organic compounds
Guanidinium chloride–18-crown-6 (2/1)
aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: seuwei@126.com
In the crystal of the title compound, 2CH6N3+·2Cl−·C12H24O6, the 18-crown-6 molecule is located across an inversion center. The guanidinium cation links to the 18-crown-6 molecule and chloride anion via N—H⋯O and N—H⋯Cl hydrogen bonds.
Related literature
For applications of et al. 1998). For ferroelectric metal-organic 18-crown-6 see: Fu et al. (2009, 2011); Ye et al. (2006); Zhang et al. (2008, 2010).
see: ClarkExperimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812016959/xu5505sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812016959/xu5505Isup2.hkl
The hydrochloric acid (0.36 g, 10 mmol) and guanidinium carbonate (0.9 g, 5 mmol) were dissolved in 30 ml water, and the solution was combined with methanol solution of 18-crown-6 (10 mmol). The mixture solution was stirred for 30 min to reaction fully. Blocky single crystals were obtained by slow evaporation of the filtrate after two weeks (yield 63%).
H atoms were placed in geometrically idealized positions with C—H = 0.97 and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Uiso(N,C).
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).2CH6N3+·2Cl−·C12H22O6 | F(000) = 484 |
Mr = 453.37 | Dx = 1.261 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3638 reflections |
a = 8.9685 (18) Å | θ = 3.0–27.5° |
b = 9.7305 (19) Å | µ = 0.31 mm−1 |
c = 13.995 (3) Å | T = 293 K |
β = 102.14 (3)° | Block, colorless |
V = 1194.0 (4) Å3 | 0.20 × 0.20 × 0.20 mm |
Z = 2 |
Rigaku SCXmini diffractometer | 1154 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.130 |
Graphite monochromator | θmax = 27.5°, θmin = 3.0° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −12→12 |
Tmin = 0.939, Tmax = 0.940 | l = −18→18 |
12074 measured reflections | 2 standard reflections every 150 reflections |
2732 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.074 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.220 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0875P)2 + 0.3032P] where P = (Fo2 + 2Fc2)/3 |
2732 reflections | (Δ/σ)max < 0.001 |
127 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
2CH6N3+·2Cl−·C12H22O6 | V = 1194.0 (4) Å3 |
Mr = 453.37 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.9685 (18) Å | µ = 0.31 mm−1 |
b = 9.7305 (19) Å | T = 293 K |
c = 13.995 (3) Å | 0.20 × 0.20 × 0.20 mm |
β = 102.14 (3)° |
Rigaku SCXmini diffractometer | 2732 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 1154 reflections with I > 2σ(I) |
Tmin = 0.939, Tmax = 0.940 | Rint = 0.130 |
12074 measured reflections | 2 standard reflections every 150 reflections |
R[F2 > 2σ(F2)] = 0.074 | 0 restraints |
wR(F2) = 0.220 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.35 e Å−3 |
2732 reflections | Δρmin = −0.23 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.02647 (14) | −0.02938 (12) | 0.66801 (8) | 0.0671 (5) | |
O1 | 0.3181 (3) | 0.2939 (3) | 0.3760 (2) | 0.0642 (9) | |
O2 | 0.2159 (3) | 0.5624 (3) | 0.3980 (2) | 0.0708 (10) | |
O3 | 0.3634 (4) | 0.7298 (3) | 0.5591 (3) | 0.0813 (11) | |
N1 | 0.2175 (4) | 0.1712 (4) | 0.5467 (3) | 0.0644 (11) | |
H1A | 0.2267 | 0.1837 | 0.4874 | 0.077* | |
H1B | 0.1607 | 0.1059 | 0.5603 | 0.077* | |
N3 | 0.2713 (4) | 0.2314 (4) | 0.7073 (3) | 0.0660 (11) | |
H3A | 0.3162 | 0.2840 | 0.7540 | 0.079* | |
H3B | 0.2139 | 0.1655 | 0.7192 | 0.079* | |
C7 | 0.2905 (5) | 0.2520 (4) | 0.6168 (3) | 0.0552 (11) | |
N2 | 0.3776 (5) | 0.3520 (4) | 0.5987 (3) | 0.0798 (13) | |
H2A | 0.3884 | 0.3664 | 0.5399 | 0.096* | |
H2B | 0.4241 | 0.4034 | 0.6456 | 0.096* | |
C3 | 0.1188 (6) | 0.4537 (6) | 0.3581 (4) | 0.0781 (15) | |
H3C | 0.0303 | 0.4894 | 0.3129 | 0.094* | |
H3D | 0.0842 | 0.4046 | 0.4097 | 0.094* | |
C5 | 0.2433 (7) | 0.7737 (6) | 0.4850 (4) | 0.0949 (19) | |
H5A | 0.2832 | 0.8123 | 0.4316 | 0.114* | |
H5B | 0.1853 | 0.8444 | 0.5098 | 0.114* | |
C2 | 0.2036 (6) | 0.3607 (5) | 0.3069 (3) | 0.0715 (14) | |
H2C | 0.1349 | 0.2933 | 0.2703 | 0.086* | |
H2D | 0.2497 | 0.4123 | 0.2613 | 0.086* | |
C6 | 0.4578 (7) | 0.8402 (6) | 0.5976 (4) | 0.0956 (19) | |
H6 | 0.4410 | 0.9319 | 0.5799 | 0.115* | |
C4 | 0.1448 (6) | 0.6568 (7) | 0.4502 (4) | 0.0962 (19) | |
H4A | 0.1177 | 0.6107 | 0.5056 | 0.115* | |
H4B | 0.0515 | 0.6898 | 0.4082 | 0.115* | |
C1 | 0.4143 (7) | 0.2120 (6) | 0.3307 (4) | 0.0898 (17) | |
H1C | 0.4518 | 0.2667 | 0.2827 | 0.108* | |
H1D | 0.3564 | 0.1357 | 0.2969 | 0.108* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0803 (9) | 0.0601 (7) | 0.0605 (8) | −0.0002 (7) | 0.0141 (6) | 0.0060 (6) |
O1 | 0.068 (2) | 0.064 (2) | 0.0615 (19) | 0.0040 (17) | 0.0179 (17) | −0.0044 (16) |
O2 | 0.0586 (19) | 0.085 (3) | 0.070 (2) | 0.0093 (18) | 0.0169 (17) | −0.0028 (18) |
O3 | 0.083 (2) | 0.068 (2) | 0.089 (3) | 0.022 (2) | 0.006 (2) | −0.0035 (19) |
N1 | 0.078 (3) | 0.059 (2) | 0.056 (2) | −0.004 (2) | 0.014 (2) | −0.003 (2) |
N3 | 0.065 (3) | 0.078 (3) | 0.055 (2) | −0.007 (2) | 0.010 (2) | −0.001 (2) |
C7 | 0.055 (3) | 0.049 (3) | 0.059 (3) | 0.009 (2) | 0.008 (2) | 0.002 (2) |
N2 | 0.095 (3) | 0.075 (3) | 0.070 (3) | −0.023 (3) | 0.018 (2) | −0.004 (2) |
C3 | 0.061 (3) | 0.091 (4) | 0.079 (4) | −0.002 (3) | 0.009 (3) | 0.020 (3) |
C5 | 0.105 (5) | 0.091 (5) | 0.085 (4) | 0.051 (4) | 0.011 (4) | −0.005 (3) |
C2 | 0.067 (3) | 0.075 (4) | 0.064 (3) | −0.016 (3) | −0.004 (3) | 0.006 (3) |
C6 | 0.115 (5) | 0.050 (3) | 0.113 (5) | 0.028 (3) | 0.003 (4) | −0.011 (3) |
C4 | 0.067 (4) | 0.141 (6) | 0.082 (4) | 0.039 (4) | 0.017 (3) | −0.011 (4) |
C1 | 0.102 (4) | 0.078 (4) | 0.091 (4) | −0.010 (3) | 0.024 (4) | −0.034 (3) |
O1—C2 | 1.412 (5) | C3—C2 | 1.462 (7) |
O1—C1 | 1.418 (6) | C3—H3C | 0.9700 |
O2—C4 | 1.408 (6) | C3—H3D | 0.9700 |
O2—C3 | 1.409 (6) | C5—C4 | 1.459 (8) |
O3—C5 | 1.395 (6) | C5—H5A | 0.9700 |
O3—C6 | 1.403 (6) | C5—H5B | 0.9700 |
N1—C7 | 1.319 (5) | C2—H2C | 0.9700 |
N1—H1A | 0.8600 | C2—H2D | 0.9700 |
N1—H1B | 0.8600 | C6—C1i | 1.448 (7) |
N3—C7 | 1.329 (5) | C6—H6 | 0.9300 |
N3—H3A | 0.8600 | C4—H4A | 0.9700 |
N3—H3B | 0.8600 | C4—H4B | 0.9700 |
C7—N2 | 1.305 (5) | C1—C6i | 1.448 (7) |
N2—H2A | 0.8600 | C1—H1C | 0.9700 |
N2—H2B | 0.8600 | C1—H1D | 0.9700 |
C2—O1—C1 | 112.1 (4) | O3—C5—H5B | 109.8 |
C4—O2—C3 | 112.7 (4) | C4—C5—H5B | 109.8 |
C5—O3—C6 | 111.1 (4) | H5A—C5—H5B | 108.3 |
C7—N1—H1A | 120.0 | O1—C2—C3 | 109.2 (4) |
C7—N1—H1B | 120.0 | O1—C2—H2C | 109.8 |
H1A—N1—H1B | 120.0 | C3—C2—H2C | 109.8 |
C7—N3—H3A | 120.0 | O1—C2—H2D | 109.8 |
C7—N3—H3B | 120.0 | C3—C2—H2D | 109.8 |
H3A—N3—H3B | 120.0 | H2C—C2—H2D | 108.3 |
N2—C7—N1 | 121.6 (4) | O3—C6—C1i | 108.9 (5) |
N2—C7—N3 | 120.0 (4) | O3—C6—H6 | 125.6 |
N1—C7—N3 | 118.4 (4) | C1i—C6—H6 | 125.6 |
C7—N2—H2A | 120.0 | O2—C4—C5 | 111.9 (5) |
C7—N2—H2B | 120.0 | O2—C4—H4A | 109.2 |
H2A—N2—H2B | 120.0 | C5—C4—H4A | 109.2 |
O2—C3—C2 | 108.5 (4) | O2—C4—H4B | 109.2 |
O2—C3—H3C | 110.0 | C5—C4—H4B | 109.2 |
C2—C3—H3C | 110.0 | H4A—C4—H4B | 107.9 |
O2—C3—H3D | 110.0 | O1—C1—C6i | 110.8 (4) |
C2—C3—H3D | 110.0 | O1—C1—H1C | 109.5 |
H3C—C3—H3D | 108.4 | C6i—C1—H1C | 109.5 |
O3—C5—C4 | 109.2 (5) | O1—C1—H1D | 109.5 |
O3—C5—H5A | 109.8 | C6i—C1—H1D | 109.5 |
C4—C5—H5A | 109.8 | H1C—C1—H1D | 108.1 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1 | 0.86 | 2.19 | 2.976 (5) | 152 |
N1—H1B···Cl1 | 0.86 | 2.49 | 3.294 (4) | 155 |
N2—H2A···O1 | 0.86 | 2.36 | 3.102 (5) | 145 |
N3—H3A···Cl1ii | 0.86 | 2.42 | 3.228 (4) | 158 |
Symmetry code: (ii) −x+1/2, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | 2CH6N3+·2Cl−·C12H22O6 |
Mr | 453.37 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 8.9685 (18), 9.7305 (19), 13.995 (3) |
β (°) | 102.14 (3) |
V (Å3) | 1194.0 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Rigaku SCXmini diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.939, 0.940 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12074, 2732, 1154 |
Rint | 0.130 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.074, 0.220, 1.01 |
No. of reflections | 2732 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.23 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1 | 0.86 | 2.19 | 2.976 (5) | 152.1 |
N1—H1B···Cl1 | 0.86 | 2.49 | 3.294 (4) | 155.1 |
N2—H2A···O1 | 0.86 | 2.36 | 3.102 (5) | 145.3 |
N3—H3A···Cl1i | 0.86 | 2.42 | 3.228 (4) | 157.9 |
Symmetry code: (i) −x+1/2, y+1/2, −z+3/2. |
Acknowledgements
The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.
References
Clark, D. L., Keogh, D. W. & Palmer, C. L. (1998). Angew. Chem. Int. Ed. 37, 164–169. CrossRef CAS Google Scholar
Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997. Web of Science CSD CrossRef CAS Google Scholar
Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z. & Xiong, R.-G. (2011). J. Am. Chem. Soc. 133, 12780–12786. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recent years, crown ethers have attracted much attention because of their wide application in catalysis, solvent extraction, isotopeseparation, bionice, host–guest chemistry and supramolecular chemistry (Clark et al., 1998). Several 18-crown-6 clathrates were discovered to be dielectric-ferroelectric materials (Fu et al., 2011), hence we design the title compound to find new hydrogen bonding type dielectric materials. Dielectric-ferroelectric materials, comprising organic ligands, metal-organic coordination compounds and organic-inorganic hybrids almost show dielectric constant of temperature-dependent (Fu et al., 2009; Zhang et al., 2010; Zhang et al., 2008; Ye et al., 2006). Unfortunately, the dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent, below the melting point (395k-396k) of the compound, we have found that title compound has no dielectric disuniform from 80 K to 405 K. Herein we descibe the crystal structure of this compound.
At home temperature (25°C), the single-crystal X-ray diffraction reveals that the structure get crystallization in the monoclinic system, space group P 21/n and the asymmetric unit of the title compound consists of a guanidinium cation, a chloride anion and a 18-crown-6 molecule (Fig. 1). The three –NH2+ groups form guanidinium interact with a O atoms of one crown ether molecule and Cl anions through two N—H···O an two N—H···Cl hydraogen bonds (Table 1), composing a tree-dimensional crystal structure (Fig. 2).