organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1277

(Z)-4-[(Ethyl­amino)(furan-2-yl)methyl­­idene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

aDepartment of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, People's Republic of China, and bCollege of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
*Correspondence e-mail: wangshouyu88@126.com

(Received 26 March 2012; accepted 29 March 2012; online 4 April 2012)

In the crystal of the title compound, C17H17N3O2, the mol­ecules exist in the keto–enamine form. The pyrazole ring is oriented at 10.59 (4) and 57.98 (5)° to the phenyl and furyl rings, respectively, and the dihedral angle between phenyl and furyl rings is 73.30 (11)°. An intra­molecular N—H⋯O hydrogen bond occurs between imino and carbonyl groups. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into supra­molecular chains along the b axis.

Related literature

For general background to acyl­pyrazolo­nes, see: Dong et al. (1983[Dong, X.-C., Liu, F.-C. & Zhao, Y.-L. (1983). Acta Chim. Sin. 41, 848-852.]); Casas et al. (2007[Casas, J. S., García-Tasende, M. S., Sánchez, A., Sordo, J. & Touceda, Á. (2007). Coord. Chem. Rev. 251, 1561-1589.]). For related structures, see: Zhang et al. (2007[Zhang, H.-Q., Li, J.-Z., Zhang, Y., Zhang, D. & Su, Z.-H. (2007). Acta Cryst. E63, o3536.]); Li et al. (2009[Li, J., Li, J.-Z., Li, J.-Q., Zhang, H.-Q. & Li, J.-M. (2009). Acta Cryst. E65, o1824.]); Wang (2010[Wang, H.-W. (2010). Acta Cryst. E66, o1534.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17N3O2

  • Mr = 295.34

  • Orthorhombic, P b c a

  • a = 8.5729 (13) Å

  • b = 17.555 (3) Å

  • c = 20.427 (3) Å

  • V = 3074.2 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • 14892 measured reflections

  • 3552 independent reflections

  • 2271 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.153

  • S = 1.02

  • 3552 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.98 1.87 2.702 (2) 140
C15—H15⋯O1i 0.93 2.39 3.279 (3) 161
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1-Phenyl-3-methyl-4-(2-furoyl)-5-pyrazolone (PMFP), is a member of a family of acylpyrazolones, first synthesized in 1983 (Dong et al., 1983). Such acylpyrazolones derivatives form a very important class of heterocycles due to their properties and applications (Casas et al., 2007). We now report the synthesis and structure of the title compound, (I), (Fig. 1).

The molecular structure of (I) is shown in Fig.1. Atoms O1, C7, C8 and C11 of the PMFP moiety and atom N3 of ethylamine group are coplanar, the largest deviation being 0.0517 (11) Å for atom C8. The dihedral angle between this mean plane and pyrazole ring of PMFP is 2.73 (3)°. The bond length of C8—C11 (1.400 (2) Å) between the usual C—C and C=C bonds indicates the delocalization of the electrons because of the addition of a proton to N3 is more favorable than to O2. The atom O2 of PMFP moiety and the N3 atom of ethylamine group are on the same side of C8—C11 bond, which are available for coordination with metal cations. A strong intramolecular hydrogen bond N3—H3A···O1 (Table 1) is also indicative of the enamine-keto form. All bond lengths and angles are normal and comparable with those found in the related compounds (Zhang et al., 2007; Li et al., 2009; Wang, 2010).

Related literature top

For general background to acylpyrazolones, see: Dong et al. (1983); Casas et al. (2007). For related structures, see: Zhang et al. (2007); Li et al. (2009); Wang (2010).

Experimental top

A mixture of a 10 ml 1-phenyl-3-methyl-4-(2-furoyl)-5-pyrazolone (2 mmol, 0.5366 g) anhydrous ethanol solution, and a 0.25 ml ethylamine (2 mmol, 0.1306 g) solution was refluxed for ca 7 h, with addition of a few drops of glacial acetic acid as a catalyst. The ethanol was removed by evaporation and the resulting green precipitate formed was filtered off, washed with cold anhydrous ethanol and dried in air. Yellow block single crystals suitable for analysis were obtained by slow evaporation of a solution in anhydrous ethanol at room temperature for a few days.

Refinement top

The H3A atom bonded to N3 was located in a difference map and refined in riding mode with Uiso(H) = 1.2Ueq(N). Other H atoms were placed in calculated positions, with C—H = 0.93 Å for phenyl, 0.96 Å for methyl and 0.97 Å for methylene H atoms, and refined as riding, with Uiso(H) = 1.2Ueq(C) for phenyl and methylene H, and 1.5eqU(C) for methyl H.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (thermal ellipsoids are shown at 30% probability levels).
(Z)-4-[(Ethylamino)(furan-2-yl)methylidene]-3-methyl-1-phenyl- 1H-pyrazol-5(4H)-one top
Crystal data top
C17H17N3O2F(000) = 1248
Mr = 295.34Dx = 1.276 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3420 reflections
a = 8.5729 (13) Åθ = 2.5–24.5°
b = 17.555 (3) ŵ = 0.09 mm1
c = 20.427 (3) ÅT = 296 K
V = 3074.2 (8) Å3Block, yellow
Z = 80.20 × 0.18 × 0.16 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2271 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 27.6°, θmin = 2.5°
ω scansh = 1111
14892 measured reflectionsk = 2214
3552 independent reflectionsl = 2625
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.073P)2 + 0.6048P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3552 reflectionsΔρmax = 0.29 e Å3
202 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0061 (11)
Crystal data top
C17H17N3O2V = 3074.2 (8) Å3
Mr = 295.34Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.5729 (13) ŵ = 0.09 mm1
b = 17.555 (3) ÅT = 296 K
c = 20.427 (3) Å0.20 × 0.18 × 0.16 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2271 reflections with I > 2σ(I)
14892 measured reflectionsRint = 0.034
3552 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
3552 reflectionsΔρmin = 0.24 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3274 (2)0.36448 (10)0.37402 (8)0.0470 (4)
C20.4490 (2)0.31933 (11)0.35231 (9)0.0568 (5)
H20.48190.32210.30900.068*
C30.5211 (2)0.27020 (12)0.39536 (10)0.0673 (6)
H30.60300.23990.38070.081*
C40.4740 (3)0.26520 (13)0.45952 (11)0.0719 (6)
H40.52340.23170.48810.086*
C50.3540 (2)0.30984 (13)0.48091 (10)0.0676 (6)
H50.32190.30670.52430.081*
C60.2797 (2)0.35970 (12)0.43881 (9)0.0561 (5)
H60.19810.38990.45380.067*
C70.2554 (2)0.42127 (10)0.26479 (8)0.0500 (4)
C80.1713 (2)0.48955 (10)0.24974 (8)0.0479 (4)
C90.1213 (2)0.51919 (11)0.31153 (9)0.0502 (4)
C100.0283 (3)0.58819 (12)0.32686 (10)0.0672 (6)
H10A0.00750.58560.37130.101*
H10B0.05970.59090.29790.101*
H10C0.09210.63270.32130.101*
C110.1465 (2)0.51345 (10)0.18519 (9)0.0506 (4)
C120.0770 (2)0.58668 (10)0.16927 (9)0.0526 (5)
C130.0461 (2)0.60530 (12)0.13197 (9)0.0561 (5)
H130.10680.57220.10720.067*
C140.0655 (3)0.68398 (15)0.13746 (12)0.0791 (7)
H140.14260.71320.11750.095*
C150.0474 (3)0.70936 (13)0.17668 (12)0.0834 (7)
H150.06220.76000.18840.100*
C160.1841 (3)0.48181 (15)0.06678 (10)0.0774 (7)
H16A0.20170.53550.05850.093*
H16B0.08180.46860.05000.093*
C170.3046 (3)0.43617 (17)0.03265 (11)0.0931 (8)
H17A0.40540.44780.05060.140*
H17B0.30360.44820.01320.140*
H17C0.28290.38290.03850.140*
N10.25453 (19)0.41740 (8)0.33228 (6)0.0506 (4)
N20.16849 (17)0.47679 (9)0.36000 (7)0.0530 (4)
N30.1892 (2)0.46750 (9)0.13692 (7)0.0637 (5)
H3A0.23640.41920.15140.076*
O10.31504 (18)0.37337 (8)0.22731 (6)0.0658 (4)
O20.13911 (19)0.64946 (9)0.19731 (8)0.0768 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0528 (9)0.0412 (9)0.0472 (9)0.0088 (8)0.0069 (7)0.0016 (7)
C20.0628 (11)0.0525 (11)0.0552 (10)0.0007 (9)0.0040 (9)0.0025 (8)
C30.0633 (12)0.0594 (13)0.0793 (14)0.0061 (10)0.0146 (11)0.0005 (11)
C40.0719 (13)0.0688 (14)0.0752 (14)0.0025 (12)0.0224 (11)0.0189 (11)
C50.0685 (13)0.0798 (15)0.0546 (11)0.0114 (12)0.0103 (9)0.0163 (11)
C60.0566 (10)0.0607 (12)0.0511 (10)0.0051 (9)0.0034 (8)0.0052 (9)
C70.0609 (10)0.0444 (10)0.0446 (9)0.0025 (9)0.0018 (8)0.0005 (7)
C80.0544 (10)0.0414 (9)0.0477 (9)0.0033 (8)0.0040 (7)0.0015 (8)
C90.0505 (9)0.0460 (10)0.0543 (10)0.0028 (8)0.0012 (8)0.0005 (8)
C100.0674 (12)0.0613 (13)0.0728 (13)0.0131 (11)0.0052 (10)0.0014 (10)
C110.0555 (10)0.0440 (10)0.0523 (10)0.0102 (8)0.0052 (8)0.0043 (8)
C120.0509 (10)0.0480 (11)0.0589 (11)0.0072 (8)0.0006 (8)0.0074 (8)
C130.0508 (10)0.0590 (12)0.0583 (10)0.0014 (9)0.0078 (8)0.0080 (9)
C140.0757 (14)0.0754 (16)0.0862 (16)0.0254 (13)0.0148 (13)0.0283 (13)
C150.108 (2)0.0462 (13)0.0959 (17)0.0016 (13)0.0296 (16)0.0002 (12)
C160.1008 (17)0.0840 (17)0.0474 (11)0.0017 (14)0.0064 (11)0.0079 (11)
C170.119 (2)0.101 (2)0.0587 (13)0.0073 (17)0.0081 (13)0.0057 (13)
N10.0654 (9)0.0447 (9)0.0416 (7)0.0042 (7)0.0013 (7)0.0002 (6)
N20.0606 (9)0.0494 (9)0.0490 (8)0.0035 (7)0.0022 (7)0.0035 (7)
N30.0953 (13)0.0510 (10)0.0447 (8)0.0010 (9)0.0074 (8)0.0033 (7)
O10.0989 (11)0.0512 (8)0.0471 (7)0.0146 (7)0.0001 (7)0.0042 (6)
O20.0834 (10)0.0573 (9)0.0896 (11)0.0112 (8)0.0091 (8)0.0004 (8)
Geometric parameters (Å, º) top
C1—C21.382 (3)C10—H10C0.9600
C1—C61.388 (3)C11—N31.325 (2)
C1—N11.407 (2)C11—C121.454 (3)
C2—C31.378 (3)C12—C131.342 (2)
C2—H20.9300C12—O21.352 (2)
C3—C41.374 (3)C13—C141.396 (3)
C3—H30.9300C13—H130.9300
C4—C51.365 (3)C14—C151.333 (4)
C4—H40.9300C14—H140.9300
C5—C61.382 (3)C15—O21.379 (3)
C5—H50.9300C15—H150.9300
C6—H60.9300C16—N31.455 (2)
C7—O11.247 (2)C16—C171.482 (3)
C7—N11.380 (2)C16—H16A0.9700
C7—C81.432 (3)C16—H16B0.9700
C8—C111.400 (2)C17—H17A0.9600
C8—C91.431 (2)C17—H17B0.9600
C9—N21.303 (2)C17—H17C0.9600
C9—C101.483 (3)N1—N21.397 (2)
C10—H10A0.9600N3—H3A0.9845
C10—H10B0.9600
C2—C1—C6119.58 (17)N3—C11—C12119.01 (16)
C2—C1—N1121.26 (16)C8—C11—C12122.55 (17)
C6—C1—N1119.12 (16)C13—C12—O2110.60 (17)
C3—C2—C1119.48 (18)C13—C12—C11131.66 (18)
C3—C2—H2120.3O2—C12—C11117.69 (16)
C1—C2—H2120.3C12—C13—C14106.80 (19)
C4—C3—C2121.1 (2)C12—C13—H13126.6
C4—C3—H3119.4C14—C13—H13126.6
C2—C3—H3119.4C15—C14—C13107.0 (2)
C5—C4—C3119.3 (2)C15—C14—H14126.5
C5—C4—H4120.3C13—C14—H14126.5
C3—C4—H4120.3C14—C15—O2110.0 (2)
C4—C5—C6120.8 (2)C14—C15—H15125.0
C4—C5—H5119.6O2—C15—H15125.0
C6—C5—H5119.6N3—C16—C17110.42 (19)
C5—C6—C1119.7 (2)N3—C16—H16A109.6
C5—C6—H6120.2C17—C16—H16A109.6
C1—C6—H6120.2N3—C16—H16B109.6
O1—C7—N1125.63 (17)C17—C16—H16B109.6
O1—C7—C8129.72 (16)H16A—C16—H16B108.1
N1—C7—C8104.63 (15)C16—C17—H17A109.5
C11—C8—C9132.56 (17)C16—C17—H17B109.5
C11—C8—C7121.97 (16)H17A—C17—H17B109.5
C9—C8—C7105.42 (15)C16—C17—H17C109.5
N2—C9—C8111.69 (16)H17A—C17—H17C109.5
N2—C9—C10118.21 (16)H17B—C17—H17C109.5
C8—C9—C10130.09 (17)C7—N1—N2111.78 (14)
C9—C10—H10A109.5C7—N1—C1129.42 (15)
C9—C10—H10B109.5N2—N1—C1118.80 (13)
H10A—C10—H10B109.5C9—N2—N1106.40 (14)
C9—C10—H10C109.5C11—N3—C16128.24 (18)
H10A—C10—H10C109.5C11—N3—H3A114.4
H10B—C10—H10C109.5C16—N3—H3A117.2
N3—C11—C8118.44 (17)C12—O2—C15105.52 (17)
C6—C1—C2—C30.0 (3)C8—C11—C12—O251.5 (2)
N1—C1—C2—C3177.63 (17)O2—C12—C13—C141.2 (2)
C1—C2—C3—C40.1 (3)C11—C12—C13—C14176.4 (2)
C2—C3—C4—C50.2 (3)C12—C13—C14—C151.0 (2)
C3—C4—C5—C60.1 (3)C13—C14—C15—O20.5 (3)
C4—C5—C6—C10.0 (3)O1—C7—N1—N2175.51 (18)
C2—C1—C6—C50.1 (3)C8—C7—N1—N23.0 (2)
N1—C1—C6—C5177.75 (17)O1—C7—N1—C15.4 (3)
O1—C7—C8—C111.4 (3)C8—C7—N1—C1176.05 (17)
N1—C7—C8—C11179.86 (16)C2—C1—N1—C718.6 (3)
O1—C7—C8—C9176.14 (19)C6—C1—N1—C7163.80 (18)
N1—C7—C8—C92.32 (19)C2—C1—N1—N2160.46 (16)
C11—C8—C9—N2178.07 (19)C6—C1—N1—N217.2 (2)
C7—C8—C9—N20.9 (2)C8—C9—N2—N10.9 (2)
C11—C8—C9—C102.1 (3)C10—C9—N2—N1178.91 (15)
C7—C8—C9—C10179.30 (19)C7—N1—N2—C92.5 (2)
C9—C8—C11—N3170.12 (19)C1—N1—N2—C9176.65 (15)
C7—C8—C11—N36.7 (3)C8—C11—N3—C16175.9 (2)
C9—C8—C11—C1210.3 (3)C12—C11—N3—C163.7 (3)
C7—C8—C11—C12172.87 (17)C17—C16—N3—C11153.0 (2)
N3—C11—C12—C1354.5 (3)C13—C12—O2—C150.9 (2)
C8—C11—C12—C13125.9 (2)C11—C12—O2—C15177.06 (17)
N3—C11—C12—O2128.04 (19)C14—C15—O2—C120.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.981.872.702 (2)140
C15—H15···O1i0.932.393.279 (3)161
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC17H17N3O2
Mr295.34
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)8.5729 (13), 17.555 (3), 20.427 (3)
V3)3074.2 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14892, 3552, 2271
Rint0.034
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.153, 1.02
No. of reflections3552
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.981.872.702 (2)140
C15—H15···O1i0.932.393.279 (3)161
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported by a project of the Dalian Science and Technology Bureau (No. 2009E12SF152) and the National Natural Science Foundation of China (No. 30901950).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., García-Tasende, M. S., Sánchez, A., Sordo, J. & Touceda, Á. (2007). Coord. Chem. Rev. 251, 1561–1589.  CrossRef CAS Google Scholar
First citationDong, X.-C., Liu, F.-C. & Zhao, Y.-L. (1983). Acta Chim. Sin. 41, 848–852.  CAS Google Scholar
First citationLi, J., Li, J.-Z., Li, J.-Q., Zhang, H.-Q. & Li, J.-M. (2009). Acta Cryst. E65, o1824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-W. (2010). Acta Cryst. E66, o1534.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, H.-Q., Li, J.-Z., Zhang, Y., Zhang, D. & Su, Z.-H. (2007). Acta Cryst. E63, o3536.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1277
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds