metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m637-m638

catena-Poly[[silver(I)-μ-1,2-bis­­(4,4-di­methyl-4,5-di­hydro-1,3-oxazol-2-yl)ethane-κ2N:N′] perchlorate hemihydrate]

aDepartment of Chemistry, Chung-Yuan Christian University, Jhongli 32023, Taiwan, bDepartment of Civil and Environmental Engineering, Nanya Institute of Technology, Jhongli 32091, Taiwan, cDepartment of Chemical and Material Engineering, Nanya Institute of Technology, Jhongli 32091, Taiwan, dDepartment of Polymer Materials, Vanung University, Jhongli 32061, Taiwan, and eDepartment of Materials and Fibers, Nanya Institute of Technology, Jhongli 32091, Taiwan
*Correspondence e-mail: sun@tiit.edu.tw

(Received 29 March 2012; accepted 16 April 2012; online 21 April 2012)

In the title coordination polymer, {[Ag(C12H20N2O2)]ClO4·0.5H2O}n, the AgI cation is coordinated by two N atoms from two 1,2-bis­(4,4-dimethyl-4,5-dihydro-1,3-oxazol-2-yl)ethane (L) ligands in a nearly linear geometry [N—Ag—N = 171.07 (8)°]. The L ligand bridges adjacent Ag+ cations, forming a polymeric chain running along the c axis. The lattice water mol­ecule is situated on a twofold rotation axis, and links to the perchlorate anion via an O—H⋯O hydrogen bond. The long Ag⋯O separation of 3.200 (4) Å indicates a weak inter­action between the perchlorate anion and the AgI cation. Weak C—H⋯O hydrogen bonding occurs between the chain and the lattice water mol­ecule and between the chain and perchlorate anions. Both five-membered rings of the L ligand display envelope conformations; in one five-membered ring, the flap C atom is disordered on opposite sides of the ring with occupancies of 0.65 and 0.35.

Related literature

For background to coordination polymers with organic ligands, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Chiang et al. (2008[Chiang, L.-M., Yeh, C.-W., Chan, Z.-K., Wang, K.-M., Chou, Y.-C., Chen, J.-D., Wang, J.-C. & Lai, J. Y. (2008). Cryst. Growth Des. 8, 470-477.]); Yeh et al. (2008[Yeh, C.-W., Chen, J.-D. & Wang, J.-C. (2008). Polyhedron, 27, 3611-3618.], 2009[Yeh, C.-W., Chen, T.-R., Chen, J.-D. & Wang, J.-C. (2009). Cryst. Growth Des. 9, 2595-2603.]); Hsu et al. (2009[Hsu, Y.-F., Hu, H.-L., Wu, C.-J., Yeh, C.-W., Proserpio, D. M. & Chen, J.-D. (2009). CrystEngComm, 11, 168-176.]). For related structures, see: Wang et al. (2008[Wang, Y.-H., Lee, H.-T. & Suen, M.-C. (2008). Polyhedron, 27, 1177-1184.], 2011[Wang, P.-N., Yeh, C.-W., Lee, H.-T. & Suen, M.-C. (2011). Acta Cryst. E67, m1083.]); Suen et al. (2011[Suen, M.-C., Yeh, C.-W., Lin, S.-C. & Hsu, Y.-F. (2011). Acta Cryst. E67, m1099.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C12H20N2O2)]ClO4·0.5H2O

  • Mr = 881.26

  • Monoclinic, C 2/c

  • a = 25.3322 (19) Å

  • b = 11.2100 (9) Å

  • c = 12.3721 (9) Å

  • β = 97.917 (1)°

  • V = 3479.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 297 K

  • 0.5 × 0.4 × 0.4 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.753, Tmax = 1.000

  • 9583 measured reflections

  • 3424 independent reflections

  • 2914 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.090

  • S = 1.23

  • 3424 reflections

  • 217 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7C⋯O3 0.87 (5) 2.06 (5) 2.926 (4) 175 (4)
C4—H4C⋯O7i 0.97 2.47 3.379 (4) 156
C5—H5B⋯O5ii 0.97 2.39 3.289 (5) 153
Symmetry codes: (i) -x, -y, -z+1; (ii) [x, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis of metal coordination polymers has been a subject of intense research due to their interesting structural chemistry and potential applications in gas storage, separation, catalysis, magnetism, luminescence, and drug delivery (Kitagawa et al., 2004). Roles of anion, solvent and ligand comformations in self-assembly of coordination complexes containing polydentate nitrogen ligands are very intersting (Chiang et al., 2008; Yeh et al., 2008; Hsu et al., 2009; Yeh et al., 2009). The d10 metal complexes containing 1,4-bis(4,5-dihydro-2-oxazolyl)benzene ligands (L') have been reported, which show various two-dimensional networks (Wang et al., 2008, Wang et al., 2011 and Suen et al., 2011). The Ag+ cations are coordinated with two N atoms from two 1,2-bis(4,4-dimethyl-4,5-dihydrooxazol-2-yl)ethane (L) ligands (Fig. 1). The Ag···Ag distance separated by the bridging L ligands is 6.685 (1) Å, while the bridging L ligand adopts gauche conformation with C3—C4—C5—C6 trosion angle 67.43 (35) °. The one-dimensional polymeric chains are interlinking through Ag···O interactions [3.045 (1) and 3.199 (4) Å] and O—H···O hydrogen bonds between the Ag+ cations, latice water molecules and ClO4- anions in the crystal structure (Fig. 2, Tab.1). The C2 atom of the the dihydrooxazol-2-yl group is disordered over two sites with occupancy factors of 0.65 and 0.35.

Related literature top

For background to coordination polymers with organic ligands, see: Kitagawa et al. (2004); Chiang et al. (2008); Yeh et al. (2008, 2009); Hsu et al. (2009). For related structures, see: Wang et al. (2008, 2011); Suen et al. (2011).

Experimental top

An aqueous solution (5.0 ml) of AgClO4 (1.0 mmol) was layered carefully over a methanolic solution (5.0 ml) of 1,2-bis(4,4-dimethyl-4,5-dihydrooxazol-2-yl)ethane (1.0 mmol) in a tube. Colourless crystals were obtained after several weeks. These were washed with methanol and collected in 68.2% yield.

Refinement top

H atom of the water molecule, H7C, was located in the difference electron density map and refined isotropically, while the other H atoms were constrained to ideal geometries, with C—H = 0.96 (methyl) or 0.97 (methylene) Å and Uiso(H) = 1.2Ueq(C). The C2 atom of the the dihydrooxazol-2-yl ring is disordered over two sites with occupancy factors of 0.65 and 0.35.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the one-dimensional chain. Ellipsoids are drawn at 30% probability level, and all the H atoms of L are omitted for clairty. Symmetry codes: (i) x,-y,z + 1/2; (ii) x,-y,z - 1/2.
[Figure 2] Fig. 2. The packing diagram shows the Ag···O interactions and O—H···O hydrogen bonds among the one-dimensional chains.
catena-Poly[[silver(I)-µ-1,2-bis(4,4-dimethyl-4,5-dihydro- 1,3-oxazol-2-yl)ethane-κ2N:N'] perchlorate hemihydrate] top
Crystal data top
[Ag(C12H20N2O2)]ClO4·0.5H2OF(000) = 1784
Mr = 881.26Dx = 1.682 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3424 reflections
a = 25.3322 (19) Åθ = 1.6–26.0°
b = 11.2100 (9) ŵ = 1.34 mm1
c = 12.3721 (9) ÅT = 297 K
β = 97.917 (1)°Block, colourless
V = 3479.9 (5) Å30.5 × 0.4 × 0.4 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3424 independent reflections
Radiation source: fine-focus sealed tube2914 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 3129
Tmin = 0.753, Tmax = 1.000k = 813
9583 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.23 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
3424 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Ag(C12H20N2O2)]ClO4·0.5H2OV = 3479.9 (5) Å3
Mr = 881.26Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.3322 (19) ŵ = 1.34 mm1
b = 11.2100 (9) ÅT = 297 K
c = 12.3721 (9) Å0.5 × 0.4 × 0.4 mm
β = 97.917 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3424 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2914 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 1.000Rint = 0.019
9583 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.23Δρmax = 0.49 e Å3
3424 reflectionsΔρmin = 0.41 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag0.113477 (9)0.11300 (2)0.375689 (18)0.05407 (11)
Cl0.10569 (3)0.21893 (7)0.56478 (6)0.0582 (2)
O10.15659 (9)0.1990 (2)0.2086 (2)0.0816 (8)
O20.05890 (9)0.35885 (18)0.09898 (16)0.0569 (5)
O30.05412 (12)0.2480 (4)0.5918 (3)0.1148 (11)
O40.14340 (13)0.2630 (3)0.6480 (3)0.1168 (11)
O50.11311 (18)0.0949 (3)0.5528 (3)0.1163 (13)
O60.11177 (17)0.2774 (3)0.4667 (2)0.1184 (12)
O70.00000.1184 (3)0.75000.0834 (11)
N10.14851 (8)0.0336 (2)0.30542 (17)0.0438 (5)
N20.08939 (8)0.26102 (19)0.03635 (17)0.0431 (5)
C10.20723 (11)0.0540 (3)0.3142 (2)0.0542 (7)
C20.2107 (4)0.1392 (8)0.2200 (10)0.075 (3)0.65
H2B0.23920.19650.23750.089*0.65
H2C0.21580.09660.15400.089*0.65
C2'0.2083 (9)0.1825 (15)0.2631 (19)0.094 (7)0.35
H2'A0.21680.24220.31950.113*0.35
H2'B0.23430.18700.21260.113*0.35
C30.12504 (12)0.1175 (2)0.2487 (2)0.0503 (7)
C40.06708 (11)0.1381 (3)0.2236 (2)0.0531 (7)
H4B0.05820.21110.25910.064*
H4C0.04850.07310.25370.064*
C50.04721 (11)0.1478 (3)0.1008 (2)0.0522 (7)
H5B0.05860.07770.06440.063*
H5C0.00860.14870.09010.063*
C60.06680 (10)0.2559 (2)0.0495 (2)0.0445 (6)
C70.08686 (15)0.4491 (3)0.0448 (2)0.0649 (8)
H7A0.11940.47300.09030.078*
H7B0.06460.51900.02820.078*
C80.09930 (11)0.3892 (2)0.0602 (2)0.0469 (6)
C90.22808 (15)0.0913 (4)0.4296 (3)0.0954 (14)
H9A0.23050.02260.47640.143*
H9B0.20420.14850.45440.143*
H9C0.26270.12640.43130.143*
C100.23499 (15)0.0574 (4)0.2842 (4)0.0904 (12)
H10A0.22450.12340.32590.136*
H10B0.27290.04660.29980.136*
H10C0.22540.07340.20780.136*
C110.06137 (15)0.4279 (3)0.1592 (3)0.0712 (9)
H11A0.07010.38730.22270.107*
H11B0.06440.51250.16910.107*
H11C0.02550.40860.14870.107*
C120.15668 (16)0.4067 (4)0.0786 (4)0.0841 (12)
H12A0.18000.38050.01530.126*
H12B0.16290.48960.09140.126*
H12C0.16350.36100.14090.126*
H7C0.0141 (19)0.158 (4)0.701 (4)0.110 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.05656 (17)0.04575 (16)0.06076 (17)0.00549 (9)0.01119 (11)0.01769 (9)
Cl0.0756 (5)0.0481 (4)0.0535 (4)0.0027 (3)0.0185 (3)0.0029 (3)
O10.0547 (13)0.0750 (16)0.1129 (19)0.0111 (11)0.0034 (12)0.0533 (15)
O20.0834 (14)0.0417 (11)0.0493 (11)0.0071 (10)0.0223 (10)0.0064 (9)
O30.082 (2)0.141 (3)0.129 (2)0.0065 (18)0.0404 (18)0.020 (2)
O40.104 (2)0.107 (3)0.127 (2)0.0042 (18)0.0311 (19)0.028 (2)
O50.199 (4)0.0521 (16)0.111 (2)0.0091 (18)0.066 (3)0.0039 (15)
O60.202 (4)0.083 (2)0.0810 (17)0.033 (2)0.059 (2)0.0225 (16)
O70.095 (3)0.059 (2)0.097 (3)0.0000.017 (2)0.000
N10.0465 (11)0.0394 (12)0.0454 (11)0.0039 (9)0.0063 (9)0.0062 (10)
N20.0463 (12)0.0379 (11)0.0450 (11)0.0029 (9)0.0057 (9)0.0084 (9)
C10.0448 (15)0.0487 (16)0.0687 (18)0.0047 (13)0.0063 (13)0.0079 (14)
C20.044 (3)0.069 (6)0.111 (7)0.010 (4)0.014 (4)0.024 (4)
C2'0.071 (9)0.056 (10)0.15 (2)0.015 (8)0.017 (12)0.047 (10)
C30.0490 (15)0.0481 (17)0.0546 (16)0.0082 (12)0.0095 (12)0.0119 (13)
C40.0485 (15)0.0534 (17)0.0589 (17)0.0008 (13)0.0123 (12)0.0124 (14)
C50.0514 (15)0.0446 (15)0.0602 (17)0.0014 (12)0.0066 (12)0.0046 (13)
C60.0457 (14)0.0398 (14)0.0465 (14)0.0072 (11)0.0009 (11)0.0027 (12)
C70.102 (3)0.0403 (16)0.0546 (17)0.0028 (16)0.0193 (16)0.0061 (14)
C80.0525 (15)0.0429 (15)0.0454 (14)0.0048 (11)0.0074 (12)0.0066 (11)
C90.058 (2)0.124 (4)0.098 (3)0.002 (2)0.0095 (19)0.042 (3)
C100.062 (2)0.099 (3)0.112 (3)0.006 (2)0.017 (2)0.029 (3)
C110.096 (3)0.058 (2)0.0557 (18)0.0048 (19)0.0021 (17)0.0067 (16)
C120.066 (2)0.084 (3)0.105 (3)0.0240 (19)0.023 (2)0.016 (2)
Geometric parameters (Å, º) top
Ag—N12.111 (2)C3—C41.476 (4)
Ag—N2i2.120 (2)C4—C51.537 (4)
Cl—O41.394 (3)C4—H4B0.9700
Cl—O61.406 (3)C4—H4C0.9700
Cl—O51.413 (3)C5—C61.484 (4)
Cl—O31.430 (3)C5—H5B0.9700
O1—C31.352 (3)C5—H5C0.9700
O1—C2'1.40 (2)C7—C81.533 (4)
O1—C21.514 (11)C7—H7A0.9700
O2—C61.335 (3)C7—H7B0.9700
O2—C71.451 (4)C8—C111.513 (4)
O7—H7C0.87 (4)C8—C121.515 (5)
N1—C31.271 (4)C9—H9A0.9600
N1—C11.494 (3)C9—H9B0.9600
N2—C61.275 (3)C9—H9C0.9600
N2—C81.495 (3)C10—H10A0.9600
N2—Agii2.120 (2)C10—H10B0.9600
C1—C101.505 (5)C10—H10C0.9600
C1—C91.512 (5)C11—H11A0.9600
C1—C21.518 (12)C11—H11B0.9600
C1—C2'1.574 (19)C11—H11C0.9600
C2—H2B0.9700C12—H12A0.9600
C2—H2C0.9700C12—H12B0.9600
C2'—H2'A0.9700C12—H12C0.9600
C2'—H2'B0.9700
N1—Ag—N2i171.07 (8)H4B—C4—H4C107.7
O4—Cl—O6109.1 (3)C6—C5—C4113.4 (2)
O4—Cl—O5109.7 (2)C6—C5—H5B108.9
O6—Cl—O5109.7 (2)C4—C5—H5B108.9
O4—Cl—O3107.6 (2)C6—C5—H5C108.9
O6—Cl—O3107.9 (2)C4—C5—H5C108.9
O5—Cl—O3112.8 (2)H5B—C5—H5C107.7
C3—O1—C2'107.2 (9)N2—C6—O2117.1 (2)
C3—O1—C2103.9 (4)N2—C6—C5127.5 (2)
C2'—O1—C228.7 (9)O2—C6—C5115.4 (2)
C6—O2—C7106.1 (2)O2—C7—C8104.8 (2)
C3—N1—C1108.2 (2)O2—C7—H7A110.8
C3—N1—Ag127.74 (19)C8—C7—H7A110.8
C1—N1—Ag124.10 (17)O2—C7—H7B110.8
C6—N2—C8108.3 (2)C8—C7—H7B110.8
C6—N2—Agii125.88 (19)H7A—C7—H7B108.9
C8—N2—Agii125.67 (16)N2—C8—C11109.3 (2)
N1—C1—C10110.4 (3)N2—C8—C12110.2 (3)
N1—C1—C9109.0 (3)C11—C8—C12110.9 (3)
C10—C1—C9110.3 (3)N2—C8—C7101.2 (2)
N1—C1—C2101.7 (4)C11—C8—C7112.3 (3)
C10—C1—C2104.8 (4)C12—C8—C7112.6 (3)
C9—C1—C2120.1 (5)C1—C9—H9A109.5
N1—C1—C2'100.6 (8)C1—C9—H9B109.5
C10—C1—C2'128.8 (9)H9A—C9—H9B109.5
C9—C1—C2'95.9 (9)C1—C9—H9C109.5
C2—C1—C2'27.2 (9)H9A—C9—H9C109.5
O1—C2—C1101.7 (6)H9B—C9—H9C109.5
O1—C2—H2B111.4C1—C10—H10A109.5
C1—C2—H2B111.4C1—C10—H10B109.5
O1—C2—H2C111.4H10A—C10—H10B109.5
C1—C2—H2C111.4C1—C10—H10C109.5
H2B—C2—H2C109.3H10A—C10—H10C109.5
O1—C2'—C1104.3 (12)H10B—C10—H10C109.5
O1—C2'—H2'A110.9C8—C11—H11A109.5
C1—C2'—H2'A110.9C8—C11—H11B109.5
O1—C2'—H2'B110.9H11A—C11—H11B109.5
C1—C2'—H2'B110.9C8—C11—H11C109.5
H2'A—C2'—H2'B108.9H11A—C11—H11C109.5
N1—C3—O1116.6 (3)H11B—C11—H11C109.5
N1—C3—C4127.4 (3)C8—C12—H12A109.5
O1—C3—C4116.0 (2)C8—C12—H12B109.5
C3—C4—C5113.6 (2)H12A—C12—H12B109.5
C3—C4—H4B108.9C8—C12—H12C109.5
C5—C4—H4B108.9H12A—C12—H12C109.5
C3—C4—H4C108.9H12B—C12—H12C109.5
C5—C4—H4C108.9
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7C···O30.87 (5)2.06 (5)2.926 (4)175 (4)
C4—H4C···O7iii0.972.473.379 (4)156
C5—H5B···O5ii0.972.393.289 (5)153
Symmetry codes: (ii) x, y, z1/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ag(C12H20N2O2)]ClO4·0.5H2O
Mr881.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)297
a, b, c (Å)25.3322 (19), 11.2100 (9), 12.3721 (9)
β (°) 97.917 (1)
V3)3479.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.5 × 0.4 × 0.4
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.753, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9583, 3424, 2914
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.090, 1.23
No. of reflections3424
No. of parameters217
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.41

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7C···O30.87 (5)2.06 (5)2.926 (4)175 (4)
C4—H4C···O7i0.972.473.379 (4)156
C5—H5B···O5ii0.972.393.289 (5)153
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1/2.
 

Acknowledgements

We are grateful to the National Science Council of the Republic of China and the Nanya Institute of Technology for support.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiang, L.-M., Yeh, C.-W., Chan, Z.-K., Wang, K.-M., Chou, Y.-C., Chen, J.-D., Wang, J.-C. & Lai, J. Y. (2008). Cryst. Growth Des. 8, 470–477.  Web of Science CSD CrossRef CAS Google Scholar
First citationHsu, Y.-F., Hu, H.-L., Wu, C.-J., Yeh, C.-W., Proserpio, D. M. & Chen, J.-D. (2009). CrystEngComm, 11, 168–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuen, M.-C., Yeh, C.-W., Lin, S.-C. & Hsu, Y.-F. (2011). Acta Cryst. E67, m1099.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y.-H., Lee, H.-T. & Suen, M.-C. (2008). Polyhedron, 27, 1177–1184.  Web of Science CSD CrossRef Google Scholar
First citationWang, P.-N., Yeh, C.-W., Lee, H.-T. & Suen, M.-C. (2011). Acta Cryst. E67, m1083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYeh, C.-W., Chen, T.-R., Chen, J.-D. & Wang, J.-C. (2009). Cryst. Growth Des. 9, 2595–2603.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeh, C.-W., Chen, J.-D. & Wang, J.-C. (2008). Polyhedron, 27, 3611–3618.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m637-m638
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds