organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1490

Guanidinium chloride–18-crown-6 (2/1)

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: seuwei@126.com

(Received 29 March 2012; accepted 18 April 2012; online 21 April 2012)

In the crystal of the title compound, 2CH6N3+·2Cl·C12H24O6, the 18-crown-6 mol­ecule is located across an inversion center. The guanidinium cation links to the 18-crown-6 mol­ecule and chloride anion via N—H⋯O and N—H⋯Cl hydrogen bonds.

Related literature

For applications of crown ethers, see: Clark et al. 1998[Clark, D. L., Keogh, D. W. & Palmer, C. L. (1998). Angew. Chem. Int. Ed. 37, 164-169.]). For ferroelectric metal-organic 18-crown-6 clathrates, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.], 2011[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z. & Xiong, R.-G. (2011). J. Am. Chem. Soc. 133, 12780-12786.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]).

[Scheme 1]

Experimental

Crystal data
  • 2CH6N3+·2Cl·C12H22O6

  • Mr = 453.37

  • Monoclinic, P 21 /n

  • a = 8.9685 (18) Å

  • b = 9.7305 (19) Å

  • c = 13.995 (3) Å

  • β = 102.14 (3)°

  • V = 1194.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.939, Tmax = 0.940

  • 12074 measured reflections

  • 2732 independent reflections

  • 1154 reflections with I > 2σ(I)

  • Rint = 0.130

  • 2 standard reflections every 150 reflections intensity decay: ?

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.220

  • S = 1.01

  • 2732 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 2.19 2.976 (5) 152
N1—H1B⋯Cl1 0.86 2.49 3.294 (4) 155
N2—H2A⋯O1 0.86 2.36 3.102 (5) 145
N3—H3A⋯Cl1i 0.86 2.42 3.228 (4) 158
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recent years, crown ethers have attracted much attention because of their wide application in catalysis, solvent extraction, isotopeseparation, bionice, host–guest chemistry and supramolecular chemistry (Clark et al., 1998). Several 18-crown-6 clathrates were discovered to be dielectric-ferroelectric materials (Fu et al., 2011), hence we design the title compound to find new hydrogen bonding type dielectric materials. Dielectric-ferroelectric materials, comprising organic ligands, metal-organic coordination compounds and organic-inorganic hybrids almost show dielectric constant of temperature-dependent (Fu et al., 2009; Zhang et al., 2010; Zhang et al., 2008; Ye et al., 2006). Unfortunately, the dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent, below the melting point (395k-396k) of the compound, we have found that title compound has no dielectric disuniform from 80 K to 405 K. Herein we descibe the crystal structure of this compound.

At home temperature (25°C), the single-crystal X-ray diffraction reveals that the structure get crystallization in the monoclinic system, space group P 21/n and the asymmetric unit of the title compound consists of a guanidinium cation, a chloride anion and a 18-crown-6 molecule (Fig. 1). The three –NH2+ groups form guanidinium interact with a O atoms of one crown ether molecule and Cl anions through two N—H···O an two N—H···Cl hydraogen bonds (Table 1), composing a tree-dimensional crystal structure (Fig. 2).

Related literature top

For applications of crown ethers, see: Clark et al. 1998). For ferroelectric metal-organic 18-crown-6 clathrates, see: Fu et al. (2009, 2011); Ye et al. (2006); Zhang et al. (2008, 2010).

Experimental top

The hydrochloric acid (0.36 g, 10 mmol) and guanidinium carbonate (0.9 g, 5 mmol) were dissolved in 30 ml water, and the solution was combined with methanol solution of 18-crown-6 (10 mmol). The mixture solution was stirred for 30 min to reaction fully. Blocky single crystals were obtained by slow evaporation of the filtrate after two weeks (yield 63%).

Refinement top

H atoms were placed in geometrically idealized positions with C—H = 0.97 and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Uiso(N,C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.
Guanidinium chloride–18-crown-6 (2/1) top
Crystal data top
2CH6N3+·2Cl·C12H22O6F(000) = 484
Mr = 453.37Dx = 1.261 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3638 reflections
a = 8.9685 (18) Åθ = 3.0–27.5°
b = 9.7305 (19) ŵ = 0.31 mm1
c = 13.995 (3) ÅT = 293 K
β = 102.14 (3)°Block, colorless
V = 1194.0 (4) Å30.20 × 0.20 × 0.20 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
1154 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.130
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.939, Tmax = 0.940l = 1818
12074 measured reflections2 standard reflections every 150 reflections
2732 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.220H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0875P)2 + 0.3032P]
where P = (Fo2 + 2Fc2)/3
2732 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
2CH6N3+·2Cl·C12H22O6V = 1194.0 (4) Å3
Mr = 453.37Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.9685 (18) ŵ = 0.31 mm1
b = 9.7305 (19) ÅT = 293 K
c = 13.995 (3) Å0.20 × 0.20 × 0.20 mm
β = 102.14 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2732 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1154 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.940Rint = 0.130
12074 measured reflections2 standard reflections every 150 reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.220H-atom parameters constrained
S = 1.01Δρmax = 0.35 e Å3
2732 reflectionsΔρmin = 0.23 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02647 (14)0.02938 (12)0.66801 (8)0.0671 (5)
O10.3181 (3)0.2939 (3)0.3760 (2)0.0642 (9)
O20.2159 (3)0.5624 (3)0.3980 (2)0.0708 (10)
O30.3634 (4)0.7298 (3)0.5591 (3)0.0813 (11)
N10.2175 (4)0.1712 (4)0.5467 (3)0.0644 (11)
H1A0.22670.18370.48740.077*
H1B0.16070.10590.56030.077*
N30.2713 (4)0.2314 (4)0.7073 (3)0.0660 (11)
H3A0.31620.28400.75400.079*
H3B0.21390.16550.71920.079*
C70.2905 (5)0.2520 (4)0.6168 (3)0.0552 (11)
N20.3776 (5)0.3520 (4)0.5987 (3)0.0798 (13)
H2A0.38840.36640.53990.096*
H2B0.42410.40340.64560.096*
C30.1188 (6)0.4537 (6)0.3581 (4)0.0781 (15)
H3C0.03030.48940.31290.094*
H3D0.08420.40460.40970.094*
C50.2433 (7)0.7737 (6)0.4850 (4)0.0949 (19)
H5A0.28320.81230.43160.114*
H5B0.18530.84440.50980.114*
C20.2036 (6)0.3607 (5)0.3069 (3)0.0715 (14)
H2C0.13490.29330.27030.086*
H2D0.24970.41230.26130.086*
C60.4578 (7)0.8402 (6)0.5976 (4)0.0956 (19)
H60.44100.93190.57990.115*
C40.1448 (6)0.6568 (7)0.4502 (4)0.0962 (19)
H4A0.11770.61070.50560.115*
H4B0.05150.68980.40820.115*
C10.4143 (7)0.2120 (6)0.3307 (4)0.0898 (17)
H1C0.45180.26670.28270.108*
H1D0.35640.13570.29690.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0803 (9)0.0601 (7)0.0605 (8)0.0002 (7)0.0141 (6)0.0060 (6)
O10.068 (2)0.064 (2)0.0615 (19)0.0040 (17)0.0179 (17)0.0044 (16)
O20.0586 (19)0.085 (3)0.070 (2)0.0093 (18)0.0169 (17)0.0028 (18)
O30.083 (2)0.068 (2)0.089 (3)0.022 (2)0.006 (2)0.0035 (19)
N10.078 (3)0.059 (2)0.056 (2)0.004 (2)0.014 (2)0.003 (2)
N30.065 (3)0.078 (3)0.055 (2)0.007 (2)0.010 (2)0.001 (2)
C70.055 (3)0.049 (3)0.059 (3)0.009 (2)0.008 (2)0.002 (2)
N20.095 (3)0.075 (3)0.070 (3)0.023 (3)0.018 (2)0.004 (2)
C30.061 (3)0.091 (4)0.079 (4)0.002 (3)0.009 (3)0.020 (3)
C50.105 (5)0.091 (5)0.085 (4)0.051 (4)0.011 (4)0.005 (3)
C20.067 (3)0.075 (4)0.064 (3)0.016 (3)0.004 (3)0.006 (3)
C60.115 (5)0.050 (3)0.113 (5)0.028 (3)0.003 (4)0.011 (3)
C40.067 (4)0.141 (6)0.082 (4)0.039 (4)0.017 (3)0.011 (4)
C10.102 (4)0.078 (4)0.091 (4)0.010 (3)0.024 (4)0.034 (3)
Geometric parameters (Å, º) top
O1—C21.412 (5)C3—C21.462 (7)
O1—C11.418 (6)C3—H3C0.9700
O2—C41.408 (6)C3—H3D0.9700
O2—C31.409 (6)C5—C41.459 (8)
O3—C51.395 (6)C5—H5A0.9700
O3—C61.403 (6)C5—H5B0.9700
N1—C71.319 (5)C2—H2C0.9700
N1—H1A0.8600C2—H2D0.9700
N1—H1B0.8600C6—C1i1.448 (7)
N3—C71.329 (5)C6—H60.9300
N3—H3A0.8600C4—H4A0.9700
N3—H3B0.8600C4—H4B0.9700
C7—N21.305 (5)C1—C6i1.448 (7)
N2—H2A0.8600C1—H1C0.9700
N2—H2B0.8600C1—H1D0.9700
C2—O1—C1112.1 (4)O3—C5—H5B109.8
C4—O2—C3112.7 (4)C4—C5—H5B109.8
C5—O3—C6111.1 (4)H5A—C5—H5B108.3
C7—N1—H1A120.0O1—C2—C3109.2 (4)
C7—N1—H1B120.0O1—C2—H2C109.8
H1A—N1—H1B120.0C3—C2—H2C109.8
C7—N3—H3A120.0O1—C2—H2D109.8
C7—N3—H3B120.0C3—C2—H2D109.8
H3A—N3—H3B120.0H2C—C2—H2D108.3
N2—C7—N1121.6 (4)O3—C6—C1i108.9 (5)
N2—C7—N3120.0 (4)O3—C6—H6125.6
N1—C7—N3118.4 (4)C1i—C6—H6125.6
C7—N2—H2A120.0O2—C4—C5111.9 (5)
C7—N2—H2B120.0O2—C4—H4A109.2
H2A—N2—H2B120.0C5—C4—H4A109.2
O2—C3—C2108.5 (4)O2—C4—H4B109.2
O2—C3—H3C110.0C5—C4—H4B109.2
C2—C3—H3C110.0H4A—C4—H4B107.9
O2—C3—H3D110.0O1—C1—C6i110.8 (4)
C2—C3—H3D110.0O1—C1—H1C109.5
H3C—C3—H3D108.4C6i—C1—H1C109.5
O3—C5—C4109.2 (5)O1—C1—H1D109.5
O3—C5—H5A109.8C6i—C1—H1D109.5
C4—C5—H5A109.8H1C—C1—H1D108.1
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.862.192.976 (5)152
N1—H1B···Cl10.862.493.294 (4)155
N2—H2A···O10.862.363.102 (5)145
N3—H3A···Cl1ii0.862.423.228 (4)158
Symmetry code: (ii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula2CH6N3+·2Cl·C12H22O6
Mr453.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.9685 (18), 9.7305 (19), 13.995 (3)
β (°) 102.14 (3)
V3)1194.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.939, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
12074, 2732, 1154
Rint0.130
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.220, 1.01
No. of reflections2732
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.23

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.862.192.976 (5)152.1
N1—H1B···Cl10.862.493.294 (4)155.1
N2—H2A···O10.862.363.102 (5)145.3
N3—H3A···Cl1i0.862.423.228 (4)157.9
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.

References

First citationClark, D. L., Keogh, D. W. & Palmer, C. L. (1998). Angew. Chem. Int. Ed. 37, 164–169.  CrossRef CAS Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z. & Xiong, R.-G. (2011). J. Am. Chem. Soc. 133, 12780–12786.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1490
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds