organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1298

5-Bromo-2-methyl-3-(4-methyl­phenyl­sulfin­yl)-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 28 March 2012; accepted 30 March 2012; online 4 April 2012)

In the title compound, C16H13BrO2S, the 4-methyl­phenyl ring makes a dihedral angle of 87.83 (6)° with the mean plane [mean deviation = 0.007 (1) Å] of the benzofuran fragment. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds and Br⋯O contacts [3.099 (2) Å]. The crystal structure also exhibits ππ inter­actions between the furan and benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.637 (2) Å, inter­planar distance = 3.317 (2) Å and slippage = 1.492 (2) Å].

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o1297.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o2721.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13BrO2S

  • Mr = 349.23

  • Monoclinic, P 21 /c

  • a = 14.3470 (2) Å

  • b = 11.2122 (1) Å

  • c = 9.6852 (1) Å

  • β = 107.556 (1)°

  • V = 1485.41 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 173 K

  • 0.31 × 0.28 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.466, Tmax = 0.579

  • 14207 measured reflections

  • 3671 independent reflections

  • 2844 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.086

  • S = 1.03

  • 3671 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.95 2.49 3.420 (3) 165
C9—H9C⋯O2ii 0.98 2.48 3.294 (3) 141
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing study of 5-bromo-2-methyl-1-benzofuran derivatives containing 3-(4-fluorophenylsulfinyl) (Choi et al., 2010a) and 3-(4-chlorophenylsulfinyl) (Choi et al., 2010b) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 4-methylphenyl ring and the mean plane of the benzofuran fragment is 87.83 (6)°. In the crystal structure (Fig. 2), molecules are linked by weak C–H···O hydrogen bonds (Table 1) and Br···O halogen-bondings between the bromine atom and the O atom of the S=O unit [Br1···O2i = 3.099 (2) Å, C4—Br1···O2i = 163.52 (8)°] (Politzer et al., 2007). The crystal packing (Fig. 3) also exhibits weak π···π interactions between the furan and benzene rings of neighbouring molecules, with a Cg1···Cg2vii distance of 3.637 (2) Å and an interplanar distance of 3.317 (2) Å resulting in a slippage of 1.492 (2) Å (Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and C2–C7 benzene ring, respectively).

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2010a,b). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-bromo-2-methyl-3-(4-methylphenylsulfanyl)-1-benzofuran (300 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane/ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 73%, m.p. 424–425 K; Rf = 0.45 (hexane/ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogen atoms were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O and Br···O interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x,- y + 1/2,z + 1/2; (ii) - x + 2,y - 1/2,- z + 3/2; (iii) x,- y + 3/2 ,z + 1/2; (iv) x,- y + 1/2,z - 1/2.] (v) - x + 2,y + 1/2,- z + 3/2; (vi) x,- y + 3/2,z - 1/2;
[Figure 3] Fig. 3. A view of the π···π interactions (dotted lines) in the crystal structure of the title compound. H atoms were omitted for clarity. [Symmetry codes: (vii) - x + 2,- y + 1,- z + 1.]
5-Bromo-2-methyl-3-(4-methylphenylsulfinyl)-1-benzofuran top
Crystal data top
C16H13BrO2SF(000) = 704
Mr = 349.23Dx = 1.562 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5020 reflections
a = 14.3470 (2) Åθ = 2.4–28.1°
b = 11.2122 (1) ŵ = 2.91 mm1
c = 9.6852 (1) ÅT = 173 K
β = 107.556 (1)°Block, colourless
V = 1485.41 (3) Å30.31 × 0.28 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3671 independent reflections
Radiation source: rotating anode2844 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.032
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 1.5°
ϕ and ω scansh = 1819
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1414
Tmin = 0.466, Tmax = 0.579l = 1212
14207 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.086H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.8792P]
where P = (Fo2 + 2Fc2)/3
3671 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
C16H13BrO2SV = 1485.41 (3) Å3
Mr = 349.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.3470 (2) ŵ = 2.91 mm1
b = 11.2122 (1) ÅT = 173 K
c = 9.6852 (1) Å0.31 × 0.28 × 0.21 mm
β = 107.556 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3671 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2844 reflections with I > 2σ(I)
Tmin = 0.466, Tmax = 0.579Rint = 0.032
14207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.03Δρmax = 0.55 e Å3
3671 reflectionsΔρmin = 0.77 e Å3
183 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.79550 (2)0.16838 (2)0.52417 (3)0.04775 (11)
S10.73033 (4)0.67240 (5)0.20895 (5)0.02775 (13)
O10.94299 (11)0.66889 (13)0.57489 (16)0.0296 (3)
O20.73660 (12)0.58439 (15)0.09690 (16)0.0386 (4)
C10.81812 (15)0.63651 (19)0.3736 (2)0.0253 (4)
C20.83871 (14)0.52469 (18)0.4514 (2)0.0244 (4)
C30.80193 (15)0.40884 (19)0.4307 (2)0.0282 (4)
H30.75020.38720.34710.034*
C40.84473 (17)0.32647 (19)0.5384 (2)0.0312 (5)
C50.92198 (17)0.3549 (2)0.6600 (2)0.0339 (5)
H50.94850.29530.73060.041*
C60.96063 (16)0.4685 (2)0.6796 (2)0.0320 (5)
H61.01460.48890.76080.038*
C70.91637 (15)0.55073 (19)0.5743 (2)0.0258 (4)
C80.88224 (15)0.7186 (2)0.4515 (2)0.0267 (4)
C90.89826 (18)0.84651 (19)0.4301 (3)0.0356 (5)
H9A0.86050.86990.33160.053*
H9B0.96790.86070.44420.053*
H9C0.87700.89370.50020.053*
C100.62293 (15)0.63534 (19)0.2582 (2)0.0263 (4)
C110.59828 (17)0.7053 (2)0.3594 (2)0.0350 (5)
H110.63930.76910.40590.042*
C120.51270 (19)0.6806 (2)0.3919 (3)0.0444 (6)
H120.49600.72750.46270.053*
C130.45106 (17)0.5896 (2)0.3241 (3)0.0438 (6)
C140.47699 (19)0.5233 (3)0.2218 (3)0.0516 (7)
H140.43490.46110.17280.062*
C150.56315 (18)0.5448 (2)0.1883 (3)0.0422 (6)
H150.58020.49760.11810.051*
C160.3583 (2)0.5640 (3)0.3611 (4)0.0680 (9)
H16A0.37300.55760.46650.102*
H16B0.32990.48890.31570.102*
H16C0.31150.62900.32530.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05663 (18)0.02626 (14)0.05713 (18)0.00091 (11)0.01230 (13)0.00537 (11)
S10.0306 (3)0.0274 (3)0.0236 (2)0.0031 (2)0.0058 (2)0.00431 (19)
O10.0262 (7)0.0322 (8)0.0285 (7)0.0028 (6)0.0055 (6)0.0021 (6)
O20.0464 (10)0.0442 (10)0.0271 (8)0.0076 (8)0.0138 (7)0.0025 (7)
C10.0230 (10)0.0281 (10)0.0249 (10)0.0010 (8)0.0074 (8)0.0031 (8)
C20.0211 (9)0.0297 (10)0.0231 (9)0.0033 (8)0.0077 (8)0.0017 (8)
C30.0251 (10)0.0289 (11)0.0289 (10)0.0016 (9)0.0055 (8)0.0001 (8)
C40.0342 (12)0.0247 (10)0.0364 (12)0.0039 (9)0.0130 (9)0.0016 (9)
C50.0366 (12)0.0357 (12)0.0288 (11)0.0144 (10)0.0090 (9)0.0058 (9)
C60.0286 (11)0.0414 (13)0.0239 (10)0.0092 (10)0.0048 (8)0.0005 (9)
C70.0230 (10)0.0303 (11)0.0254 (10)0.0018 (8)0.0092 (8)0.0019 (8)
C80.0243 (10)0.0314 (11)0.0267 (10)0.0008 (9)0.0108 (8)0.0010 (8)
C90.0413 (13)0.0290 (12)0.0384 (12)0.0070 (10)0.0152 (10)0.0013 (9)
C100.0237 (10)0.0273 (10)0.0241 (10)0.0040 (8)0.0015 (8)0.0021 (8)
C110.0341 (12)0.0352 (12)0.0333 (12)0.0022 (10)0.0063 (10)0.0069 (9)
C120.0373 (13)0.0571 (17)0.0396 (14)0.0115 (12)0.0127 (11)0.0027 (12)
C130.0282 (12)0.0504 (15)0.0513 (15)0.0074 (11)0.0099 (11)0.0130 (12)
C140.0347 (14)0.0459 (16)0.0705 (19)0.0131 (12)0.0103 (13)0.0137 (14)
C150.0379 (13)0.0411 (14)0.0459 (14)0.0026 (11)0.0099 (11)0.0151 (11)
C160.0352 (15)0.089 (3)0.082 (2)0.0073 (16)0.0223 (15)0.025 (2)
Geometric parameters (Å, º) top
Br1—C41.898 (2)C8—C91.477 (3)
Br1—O2i3.0986 (16)C9—H9A0.9800
S1—O21.4895 (16)C9—H9B0.9800
S1—C11.755 (2)C9—H9C0.9800
S1—C101.794 (2)C10—C151.369 (3)
O1—C81.368 (2)C10—C111.382 (3)
O1—C71.378 (3)C11—C121.384 (4)
C1—C81.357 (3)C11—H110.9500
C1—C21.446 (3)C12—C131.379 (4)
C2—C31.394 (3)C12—H120.9500
C2—C71.394 (3)C13—C141.377 (4)
C3—C41.390 (3)C13—C161.507 (4)
C3—H30.9500C14—C151.391 (4)
C4—C51.389 (3)C14—H140.9500
C5—C61.379 (3)C15—H150.9500
C5—H50.9500C16—H16A0.9800
C6—C71.379 (3)C16—H16B0.9800
C6—H60.9500C16—H16C0.9800
C4—Br1—O2i163.52 (8)C8—C9—H9B109.5
O2—S1—C1109.01 (10)H9A—C9—H9B109.5
O2—S1—C10106.61 (10)C8—C9—H9C109.5
C1—S1—C1098.26 (9)H9A—C9—H9C109.5
C8—O1—C7106.57 (16)H9B—C9—H9C109.5
C8—C1—C2107.50 (18)C15—C10—C11121.0 (2)
C8—C1—S1121.98 (16)C15—C10—S1120.02 (17)
C2—C1—S1130.52 (16)C11—C10—S1118.78 (17)
C3—C2—C7119.24 (19)C10—C11—C12118.8 (2)
C3—C2—C1136.39 (19)C10—C11—H11120.6
C7—C2—C1104.36 (18)C12—C11—H11120.6
C4—C3—C2116.68 (19)C13—C12—C11121.7 (2)
C4—C3—H3121.7C13—C12—H12119.2
C2—C3—H3121.7C11—C12—H12119.2
C5—C4—C3122.9 (2)C14—C13—C12117.9 (2)
C5—C4—Br1117.37 (17)C14—C13—C16121.2 (3)
C3—C4—Br1119.72 (17)C12—C13—C16120.9 (3)
C6—C5—C4120.9 (2)C13—C14—C15121.8 (2)
C6—C5—H5119.6C13—C14—H14119.1
C4—C5—H5119.6C15—C14—H14119.1
C7—C6—C5116.1 (2)C10—C15—C14118.8 (2)
C7—C6—H6122.0C10—C15—H15120.6
C5—C6—H6122.0C14—C15—H15120.6
O1—C7—C6125.05 (19)C13—C16—H16A109.5
O1—C7—C2110.73 (18)C13—C16—H16B109.5
C6—C7—C2124.2 (2)H16A—C16—H16B109.5
C1—C8—O1110.84 (18)C13—C16—H16C109.5
C1—C8—C9133.5 (2)H16A—C16—H16C109.5
O1—C8—C9115.66 (18)H16B—C16—H16C109.5
C8—C9—H9A109.5
O2—S1—C1—C8128.69 (18)C1—C2—C7—C6179.4 (2)
C10—S1—C1—C8120.49 (18)C2—C1—C8—O10.3 (2)
O2—S1—C1—C250.8 (2)S1—C1—C8—O1179.90 (14)
C10—S1—C1—C260.1 (2)C2—C1—C8—C9179.9 (2)
C8—C1—C2—C3179.0 (2)S1—C1—C8—C90.5 (4)
S1—C1—C2—C30.5 (4)C7—O1—C8—C10.3 (2)
C8—C1—C2—C70.2 (2)C7—O1—C8—C9179.99 (18)
S1—C1—C2—C7179.73 (17)O2—S1—C10—C153.5 (2)
C7—C2—C3—C41.6 (3)C1—S1—C10—C15116.2 (2)
C1—C2—C3—C4179.3 (2)O2—S1—C10—C11178.65 (17)
C2—C3—C4—C51.5 (3)C1—S1—C10—C1168.59 (19)
C2—C3—C4—Br1177.05 (15)C15—C10—C11—C121.5 (3)
C3—C4—C5—C60.2 (4)S1—C10—C11—C12176.65 (18)
Br1—C4—C5—C6178.77 (17)C10—C11—C12—C131.1 (4)
C4—C5—C6—C71.7 (3)C11—C12—C13—C140.1 (4)
C8—O1—C7—C6179.2 (2)C11—C12—C13—C16179.9 (2)
C8—O1—C7—C20.2 (2)C12—C13—C14—C151.0 (4)
C5—C6—C7—O1179.0 (2)C16—C13—C14—C15179.0 (3)
C5—C6—C7—C21.7 (3)C11—C10—C15—C140.6 (4)
C3—C2—C7—O1179.38 (18)S1—C10—C15—C14175.7 (2)
C1—C2—C7—O10.0 (2)C13—C14—C15—C100.7 (4)
C3—C2—C7—C60.0 (3)
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1ii0.952.493.420 (3)165
C9—H9C···O2iii0.982.483.294 (3)141
Symmetry codes: (ii) x+2, y1/2, z+3/2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H13BrO2S
Mr349.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)14.3470 (2), 11.2122 (1), 9.6852 (1)
β (°) 107.556 (1)
V3)1485.41 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.91
Crystal size (mm)0.31 × 0.28 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.466, 0.579
No. of measured, independent and
observed [I > 2σ(I)] reflections
14207, 3671, 2844
Rint0.032
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 1.03
No. of reflections3671
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.77

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.493.420 (3)165.4
C9—H9C···O2ii0.982.483.294 (3)140.8
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y+3/2, z+1/2.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o1297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o2721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1298
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds