10)0.0077 (11)0.0070 (11)
C2180.0346 (14)0.0329 (14)0.0352 (15)0.0155 (11)0.0066 (12)0.0137 (12)
C2190.0270 (13)0.0351 (14)0.0283 (13)0.0081 (10)0.0007 (11)0.0122 (12)
C2200.0386 (15)0.0284 (13)0.0201 (12)0.0045 (11)0.0004 (11)0.0028 (11)
C3010.0183 (11)0.0306 (12)0.0225 (12)0.0028 (9)0.0032 (9)0.0100 (10)
N3020.0190 (9)0.0210 (9)0.0171 (9)0.0006 (7)0.0005 (7)0.0068 (8)
N3030.0264 (10)0.0218 (9)0.0187 (10)0.0005 (8)0.0010 (8)0.0042 (8)
C3040.0252 (12)0.0200 (11)0.0169 (11)0.0018 (9)0.0022 (9)0.0085 (9)
S3050.0213 (3)0.0259 (3)0.0241 (3)0.0049 (2)0.0021 (2)0.0075 (3)
S3060.0362 (3)0.0235 (3)0.0250 (3)0.0068 (2)0.0009 (3)0.0061 (3)
C3070.0351 (14)0.0244 (12)0.0232 (12)0.0073 (10)0.0011 (11)0.0062 (11)
C3080.0200 (11)0.0248 (12)0.0238 (12)0.0011 (9)0.0028 (9)0.0078 (10)
C3090.0199 (11)0.0237 (11)0.0248 (12)0.0001 (9)0.0021 (9)0.0072 (10)
C3100.0212 (12)0.0302 (13)0.0318 (13)0.0007 (10)0.0033 (10)0.0137 (11)
C3110.0266 (13)0.0451 (15)0.0247 (13)0.0033 (11)0.0029 (10)0.0168 (12)
C3120.0338 (14)0.0392 (15)0.0239 (13)0.0018 (11)0.0009 (11)0.0008 (12)
C3130.0319 (13)0.0240 (12)0.0276 (13)0.0029 (10)0.0035 (11)0.0033 (11)
C3140.0195 (11)0.0299 (12)0.0205 (11)0.0029 (9)0.0002 (9)0.0107 (10)
N3150.0197 (9)0.0228 (9)0.0191 (9)0.0027 (7)0.0027 (8)0.0110 (8)
C3160.0260 (12)0.0252 (11)0.0207 (11)0.0025 (9)0.0042 (10)0.0128 (10)
C3170.0365 (14)0.0308 (13)0.0242 (13)0.0109 (11)0.0053 (11)0.0111 (11)
C3180.0302 (14)0.0455 (16)0.0322 (14)0.0195 (12)0.0042 (12)0.0146 (13)
C3190.0234 (13)0.0471 (16)0.0297 (14)0.0096 (11)0.0031 (11)0.0149 (13)
C3200.0313 (13)0.0270 (12)0.0276 (13)0.0031 (10)0.0029 (11)0.0057 (11)
C4010.0206 (11)0.0273 (12)0.0197 (11)0.0017 (9)0.0044 (9)0.0098 (10)
N4020.0189 (9)0.0207 (9)0.0172 (9)0.0001 (7)0.0005 (7)0.0073 (8)
N4030.0196 (9)0.0249 (10)0.0209 (10)0.0022 (7)0.0003 (8)0.0117 (8)
C4040.0184 (11)0.0192 (10)0.0212 (11)0.0043 (8)0.0046 (9)0.0090 (9)
S4050.0198 (3)0.0288 (3)0.0196 (3)0.0009 (2)0.0008 (2)0.0123 (2)
S4060.0205 (3)0.0367 (3)0.0281 (3)0.0005 (2)0.0018 (2)0.0210 (3)
C4070.0258 (13)0.0430 (15)0.0222 (12)0.0081 (11)0.0022 (10)0.0115 (12)
C4080.0196 (11)0.0305 (12)0.0223 (12)0.0038 (9)0.0042 (9)0.0131 (10)
C4090.0368 (15)0.0308 (13)0.0342 (14)0.0101 (11)0.0020 (12)0.0129 (12)
C4100.0362 (16)0.0568 (19)0.0494 (18)0.0220 (14)0.0018 (14)0.0283 (16)
C4110.0249 (14)0.076 (2)0.0441 (18)0.0031 (14)0.0080 (13)0.0248 (17)
C4120.0310 (15)0.0505 (17)0.0374 (16)0.0073 (13)0.0033 (13)0.0031 (14)
C4130.0244 (13)0.0306 (13)0.0360 (15)0.0050 (10)0.0042 (11)0.0069 (12)
C4140.0242 (12)0.0232 (11)0.0177 (11)0.0018 (9)0.0004 (9)0.0088 (10)
N4150.0211 (9)0.0197 (9)0.0175 (9)0.0015 (7)0.0005 (8)0.0085 (8)
C4160.0227 (11)0.0195 (11)0.0201 (11)0.0018 (9)0.0038 (9)0.0068 (10)
C4170.0336 (13)0.0230 (12)0.0223 (12)0.0011 (10)0.0073 (10)0.0108 (10)
C4180.0365 (14)0.0286 (12)0.0221 (12)0.0046 (10)0.0004 (11)0.0148 (11)
C4190.0273 (12)0.0303 (12)0.0204 (12)0.0014 (10)0.0039 (10)0.0103 (10)
C4200.0251 (12)0.0316 (13)0.0280 (13)0.0063 (10)0.0015 (10)0.0136 (11)
Geometric parameters (Å, º) top
Ni1—N2022.0139 (18)C218—C2191.380 (4)
Ni1—N1022.0173 (17)C218—H21810.945
Ni1—N1152.1761 (18)C219—H21910.968
Ni1—N2152.1881 (18)C220—H22020.954
Ni1—S1052.4062 (6)C220—H22010.963
Ni1—S2052.4158 (6)C220—H22030.965
Ni2—N3022.0085 (18)C301—N3021.289 (3)
Ni2—N4022.0156 (18)C301—C3141.457 (3)
Ni2—N3152.1604 (17)C301—H30110.965
Ni2—N4152.1770 (18)N302—N3031.390 (2)
Ni2—S4052.4202 (6)N303—C3041.314 (3)
Ni2—S3052.4263 (6)C304—S3051.712 (2)
C101—N1021.285 (3)C304—S3061.762 (2)
C101—C1141.461 (3)S306—C3071.826 (3)
C101—H10110.938C307—C3081.504 (3)
N102—N1031.382 (2)C307—H30720.977
N103—C1041.312 (3)C307—H30710.989
C104—S1051.710 (2)C308—C3091.396 (3)
C104—S1061.772 (2)C308—C3131.383 (3)
S106—C1071.819 (2)C309—C3101.379 (3)
C107—C1081.506 (3)C309—H30910.952
C107—H10720.994C310—C3111.379 (4)
C107—H10710.978C310—H31010.960
C108—C1091.387 (3)C311—C3121.382 (4)
C108—C1131.384 (3)C311—H31110.943
C109—C1101.383 (4)C312—C3131.390 (4)
C109—H10910.952C312—H31210.956
C110—C1111.385 (4)C313—H31310.967
C110—H11010.953C314—N3151.361 (3)
C111—C1121.378 (4)C314—C3191.386 (3)
C111—H11110.962N315—C3161.344 (3)
C112—C1131.389 (3)C316—C3171.398 (3)
C112—H11210.945C316—C3201.489 (3)
C113—H11310.968C317—C3181.372 (4)
C114—N1151.367 (3)C317—H31710.955
C114—C1191.382 (3)C318—C3191.384 (4)
N115—C1161.346 (3)C318—H31810.950
C116—C1171.398 (3)C319—H31910.960
C116—C1201.492 (3)C320—H32020.956
C117—C1181.377 (3)C320—H32010.957
C117—H11710.960C320—H32030.959
C118—C1191.388 (3)C401—N4021.287 (3)
C118—H11810.976C401—C4141.453 (3)
C119—H11910.954C401—H40110.969
C120—H12020.954N402—N4031.391 (2)
C120—H12010.968N403—C4041.314 (3)
C120—H12030.972C404—S4051.713 (2)
C201—N2021.288 (3)C404—S4061.754 (2)
C201—C2141.451 (3)S406—C4071.822 (2)
C201—H20110.949C407—C4081.509 (3)
N202—N2031.384 (2)C407—H40720.983
N203—C2041.310 (3)C407—H40710.977
C204—S2051.712 (2)C408—C4091.384 (3)
C204—S2061.751 (2)C408—C4131.385 (3)
S206—C2071.822 (2)C409—C4101.389 (4)
C207—C2081.499 (3)C409—H40910.964
C207—H20720.981C410—C4111.374 (4)
C207—H20710.979C410—H41010.940
C208—C2091.385 (3)C411—C4121.373 (4)
C208—C2131.387 (3)C411—H41110.938
C209—C2101.384 (4)C412—C4131.387 (4)
C209—H20910.952C412—H41210.942
C210—C2111.383 (4)C413—H41310.945
C210—H21010.945C414—N4151.358 (3)
C211—C2121.377 (4)C414—C4191.384 (3)
C211—H21110.947N415—C4161.347 (3)
C212—C2131.381 (4)C416—C4171.397 (3)
C212—H21210.955C416—C4201.495 (3)
C213—H21310.958C417—C4181.374 (3)
C214—N2151.363 (3)C417—H41710.945
C214—C2191.389 (3)C418—C4191.385 (3)
N215—C2161.338 (3)C418—H41810.940
C216—C2171.393 (3)C419—H41910.963
C216—C2201.499 (3)C420—H42020.966
C217—C2181.372 (4)C420—H42010.967
C217—H21710.955C420—H42030.966
N102—Ni1—S10581.31 (5)N215—C216—C217121.4 (2)
N102—Ni1—N11577.81 (7)N215—C216—C220117.4 (2)
S105—Ni1—N115158.24 (5)C217—C216—C220121.2 (2)
N102—Ni1—N202168.97 (7)C216—C217—C218120.2 (2)
S105—Ni1—N20292.19 (5)C216—C217—H2171118.3
N115—Ni1—N202109.38 (7)C218—C217—H2171121.5
N102—Ni1—S20590.23 (5)C217—C218—C219119.3 (2)
S105—Ni1—S20592.23 (2)C217—C218—H2181120.4
N115—Ni1—S20593.91 (5)C219—C218—H2181120.3
N202—Ni1—S20581.07 (5)C214—C219—C218118.1 (2)
N102—Ni1—N215111.26 (7)C214—C219—H2191120.1
S105—Ni1—N21590.90 (5)C218—C219—H2191121.9
N115—Ni1—N21590.98 (7)C216—C220—H2202110.1
N202—Ni1—N21577.57 (7)C216—C220—H2201109.8
S205—Ni1—N215158.51 (5)H2202—C220—H2201109.4
C301—Ni2—N30223.57 (7)C216—C220—H2203111.0
C301—Ni2—S305104.59 (5)H2202—C220—H2203108.6
N302—Ni2—S30581.02 (5)H2201—C220—H2203107.9
C301—Ni2—N31554.81 (7)Ni2—C301—N30238.54 (11)
N302—Ni2—N31578.22 (7)Ni2—C301—C31478.61 (13)
S305—Ni2—N315158.61 (5)N302—C301—C314117.0 (2)
C301—Ni2—C401161.92 (6)Ni2—C301—H3011159.5
N302—Ni2—C401159.86 (7)N302—C301—H3011121.2
S305—Ni2—C40185.91 (5)C314—C301—H3011121.8
N315—Ni2—C401112.53 (7)C301—N302—Ni2117.89 (15)
C301—Ni2—N402163.65 (7)C301—N302—N303116.97 (19)
N302—Ni2—N402167.55 (7)Ni2—N302—N303124.87 (13)
S305—Ni2—N40289.45 (5)N302—N303—C304111.56 (18)
N315—Ni2—N402111.81 (7)N303—C304—S305128.80 (17)
C401—Ni2—N40223.66 (7)N303—C304—S306117.58 (17)
C301—Ni2—S40588.81 (5)S305—C304—S306113.61 (12)
N302—Ni2—S40592.60 (5)C304—S305—Ni293.50 (7)
S305—Ni2—S40598.26 (2)C304—S306—C307104.61 (11)
N315—Ni2—S40587.84 (5)S306—C307—C308113.51 (16)
C401—Ni2—S405104.45 (5)S306—C307—H3072106.5
C301—Ni2—N415109.80 (7)C308—C307—H3072109.5
N302—Ni2—N415109.71 (7)S306—C307—H3071109.2
S305—Ni2—N41589.78 (5)C308—C307—H3071109.2
N315—Ni2—N41592.36 (7)H3072—C307—H3071108.9
C401—Ni2—N41554.71 (7)C307—C308—C309120.7 (2)
N402—Ni2—S40580.79 (5)C307—C308—C313120.5 (2)
N402—Ni2—N41578.04 (7)C309—C308—C313118.8 (2)
S405—Ni2—N415157.26 (5)C308—C309—C310120.6 (2)
N102—C101—C114117.05 (19)C308—C309—H3091118.7
N102—C101—H1011122.4C310—C309—H3091120.6
C114—C101—H1011120.5C309—C310—C311120.3 (2)
C101—N102—Ni1118.27 (14)C309—C310—H3101119.2
C101—N102—N103117.29 (17)C311—C310—H3101120.6
Ni1—N102—N103123.88 (13)C310—C311—C312119.7 (2)
N102—N103—C104112.09 (17)C310—C311—H3111119.9
N103—C104—S105128.50 (16)C312—C311—H3111120.4
N103—C104—S106108.80 (15)C311—C312—C313120.2 (2)
S105—C104—S106122.69 (13)C311—C312—H3121120.8
C104—S105—Ni193.62 (7)C313—C312—H3121119.0
C104—S106—C107104.23 (11)C312—C313—C308120.4 (2)
S106—C107—C108109.55 (17)C312—C313—H3131121.0
S106—C107—H1072108.7C308—C313—H3131118.6
C108—C107—H1072109.7C301—C314—N315115.65 (18)
S106—C107—H1071106.8C301—C314—C319121.6 (2)
C108—C107—H1071112.3N315—C314—C319122.8 (2)
H1072—C107—H1071109.7C314—N315—Ni2110.73 (14)
C107—C108—C109120.2 (2)C314—N315—C316118.35 (18)
C107—C108—C113120.8 (2)Ni2—N315—C316130.60 (15)
C109—C108—C113118.9 (2)N315—C316—C317121.1 (2)
C108—C109—C110120.7 (2)N315—C316—C320117.90 (19)
C108—C109—H1091119.9C317—C316—C320121.0 (2)
C110—C109—H1091119.4C316—C317—C318120.2 (2)
C109—C110—C111119.8 (2)C316—C317—H3171119.1
C109—C110—H1101120.7C318—C317—H3171120.7
C111—C110—H1101119.5C317—C318—C319119.2 (2)
C110—C111—C112120.0 (2)C317—C318—H3181119.3
C110—C111—H1111120.0C319—C318—H3181121.6
C112—C111—H1111120.0C314—C319—C318118.4 (2)
C111—C112—C113119.9 (2)C314—C319—H3191120.5
C111—C112—H1121119.7C318—C319—H3191121.1
C113—C112—H1121120.4C316—C320—H3202109.2
C112—C113—C108120.6 (2)C316—C320—H3201110.7
C112—C113—H1131119.9H3202—C320—H3201109.9
C108—C113—H1131119.5C316—C320—H3203109.7
C101—C114—N115115.53 (18)H3202—C320—H3203109.2
C101—C114—C119121.3 (2)H3201—C320—H3203108.3
N115—C114—C119123.2 (2)Ni2—C401—N40238.95 (11)
C114—N115—Ni1110.65 (13)Ni2—C401—C41478.82 (13)
C114—N115—C116117.90 (18)N402—C401—C414117.5 (2)
Ni1—N115—C116131.37 (15)Ni2—C401—H4011160.2
N115—C116—C117121.3 (2)N402—C401—H4011122.0
N115—C116—C120118.2 (2)C414—C401—H4011120.5
C117—C116—C120120.5 (2)C401—N402—Ni2117.39 (15)
C116—C117—C118120.3 (2)C401—N402—N403117.11 (19)
C116—C117—H1171118.3Ni2—N402—N403124.68 (14)
C118—C117—H1171121.4N402—N403—C404111.03 (18)
C117—C118—C119118.9 (2)N403—C404—S405128.97 (17)
C117—C118—H1181120.2N403—C404—S406118.01 (17)
C119—C118—H1181120.8S405—C404—S406113.02 (13)
C118—C119—C114118.4 (2)C404—S405—Ni293.37 (8)
C118—C119—H1191121.5C404—S406—C407104.55 (11)
C114—C119—H1191120.1S406—C407—C408109.57 (17)
C116—C120—H1202109.3S406—C407—H4072110.5
C116—C120—H1201111.4C408—C407—H4072110.4
H1202—C120—H1201107.9S406—C407—H4071107.9
C116—C120—H1203109.1C408—C407—H4071109.1
H1202—C120—H1203109.2H4072—C407—H4071109.3
H1201—C120—H1203109.9C407—C408—C409120.8 (2)
N202—C201—C214117.3 (2)C407—C408—C413120.5 (2)
N202—C201—H2011121.2C409—C408—C413118.7 (2)
C214—C201—H2011121.4C408—C409—C410120.8 (3)
C201—N202—Ni1118.51 (15)C408—C409—H4091119.6
C201—N202—N203116.45 (18)C410—C409—H4091119.7
Ni1—N202—N203124.76 (14)C409—C410—C411120.0 (3)
N202—N203—C204111.46 (18)C409—C410—H4101119.8
N203—C204—S205129.06 (17)C411—C410—H4101120.3
N203—C204—S206116.48 (16)C410—C411—C412119.8 (3)
S205—C204—S206114.46 (12)C410—C411—H4111119.6
C204—S205—Ni193.45 (8)C412—C411—H4111120.6
C204—S206—C207101.78 (11)C411—C412—C413120.5 (3)
S206—C207—C208108.44 (16)C411—C412—H4121120.0
S206—C207—H2072107.2C413—C412—H4121119.5
C208—C207—H2072109.9C412—C413—C408120.3 (2)
S206—C207—H2071107.8C412—C413—H4131119.1
C208—C207—H2071111.0C408—C413—H4131120.7
H2072—C207—H2071112.4C401—C414—N415115.91 (19)
C207—C208—C209120.9 (2)C401—C414—C419120.9 (2)
C207—C208—C213120.2 (2)N415—C414—C419123.2 (2)
C209—C208—C213118.9 (2)C414—N415—Ni2110.05 (14)
C208—C209—C210120.5 (3)C414—N415—C416117.96 (19)
C208—C209—H2091119.5Ni2—N415—C416131.48 (15)
C210—C209—H2091120.0N415—C416—C417121.0 (2)
C209—C210—C211119.9 (3)N415—C416—C420117.8 (2)
C209—C210—H2101119.1C417—C416—C420121.2 (2)
C211—C210—H2101121.0C416—C417—C418120.8 (2)
C210—C211—C212120.0 (2)C416—C417—H4171118.8
C210—C211—H2111119.6C418—C417—H4171120.4
C212—C211—H2111120.4C417—C418—C419118.4 (2)
C211—C212—C213120.0 (3)C417—C418—H4181120.4
C211—C212—H2121120.4C419—C418—H4181121.2
C213—C212—H2121119.6C418—C419—C414118.7 (2)
C208—C213—C212120.7 (2)C418—C419—H4191121.6
C208—C213—H2131119.3C414—C419—H4191119.8
C212—C213—H2131120.0C416—C420—H4202109.4
C201—C214—N215115.70 (19)C416—C420—H4201108.8
C201—C214—C219121.3 (2)H4202—C420—H4201109.5
N215—C214—C219123.0 (2)C416—C420—H4203110.6
Ni1—N215—C214110.67 (14)H4202—C420—H4203108.7
Ni1—N215—C216131.22 (15)H4201—C420—H4203109.9
C214—N215—C216118.07 (19)

Experimental details

Crystal data
Chemical formula[Ni(C15H14N3S2)2]
Mr659.57
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)12.3544 (9), 15.6411 (6), 16.9333 (10)
α, β, γ (°)69.520 (5), 87.516 (5), 89.446 (5)
V3)3062.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.16 × 0.13 × 0.11
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.88, 0.90
No. of measured, independent and
observed [I > 2σ(I)] reflections
23348, 13743, 11306
Rint0.035
(sin θ/λ)max1)0.678
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.087, 0.97
No. of reflections13696
No. of parameters739
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.51

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Selected bond lengths (Å) top
Ni1—N2022.0139 (18)Ni2—N3022.0085 (18)
Ni1—N1022.0173 (17)Ni2—N4022.0156 (18)
Ni1—N1152.1761 (18)Ni2—N3152.1604 (17)
Ni1—N2152.1881 (18)Ni2—N4152.1770 (18)
Ni1—S1052.4062 (6)Ni2—S4052.4202 (6)
Ni1—S2052.4158 (6)Ni2—S3052.4263 (6)
 

Acknowledgements

Support for the project came from Universiti Putra Malaysia (UPM) under research University Grant Schemes (RUGS No. 05–01–11–1243RU & RUGS No. 9174000) and the Malaysian Fundamental Research Grant Scheme (FRGS No. 01–03–11–986FR). SAO wishes to thank UPM for the award of a Graduate Research Fellowship.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAli, M. A., Butcher, R. J. & Bryan, J. C. (1999). Inorg. Chim. Acta, 287, 8–13.  CAS Google Scholar
First citationAli, M. A., Majumder, S. M. M., Butcher, R. J., Jasinski, J. P. & Jasinski, J. M. (1997). Polyhedron, 16, 2749–2754.  CSD CrossRef CAS Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOmar, S. A., Ravoof, T. B. S. A., Mohamed Tahir, M. I. & Crouse, K. A. (2012). Acta Cryst. E68, m316–m317.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., Cowley, A. R. & Ali, M. A. (2004). Polyhedron, 23(16), 2491–2498.  Web of Science CSD CrossRef Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871–876.  Web of Science CSD CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds