organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1486

1-Acetyl­oxymethyl-1,3,5,7-tetra­aza­adamantan-1-ium hexa­fluoro­phosphate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jgsdxlml@163.com

(Received 25 March 2012; accepted 18 April 2012; online 21 April 2012)

In the crystal structure of the title salt, C9H17N4O2+·PF6, the cations and anions are linked by weak C—H⋯F inter­actions while C—H⋯O inter­actions also occur between the cations.

Related literature

The title compound was studied as part of a search for ferroelectric complexes. For background to ferroelectric complexes, see: Zhang et al. (2009[Zhang, W., Chen, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 12544-12545.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. (2010). J. Am. Chem. Soc. 132, 7300-7302.]); Ye et al. (2009[Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 42-43.]). For a related structure, see: Reddy et al. (1994[Reddy, D. S., Panneerselvlvam, K., Shimoni, L., Carrell, H. L. & Desiraju, G. R. (1994). J. Mol. Struct. 327, 113-120.]).

[Scheme 1]

Experimental

Crystal data
  • C9H17N4O2+·PF6

  • Mr = 358.24

  • Monoclinic, P 21 /c

  • a = 8.2121 (16) Å

  • b = 15.697 (3) Å

  • c = 11.372 (2) Å

  • β = 90.26 (3)°

  • V = 1465.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.36 × 0.32 × 0.28 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.903, Tmax = 0.921

  • 14975 measured reflections

  • 3358 independent reflections

  • 2601 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.093

  • wR(F2) = 0.306

  • S = 1.06

  • 3358 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯F4i 0.97 2.42 3.370 (6) 167
C4—H4B⋯O2ii 0.97 2.59 3.441 (5) 147
C5—H5A⋯O2ii 0.97 2.47 3.350 (4) 151
C9—H9C⋯F4i 0.96 2.51 3.128 (8) 122
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently much attention has been devoted to finding ferroelectric complexes. Ferroelectric materials that exhibit reversible electric polarization in response to an external electric field have found many applications such as nonvolatile memory storage, electronics and optics. The freezing of a certain functional group at low temperature forces significant orientational motions of the guest molecules and thus induces the formation of the ferroelectric phase (Zhang et al. 2009; Ye et al. 2009; Zhang et al. 2010). The title compound has been synthesized to investigate these properties.

There is a similar structure reported by Reddy et al. (1994).

The asymmetric unit of C9H17N4O2.PF6 consists of one 1-meyhyl acetate-1,3,5,7-tetra-aza-adamantan cation and one hexafluorophosphate anion linked by ionic bond (Fig 1). The hexafluorophosphate anion is a distorted octahedron. The P—F bonds are in the range 1.531 (4) to 1.559 (4) Å, the difference of the P—F bond distances are likely due to the different environment of F atoms. The bond angles around each phosphorus range from 84.3 (4)° to 179.1 (4)°. There is no classical hydrogen bond in the structure. The hexafluorophosphate anion is quite mobile, but examination of a difference map in the plane of the fluorine atoms does not show that fluorine atoms exist as three distinct atoms.

Related literature top

The title compound was studied as part of a search for ferroelectric complexes. For background to ferroelectric complexes, see: Zhang et al. (2009, 2010); Ye et al. (2009). For a related structure, see: Reddy et al. (1994).

Experimental top

Hexamine, ammonium acetate and acetic anhydride were dissolved in water to give a solution refluxing at 373K, then hexafluorophosphoric acid was added to the above solution and filtered it. Single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above solution after 10 days in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature range (below the melting point).

Refinement top

H atoms were placed in calculated positions with C—H = 0.96-0.97 Å, and refined in riding mode, Uiso(H) = 1.2Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.
1-Acetyloxymethyl-1,3,5,7-tetraazaadamantan-1-ium hexafluorophosphate top
Crystal data top
C9H17N4O2+·PF6F(000) = 736
Mr = 358.24Dx = 1.623 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3026 reflections
a = 8.2121 (16) Åθ = 3.4–26°
b = 15.697 (3) ŵ = 0.27 mm1
c = 11.372 (2) ÅT = 293 K
β = 90.26 (3)°Block, colourless
V = 1465.9 (5) Å30.36 × 0.32 × 0.28 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
3358 independent reflections
Radiation source: fine-focus sealed tube2601 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
CCD_Profile_fitting scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1010
Tmin = 0.903, Tmax = 0.921k = 2020
14975 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.093Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.306H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1929P)2 + 1.3689P]
where P = (Fo2 + 2Fc2)/3
3358 reflections(Δ/σ)max = 0.002
200 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C9H17N4O2+·PF6V = 1465.9 (5) Å3
Mr = 358.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2121 (16) ŵ = 0.27 mm1
b = 15.697 (3) ÅT = 293 K
c = 11.372 (2) Å0.36 × 0.32 × 0.28 mm
β = 90.26 (3)°
Data collection top
Rigaku Mercury2
diffractometer
3358 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2601 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.921Rint = 0.035
14975 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0930 restraints
wR(F2) = 0.306H-atom parameters constrained
S = 1.06Δρmax = 1.00 e Å3
3358 reflectionsΔρmin = 0.66 e Å3
200 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.3666 (3)0.64498 (18)0.9091 (2)0.0560 (7)
C90.1279 (6)0.5718 (3)0.8426 (5)0.0723 (13)
H9A0.14790.53430.90780.108*
H9B0.12170.53920.77130.108*
H9C0.02690.60130.85440.108*
C80.2634 (4)0.6349 (2)0.8339 (3)0.0477 (8)
C70.3995 (5)0.7356 (3)0.7032 (3)0.0508 (9)
H7A0.41770.73240.61910.061*
H7B0.49640.71410.74220.061*
O10.2653 (4)0.6817 (2)0.7323 (3)0.0653 (8)
P10.14024 (11)0.21820 (7)0.00282 (9)0.0520 (4)
N40.3765 (3)0.82704 (19)0.7367 (2)0.0405 (6)
C50.2204 (4)0.8657 (3)0.6832 (3)0.0504 (9)
H5A0.22140.85860.59850.060*
H5B0.12590.83610.71380.060*
N10.3555 (5)0.9303 (2)0.8956 (3)0.0600 (9)
C10.3696 (4)0.8413 (2)0.8687 (3)0.0454 (8)
H1A0.27700.81100.90090.054*
H1B0.46750.81870.90510.054*
N20.2100 (4)0.9539 (2)0.7113 (4)0.0623 (10)
N30.5050 (4)0.9668 (2)0.7189 (4)0.0631 (10)
C40.5219 (4)0.8786 (3)0.6888 (4)0.0536 (9)
H4A0.62250.85650.72180.064*
H4B0.52680.87260.60400.064*
C30.4957 (6)0.9756 (3)0.8474 (4)0.0657 (12)
H3A0.59470.95330.88260.079*
H3B0.48801.03550.86760.079*
C20.2055 (6)0.9639 (3)0.8389 (5)0.0673 (12)
H2A0.11170.93390.86970.081*
H2B0.19371.02380.85800.081*
C60.3533 (6)1.0000 (3)0.6654 (5)0.0736 (13)
H6A0.34291.06020.68290.088*
H6B0.35800.99350.58070.088*
F20.2963 (5)0.1801 (4)0.0600 (5)0.1341 (17)
F10.0194 (6)0.1590 (4)0.0703 (4)0.145 (2)
F50.2628 (8)0.2735 (3)0.0688 (7)0.165 (2)
F30.1555 (5)0.1442 (4)0.0874 (5)0.145 (2)
F60.1267 (6)0.2920 (5)0.0904 (7)0.195 (3)
F40.0143 (6)0.2520 (4)0.0590 (7)0.185 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0519 (16)0.0570 (16)0.0589 (16)0.0045 (12)0.0119 (12)0.0019 (12)
C90.059 (3)0.062 (3)0.096 (4)0.017 (2)0.003 (2)0.010 (2)
C80.0404 (18)0.0484 (19)0.054 (2)0.0006 (14)0.0024 (15)0.0102 (15)
C70.049 (2)0.056 (2)0.0466 (19)0.0045 (16)0.0082 (15)0.0082 (16)
O10.0600 (18)0.0689 (19)0.0668 (19)0.0015 (15)0.0116 (14)0.0108 (15)
P10.0286 (5)0.0715 (7)0.0558 (6)0.0050 (4)0.0005 (4)0.0015 (4)
N40.0283 (12)0.0529 (16)0.0401 (14)0.0010 (11)0.0026 (10)0.0011 (12)
C50.0342 (16)0.065 (2)0.0520 (19)0.0025 (15)0.0137 (14)0.0087 (16)
N10.058 (2)0.0560 (19)0.066 (2)0.0003 (15)0.0060 (16)0.0143 (16)
C10.0434 (18)0.055 (2)0.0377 (16)0.0010 (14)0.0031 (13)0.0049 (14)
N20.0427 (17)0.057 (2)0.088 (3)0.0054 (14)0.0101 (16)0.0096 (18)
N30.0454 (18)0.062 (2)0.082 (2)0.0096 (15)0.0068 (16)0.0156 (18)
C40.0356 (17)0.070 (2)0.055 (2)0.0059 (16)0.0024 (15)0.0095 (18)
C30.062 (3)0.057 (2)0.079 (3)0.0122 (19)0.022 (2)0.005 (2)
C20.052 (2)0.056 (2)0.094 (3)0.0108 (19)0.003 (2)0.012 (2)
C60.059 (3)0.066 (3)0.097 (4)0.003 (2)0.014 (2)0.028 (3)
F20.072 (2)0.177 (4)0.153 (4)0.017 (3)0.049 (2)0.030 (3)
F10.115 (3)0.169 (5)0.151 (4)0.014 (3)0.074 (3)0.038 (3)
F50.143 (5)0.126 (4)0.225 (6)0.028 (3)0.083 (4)0.046 (4)
F30.091 (3)0.173 (5)0.171 (4)0.015 (3)0.024 (3)0.096 (4)
F60.100 (4)0.235 (7)0.250 (7)0.014 (4)0.024 (4)0.177 (6)
F40.109 (4)0.135 (4)0.312 (8)0.014 (3)0.122 (5)0.044 (5)
Geometric parameters (Å, º) top
O2—C81.212 (5)C5—H5A0.9700
C9—C81.494 (5)C5—H5B0.9700
C9—H9A0.9600N1—C11.435 (5)
C9—H9B0.9600N1—C31.461 (6)
C9—H9C0.9600N1—C21.485 (6)
C8—O11.369 (5)C1—H1A0.9700
C7—O11.429 (5)C1—H1B0.9700
C7—N41.498 (5)N2—C21.460 (6)
C7—H7A0.9700N2—C61.479 (6)
C7—H7B0.9700N3—C41.434 (6)
P1—F61.531 (4)N3—C31.469 (6)
P1—F41.548 (4)N3—C61.479 (6)
P1—F31.555 (4)C4—H4A0.9700
P1—F51.557 (4)C4—H4B0.9700
P1—F11.559 (4)C3—H3A0.9700
P1—F21.559 (3)C3—H3B0.9700
N4—C11.520 (4)C2—H2A0.9700
N4—C51.540 (4)C2—H2B0.9700
N4—C41.544 (4)C6—H6A0.9700
C5—N21.423 (6)C6—H6B0.9700
C8—C9—H9A109.5N4—C5—H5B109.6
C8—C9—H9B109.5H5A—C5—H5B108.1
H9A—C9—H9B109.5C1—N1—C3109.2 (3)
C8—C9—H9C109.5C1—N1—C2108.7 (3)
H9A—C9—H9C109.5C3—N1—C2108.5 (4)
H9B—C9—H9C109.5N1—C1—N4111.0 (3)
O2—C8—O1121.0 (4)N1—C1—H1A109.4
O2—C8—C9124.0 (4)N4—C1—H1A109.4
O1—C8—C9115.1 (4)N1—C1—H1B109.4
O1—C7—N4114.2 (3)N4—C1—H1B109.4
O1—C7—H7A108.7H1A—C1—H1B108.0
N4—C7—H7A108.7C5—N2—C2109.2 (3)
O1—C7—H7B108.7C5—N2—C6110.4 (4)
N4—C7—H7B108.7C2—N2—C6108.7 (4)
H7A—C7—H7B107.6C4—N3—C3109.5 (3)
C8—O1—C7121.7 (3)C4—N3—C6108.9 (4)
F6—P1—F488.8 (4)C3—N3—C6109.2 (4)
F6—P1—F3179.1 (4)N3—C4—N4110.2 (3)
F4—P1—F391.2 (4)N3—C4—H4A109.6
F6—P1—F587.9 (4)N4—C4—H4A109.6
F4—P1—F595.8 (4)N3—C4—H4B109.6
F3—P1—F591.3 (4)N4—C4—H4B109.6
F6—P1—F195.0 (4)H4A—C4—H4B108.1
F4—P1—F184.6 (3)N1—C3—N3111.9 (3)
F3—P1—F185.9 (3)N1—C3—H3A109.2
F5—P1—F1177.1 (3)N3—C3—H3A109.2
F6—P1—F294.4 (4)N1—C3—H3B109.2
F4—P1—F2176.9 (4)N3—C3—H3B109.2
F3—P1—F285.7 (3)H3A—C3—H3B107.9
F5—P1—F284.3 (4)N2—C2—N1111.7 (3)
F1—P1—F295.1 (3)N2—C2—H2A109.3
C7—N4—C1113.5 (3)N1—C2—H2A109.3
C7—N4—C5112.5 (3)N2—C2—H2B109.3
C1—N4—C5107.3 (3)N1—C2—H2B109.3
C7—N4—C4108.3 (3)H2A—C2—H2B107.9
C1—N4—C4107.7 (3)N2—C6—N3110.6 (4)
C5—N4—C4107.4 (3)N2—C6—H6A109.5
N2—C5—N4110.2 (3)N3—C6—H6A109.5
N2—C5—H5A109.6N2—C6—H6B109.5
N4—C5—H5A109.6N3—C6—H6B109.5
N2—C5—H5B109.6H6A—C6—H6B108.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F4i0.972.423.370 (6)167
C4—H4B···O2ii0.972.593.441 (5)147
C5—H5A···O2ii0.972.473.350 (4)151
C9—H9C···F4i0.962.513.128 (8)122
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H17N4O2+·PF6
Mr358.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.2121 (16), 15.697 (3), 11.372 (2)
β (°) 90.26 (3)
V3)1465.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.36 × 0.32 × 0.28
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.903, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
14975, 3358, 2601
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.093, 0.306, 1.06
No. of reflections3358
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 0.66

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F4i0.972.423.370 (6)167
C4—H4B···O2ii0.972.593.441 (5)147
C5—H5A···O2ii0.972.473.350 (4)151
C9—H9C···F4i0.962.513.128 (8)122
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The author thanks an anonymous advisor from the Ordered Matter Science Research Centre, Southeast University, for great help in the revision of this paper.

References

First citationReddy, D. S., Panneerselvlvam, K., Shimoni, L., Carrell, H. L. & Desiraju, G. R. (1994). J. Mol. Struct. 327, 113–120.  CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Chen, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1486
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds