metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­chlorido{μ-6,6′-dimeth­­oxy-2,2′-[cyclo­hexane-1,2-diylbis(nitrilo­methanylyl­­idene)]diphenolato}di­methano­l­copper(II)samarium(III)

aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: yanpf@vip.sina.com

(Received 20 March 2012; accepted 3 April 2012; online 13 April 2012)

In the title hetero-dinuclear complex, [CuSm(C22H24N2O4)Cl3(CH3OH)2], the CuII cation is N,N′,O,O′-chelated by a 6,6′-dimeth­oxy-2,2′-[cyclo­hexane-1,2-diylbis(nitrilo­methanylyl­idene)]diphenolate ligand, and one Cl anion further coordinates to the CuII cation to complete the distorted square-pyramidal coordination geometry, while the SmIII cation is chelated by four O atoms from the same ligand, and is further coordinated by two methanol mol­ecules and two Cl anions in an bicapped trigonal–prismatic geometry. Intra- and inter­molecular O—H⋯Cl hydrogen bonds are present in the structure.

Related literature

For background to metallic Schiff base complexes and similar structures, see: Liu et al. (1990[Liu, G.-F., Na, C.-W., Li, B. & Man, K.-Y. (1990). Polyhedron, 17, 2019-2022.]); Xu et al. (2011[Xu, L., Li, H.-F., Chen, P. & Yan, P.-F. (2011). Acta Cryst. E67, m367.]). For the synthesis of the ligand, see: Bao et al. (2010[Bao, Y., Li, G.-M., Yang, F., Yan, P.-F. & Chen, P. (2010). Acta Cryst. E66, m1379.]).

[Scheme 1]

Experimental

Crystal data
  • [CuSm(C22H24N2O4)Cl3(CH4O)2]

  • Mr = 764.77

  • Monoclinic, P 21 /c

  • a = 7.5130 (15) Å

  • b = 26.712 (5) Å

  • c = 14.970 (5) Å

  • β = 110.21 (3)°

  • V = 2819.3 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.14 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.475, Tmax = 0.605

  • 26818 measured reflections

  • 6432 independent reflections

  • 5702 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.096

  • S = 1.11

  • 6432 reflections

  • 340 parameters

  • H-atom parameters constrained

  • Δρmax = 1.38 e Å−3

  • Δρmin = −1.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯Cl3 0.83 2.20 3.016 (4) 169
O6—H6⋯Cl2i 0.82 2.45 3.251 (4) 166
Symmetry code: (i) x-1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metallic Schiff base complexes are of considerable interest because of the variable structures and potential application in magnetic, luminescence and electrochemical behavior (Liu et al., 1990). We present here the sythesis and crystal structure of the title complex.

In the title complex, the Cu(II) ions is five-coordinated by two imino nitrogen atoms and two phenolate oxygen atoms from the ligand, and one chlorine atom. The Cu—N bond distances are 1.926 (4) and 1.931 (4) Å, and the Cu—O bond distances are in the range of 1.926 (3)—1.942 (3) Å, which in accordance with the reported values. The Sm(III) ion is eight-coordinated by four oxygen atoms from the ligand, two oxygen atoms of two methanol molecules and two Cl atoms. The Sm—O bond distances are in the range of 2.372 (3)—2.615 (3) Å, the Sm—Cl bond distances are 2.6637 (13) and 2.6940 (15) Å. (Fig.1, Table 1). The Sm—Cu distance is 3.4292 (9) Å. The positive charge of the Sm(III) and Cu(II) ions are balanced by the ligand L2- and three chlorine anions (L = N,N'-bis(2-oxy-3-methoxybenzylidene) -1,2-diaminocyclohexane).

Related literature top

For background to metallic Schiff base complexes and similar structures, see: Liu et al. (1990); Xu et al. (2011). For the synthesis of the ligand, see: Bao et al. (2010).

Experimental top

The salen-type ligand was synthesized following the reference (Bao et al. 2010). To a 1:1 MeOH/CH2Cl2 solution (20 mL) of LCuH2O (0.0980 g, 0.2 mmol) was added SmCl3˙6H2O (0.0728 g, 0.2 mmol) at the room temperature. After stirring for 12 h, the solution was filtered to remove the suspended particles. Yellow single crystals suitable for X-ray diffraction were obtained by slow diffusion of diethylether into the filtrate in five days. (CuClC22H24O4N2)SmCl2(CH3OH)2, Elemental Anal. Calc.: C, 37.69; H, 4.22; N, 3.66 wt%, Found: C, 37.68; H, 4.24; N, 3.64 wt%.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93–0.98 Å with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). Hydroxy H atoms were located in a difference Fourier map and refined with the O—H bond distance restrained to 0.82 Å. The reflections (0 4 6), (2 9 4), (1 8 5), (3 6 3) and (-3 2 9) have been omitted during the refinement.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of the title compound.
Trichlorido{µ-6,6'-dimethoxy-2,2'-[cyclohexane-1,2- diylbis(nitrilomethanylylidene)]diphenolato}dimethanolcopper(II)samarium(III) top
Crystal data top
[CuSm(C22H24N2O4)Cl3(CH4O)2]F(000) = 1520
Mr = 764.77Dx = 1.802 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 22347 reflections
a = 7.5130 (15) Åθ = 3.0–27.5°
b = 26.712 (5) ŵ = 3.14 mm1
c = 14.970 (5) ÅT = 293 K
β = 110.21 (3)°Block, yellow
V = 2819.3 (12) Å30.24 × 0.22 × 0.16 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6432 independent reflections
Radiation source: fine-focus sealed tube5702 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.475, Tmax = 0.605k = 3434
26818 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0215P)2 + 12.8071P]
where P = (Fo2 + 2Fc2)/3
6432 reflections(Δ/σ)max = 0.007
340 parametersΔρmax = 1.38 e Å3
0 restraintsΔρmin = 1.22 e Å3
Crystal data top
[CuSm(C22H24N2O4)Cl3(CH4O)2]V = 2819.3 (12) Å3
Mr = 764.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5130 (15) ŵ = 3.14 mm1
b = 26.712 (5) ÅT = 293 K
c = 14.970 (5) Å0.24 × 0.22 × 0.16 mm
β = 110.21 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6432 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5702 reflections with I > 2σ(I)
Tmin = 0.475, Tmax = 0.605Rint = 0.039
26818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0215P)2 + 12.8071P]
where P = (Fo2 + 2Fc2)/3
6432 reflectionsΔρmax = 1.38 e Å3
340 parametersΔρmin = 1.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. omit 0 4 6 omit 2 9 4 omit 1 8 5 omit 3 6 3 omit -3 2 9

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.71298 (3)0.826090 (8)0.734742 (16)0.03035 (8)
Cu10.87065 (9)0.94753 (2)0.75822 (4)0.03624 (15)
Cl10.5519 (2)0.73817 (5)0.74276 (10)0.0479 (3)
Cl21.0014 (2)0.78339 (6)0.69456 (11)0.0561 (4)
Cl30.5786 (2)0.97014 (5)0.81281 (11)0.0511 (3)
C10.6853 (7)0.91187 (19)0.5636 (3)0.0370 (10)
C20.6128 (7)0.8715 (2)0.5017 (3)0.0378 (11)
C30.5577 (8)0.8772 (2)0.4044 (4)0.0500 (14)
H30.51020.85020.36410.060*
C40.5742 (10)0.9239 (2)0.3674 (4)0.0569 (16)
H40.53510.92820.30180.068*
C50.6472 (10)0.9636 (2)0.4261 (4)0.0545 (15)
H50.65800.99460.40010.065*
C60.7065 (9)0.9580 (2)0.5259 (4)0.0454 (12)
C70.7905 (11)1.0016 (2)0.5827 (4)0.0603 (17)
H70.79381.03110.55040.072*
C80.9401 (16)1.0476 (3)0.7301 (5)0.100 (3)
H80.83891.05700.75420.120*
C90.9615 (11)1.0941 (2)0.6791 (5)0.0625 (17)
H9A0.83851.10380.63440.075*
H9B1.04401.08720.64300.075*
C101.042 (2)1.1367 (3)0.7461 (6)0.123 (5)
H10A1.08911.16160.71260.148*
H10B0.93981.15190.76190.148*
C111.1897 (12)1.1251 (2)0.8319 (7)0.088 (3)
H11A1.19841.15250.87590.105*
H11B1.30751.12480.81880.105*
C121.1795 (9)1.0763 (2)0.8835 (4)0.0501 (14)
H12A1.30651.06610.92250.060*
H12B1.10701.08180.92520.060*
C131.0883 (12)1.0358 (2)0.8137 (5)0.079 (3)
H131.18971.02810.78870.095*
C141.1627 (7)0.97096 (18)0.9350 (4)0.0411 (11)
H141.24790.99360.97460.049*
C151.1560 (7)0.92122 (18)0.9727 (3)0.0341 (10)
C161.2785 (7)0.91120 (19)1.0659 (3)0.0391 (11)
H161.35430.93681.10140.047*
C171.2890 (8)0.8648 (2)1.1055 (4)0.0437 (12)
H171.37150.85911.16720.052*
C181.1760 (8)0.82578 (19)1.0537 (4)0.0414 (11)
H181.18250.79421.08070.050*
C191.0557 (7)0.83442 (17)0.9627 (3)0.0341 (10)
C201.0430 (6)0.88190 (16)0.9195 (3)0.0295 (9)
C210.9741 (10)0.7477 (2)0.9362 (5)0.0627 (18)
H21A1.10340.73930.94530.094*
H21B0.89080.72570.88950.094*
H21C0.95210.74410.99530.094*
C220.5202 (11)0.7845 (2)0.4921 (5)0.0673 (19)
H22A0.39280.79160.45130.101*
H22B0.51950.75680.53280.101*
H22C0.59600.77620.45400.101*
C230.2473 (10)0.8815 (3)0.6207 (6)0.076 (2)
H23A0.19990.89470.66770.115*
H23B0.14280.87320.56420.115*
H23C0.32570.90610.60560.115*
C240.4502 (11)0.8428 (3)0.8882 (6)0.071 (2)
H24A0.33260.85900.85350.106*
H24B0.48560.85080.95460.106*
H24C0.43540.80720.87980.106*
N10.8603 (8)1.00248 (16)0.6733 (3)0.0533 (13)
N21.0622 (6)0.98642 (15)0.8522 (3)0.0394 (10)
O10.7289 (5)0.90241 (12)0.6569 (2)0.0406 (8)
O20.5985 (6)0.82768 (13)0.5490 (2)0.0442 (9)
O30.9297 (5)0.88600 (11)0.8294 (2)0.0335 (7)
O40.9380 (5)0.79875 (12)0.9037 (2)0.0376 (8)
O50.5922 (5)0.85941 (13)0.8540 (3)0.0458 (9)
H5A0.58310.89030.84880.055*
O60.3557 (6)0.83790 (16)0.6567 (3)0.0561 (10)
H60.27910.81940.66870.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.03588 (13)0.02655 (12)0.02773 (12)0.00480 (9)0.00986 (9)0.00285 (9)
Cu10.0475 (4)0.0268 (3)0.0287 (3)0.0079 (2)0.0058 (2)0.0009 (2)
Cl10.0521 (8)0.0312 (6)0.0544 (8)0.0119 (5)0.0106 (6)0.0019 (5)
Cl20.0495 (8)0.0647 (9)0.0612 (9)0.0009 (7)0.0281 (7)0.0145 (7)
Cl30.0563 (8)0.0338 (6)0.0653 (9)0.0011 (6)0.0237 (7)0.0028 (6)
C10.043 (3)0.041 (3)0.025 (2)0.002 (2)0.010 (2)0.0041 (19)
C20.037 (3)0.046 (3)0.032 (2)0.001 (2)0.013 (2)0.001 (2)
C30.051 (3)0.060 (4)0.033 (3)0.005 (3)0.007 (2)0.008 (2)
C40.070 (4)0.067 (4)0.028 (3)0.001 (3)0.011 (3)0.004 (3)
C50.075 (4)0.055 (3)0.030 (3)0.005 (3)0.014 (3)0.013 (2)
C60.057 (3)0.041 (3)0.034 (3)0.000 (3)0.012 (2)0.003 (2)
C70.098 (5)0.043 (3)0.040 (3)0.011 (3)0.025 (3)0.009 (2)
C80.176 (10)0.051 (4)0.047 (4)0.047 (5)0.006 (5)0.005 (3)
C90.091 (5)0.035 (3)0.062 (4)0.015 (3)0.028 (4)0.003 (3)
C100.228 (13)0.049 (4)0.071 (5)0.047 (6)0.025 (7)0.008 (4)
C110.078 (5)0.034 (3)0.123 (7)0.023 (3)0.002 (5)0.013 (4)
C120.054 (3)0.037 (3)0.060 (4)0.013 (3)0.021 (3)0.009 (2)
C130.090 (5)0.032 (3)0.077 (5)0.026 (3)0.020 (4)0.011 (3)
C140.041 (3)0.032 (2)0.043 (3)0.004 (2)0.005 (2)0.008 (2)
C150.035 (2)0.034 (2)0.031 (2)0.0027 (19)0.0079 (19)0.0062 (19)
C160.035 (3)0.041 (3)0.034 (2)0.001 (2)0.002 (2)0.007 (2)
C170.044 (3)0.048 (3)0.030 (2)0.002 (2)0.001 (2)0.002 (2)
C180.047 (3)0.036 (3)0.036 (3)0.003 (2)0.007 (2)0.006 (2)
C190.035 (2)0.031 (2)0.036 (2)0.0002 (19)0.012 (2)0.0045 (19)
C200.030 (2)0.027 (2)0.029 (2)0.0007 (18)0.0083 (18)0.0024 (17)
C210.063 (4)0.029 (3)0.072 (4)0.001 (3)0.006 (3)0.003 (3)
C220.086 (5)0.059 (4)0.053 (4)0.035 (4)0.021 (3)0.026 (3)
C230.057 (4)0.077 (5)0.089 (5)0.015 (4)0.016 (4)0.031 (4)
C240.093 (5)0.060 (4)0.086 (5)0.011 (4)0.066 (5)0.011 (4)
N10.086 (4)0.032 (2)0.035 (2)0.013 (2)0.012 (2)0.0020 (18)
N20.039 (2)0.0268 (19)0.044 (2)0.0078 (17)0.0038 (19)0.0006 (17)
O10.060 (2)0.0315 (17)0.0270 (16)0.0119 (16)0.0108 (15)0.0015 (13)
O20.064 (2)0.0354 (18)0.0251 (16)0.0128 (17)0.0055 (16)0.0079 (14)
O30.0392 (18)0.0292 (16)0.0270 (15)0.0041 (14)0.0050 (13)0.0010 (12)
O40.0423 (19)0.0318 (17)0.0328 (17)0.0052 (15)0.0058 (15)0.0013 (13)
O50.053 (2)0.0339 (18)0.061 (2)0.0036 (16)0.033 (2)0.0056 (17)
O60.044 (2)0.057 (2)0.064 (3)0.0005 (19)0.015 (2)0.013 (2)
Geometric parameters (Å, º) top
Sm1—O12.372 (3)C11—H11A0.9700
Sm1—O32.372 (3)C11—H11B0.9700
Sm1—O52.434 (4)C12—C131.497 (8)
Sm1—O62.550 (4)C12—H12A0.9700
Sm1—O22.611 (3)C12—H12B0.9700
Sm1—O42.615 (3)C13—N21.478 (7)
Sm1—Cl12.6637 (13)C13—H130.9800
Sm1—Cl22.6940 (15)C14—N21.277 (7)
Sm1—Cu13.4296 (9)C14—C151.451 (7)
Cu1—O31.926 (3)C14—H140.9300
Cu1—N11.926 (4)C15—C161.407 (7)
Cu1—N21.931 (4)C15—C201.411 (6)
Cu1—O11.942 (3)C16—C171.365 (7)
Cu1—Cl32.6621 (17)C16—H160.9300
C1—O11.343 (5)C17—C181.398 (7)
C1—C61.388 (7)C17—H170.9300
C1—C21.404 (7)C18—C191.369 (7)
C2—C31.379 (7)C18—H180.9300
C2—O21.390 (6)C19—O41.389 (6)
C3—C41.388 (9)C19—C201.412 (6)
C3—H30.9300C20—O31.327 (5)
C4—C51.366 (9)C21—O41.441 (6)
C4—H40.9300C21—H21A0.9600
C5—C61.412 (7)C21—H21B0.9600
C5—H50.9300C21—H21C0.9600
C6—C71.450 (8)C22—O21.434 (6)
C7—N11.275 (7)C22—H22A0.9600
C7—H70.9300C22—H22B0.9600
C8—C131.394 (10)C22—H22C0.9600
C8—N11.477 (8)C23—O61.416 (8)
C8—C91.497 (8)C23—H23A0.9600
C8—H80.9800C23—H23B0.9600
C9—C101.499 (10)C23—H23C0.9600
C9—H9A0.9700C24—O51.405 (7)
C9—H9B0.9700C24—H24A0.9600
C10—C111.410 (12)C24—H24B0.9600
C10—H10A0.9700C24—H24C0.9600
C10—H10B0.9700O5—H5A0.8297
C11—C121.531 (9)O6—H60.8237
O1—Sm1—O364.73 (11)H10A—C10—H10B107.3
O1—Sm1—O598.12 (12)C10—C11—C12119.0 (6)
O3—Sm1—O570.60 (12)C10—C11—H11A107.6
O1—Sm1—O683.82 (13)C12—C11—H11A107.6
O3—Sm1—O6125.95 (13)C10—C11—H11B107.6
O5—Sm1—O671.99 (14)C12—C11—H11B107.6
O1—Sm1—O261.10 (11)H11A—C11—H11B107.0
O3—Sm1—O2122.06 (11)C13—C12—C11110.8 (6)
O5—Sm1—O2134.91 (13)C13—C12—H12A109.5
O6—Sm1—O266.59 (14)C11—C12—H12A109.5
O1—Sm1—O4126.16 (11)C13—C12—H12B109.5
O3—Sm1—O461.92 (10)C11—C12—H12B109.5
O5—Sm1—O470.89 (13)H12A—C12—H12B108.1
O6—Sm1—O4134.78 (13)C8—C13—N2112.3 (5)
O2—Sm1—O4154.12 (12)C8—C13—C12119.6 (6)
O1—Sm1—Cl1151.74 (9)N2—C13—C12117.6 (6)
O3—Sm1—Cl1142.81 (8)C8—C13—H13100.9
O5—Sm1—Cl189.94 (9)N2—C13—H13100.9
O6—Sm1—Cl172.96 (10)C12—C13—H13100.9
O2—Sm1—Cl194.29 (8)N2—C14—C15125.8 (5)
O4—Sm1—Cl182.08 (8)N2—C14—H14117.1
O1—Sm1—Cl294.19 (10)C15—C14—H14117.1
O3—Sm1—Cl288.85 (9)C16—C15—C20118.6 (4)
O5—Sm1—Cl2148.33 (10)C16—C15—C14117.5 (4)
O6—Sm1—Cl2138.63 (11)C20—C15—C14123.9 (4)
O2—Sm1—Cl276.33 (10)C17—C16—C15121.6 (5)
O4—Sm1—Cl278.27 (9)C17—C16—H16119.2
Cl1—Sm1—Cl292.86 (5)C15—C16—H16119.2
O1—Sm1—Cu133.19 (8)C16—C17—C18120.2 (5)
O3—Sm1—Cu132.77 (7)C16—C17—H17119.9
O5—Sm1—Cu177.41 (9)C18—C17—H17119.9
O6—Sm1—Cu1101.63 (10)C19—C18—C17119.5 (5)
O2—Sm1—Cu193.94 (8)C19—C18—H18120.2
O4—Sm1—Cu194.59 (7)C17—C18—H18120.2
Cl1—Sm1—Cu1167.30 (4)C18—C19—O4124.9 (4)
Cl2—Sm1—Cu198.47 (4)C18—C19—C20121.6 (4)
O3—Cu1—N1164.8 (2)O4—C19—C20113.4 (4)
O3—Cu1—N294.86 (16)O3—C20—C15124.1 (4)
N1—Cu1—N285.46 (19)O3—C20—C19117.3 (4)
O3—Cu1—O182.07 (14)C15—C20—C19118.5 (4)
N1—Cu1—O194.08 (17)O4—C21—H21A109.5
N2—Cu1—O1166.45 (19)O4—C21—H21B109.5
O3—Cu1—Cl394.62 (11)H21A—C21—H21B109.5
N1—Cu1—Cl3100.37 (18)O4—C21—H21C109.5
N2—Cu1—Cl398.07 (15)H21A—C21—H21C109.5
O1—Cu1—Cl395.33 (12)H21B—C21—H21C109.5
O3—Cu1—Sm141.82 (9)O2—C22—H22A109.5
N1—Cu1—Sm1136.02 (14)O2—C22—H22B109.5
N2—Cu1—Sm1136.67 (12)H22A—C22—H22B109.5
O1—Cu1—Sm141.94 (10)O2—C22—H22C109.5
Cl3—Cu1—Sm187.36 (3)H22A—C22—H22C109.5
O1—C1—C6124.6 (5)H22B—C22—H22C109.5
O1—C1—C2116.2 (4)O6—C23—H23A109.5
C6—C1—C2119.2 (4)O6—C23—H23B109.5
C3—C2—O2125.8 (5)H23A—C23—H23B109.5
C3—C2—C1121.2 (5)O6—C23—H23C109.5
O2—C2—C1113.0 (4)H23A—C23—H23C109.5
C2—C3—C4119.1 (5)H23B—C23—H23C109.5
C2—C3—H3120.4O5—C24—H24A109.5
C4—C3—H3120.4O5—C24—H24B109.5
C5—C4—C3120.8 (5)H24A—C24—H24B109.5
C5—C4—H4119.6O5—C24—H24C109.5
C3—C4—H4119.6H24A—C24—H24C109.5
C4—C5—C6120.6 (5)H24B—C24—H24C109.5
C4—C5—H5119.7C7—N1—C8124.3 (5)
C6—C5—H5119.7C7—N1—Cu1126.6 (4)
C1—C6—C5119.0 (5)C8—N1—Cu1109.0 (4)
C1—C6—C7124.2 (5)C14—N2—C13123.6 (5)
C5—C6—C7116.7 (5)C14—N2—Cu1125.1 (3)
N1—C7—C6125.0 (5)C13—N2—Cu1111.2 (3)
N1—C7—H7117.5C1—O1—Cu1124.5 (3)
C6—C7—H7117.5C1—O1—Sm1129.6 (3)
C13—C8—N1111.9 (6)Cu1—O1—Sm1104.87 (14)
C13—C8—C9116.9 (7)C2—O2—C22117.5 (4)
N1—C8—C9118.5 (6)C2—O2—Sm1120.1 (3)
C13—C8—H8102.0C22—O2—Sm1122.5 (3)
N1—C8—H8102.0C20—O3—Cu1125.3 (3)
C9—C8—H8102.0C20—O3—Sm1128.2 (3)
C8—C9—C10112.2 (6)Cu1—O3—Sm1105.41 (13)
C8—C9—H9A109.2C19—O4—C21115.5 (4)
C10—C9—H9A109.2C19—O4—Sm1118.7 (3)
C8—C9—H9B109.2C21—O4—Sm1125.0 (3)
C10—C9—H9B109.2C24—O5—Sm1132.4 (4)
H9A—C9—H9B107.9C24—O5—H5A107.4
C11—C10—C9117.0 (8)Sm1—O5—H5A109.5
C11—C10—H10A108.1C23—O6—Sm1130.7 (4)
C9—C10—H10A108.1C23—O6—H6102.8
C11—C10—H10B108.1Sm1—O6—H6122.0
C9—C10—H10B108.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···Cl30.832.203.016 (4)169
O6—H6···Cl2i0.822.453.251 (4)166
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[CuSm(C22H24N2O4)Cl3(CH4O)2]
Mr764.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.5130 (15), 26.712 (5), 14.970 (5)
β (°) 110.21 (3)
V3)2819.3 (12)
Z4
Radiation typeMo Kα
µ (mm1)3.14
Crystal size (mm)0.24 × 0.22 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.475, 0.605
No. of measured, independent and
observed [I > 2σ(I)] reflections
26818, 6432, 5702
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 1.11
No. of reflections6432
No. of parameters340
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0215P)2 + 12.8071P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.38, 1.22

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···Cl30.832.203.016 (4)169.3
O6—H6···Cl2i0.822.453.251 (4)165.6
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Nos. 21072049 & 21072050) and Heilongjiang University, China.

References

First citationBao, Y., Li, G.-M., Yang, F., Yan, P.-F. & Chen, P. (2010). Acta Cryst. E66, m1379.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, G.-F., Na, C.-W., Li, B. & Man, K.-Y. (1990). Polyhedron, 17, 2019-2022.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, L., Li, H.-F., Chen, P. & Yan, P.-F. (2011). Acta Cryst. E67, m367.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds