metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m627-m628

catena-Poly[[[aqua­(pyrazine-2-carboxamide-κ2N1,O)zinc]-μ-pyrazine-2-carboxamide-κ3N1,O:N4] dinitrate]

aDepartment of Chemistry, Omidieh Branch, Islamic Azad University, Omidieh, Iran
*Correspondence e-mail: sadif.shirvan1@gmail.com

(Received 31 March 2012; accepted 12 April 2012; online 18 April 2012)

In the crystal of the title compound, {[Zn(C5H5N3O)2(H2O)](NO3)2}n, the ZnII cation is N,O-chelated by two pyrazine-2-carboxamide (PCA) ligands and is further coordinated by one water mol­ecule and by one pyrazine-N atom from an adjacent PCA ligand in a distorted ZnN3O3 octa­hedral geometry. One of the two independent PCA ligands bridges two ZnII cations, forming a zigzag polymeric chain running along the c axis. In the crystal, the NO3 anions link to the chain via O—H⋯O and N—H⋯O hydrogen bonding. Weak inter­molecular C—H⋯O inter­actions also occur.

Related literature

For related structures, see: Shirvan & Haydari Dezfuli (2012[Shirvan, S. A. & Haydari Dezfuli, S. (2012). Acta Cryst. E68, m546.]); Abu-Youssef et al. (2006[Abu-Youssef, M. A. M., Escuer, A. & Langer, V. (2006). Eur. J. Inorg. Chem. pp. 3177-3184.]); Azhdari Tehrani et al. (2010[Azhdari Tehrani, A., Mir Mohammad Sadegh, B. & Khavasi, H. R. (2010). Acta Cryst. E66, m261.]); Goher & Mautner (2000[Goher, M. A. S. & Mautner, F. A. (2000). Polyhedron, 19, 601-606.]); Kristiansson (2002[Kristiansson, O. (2002). Acta Cryst. E58, m130-m132.]); Mir Mohammad Sadegh et al. (2010[Mir Mohammad Sadegh, B., Azhdari Tehrani, A. & Khavasi, H. R. (2010). Acta Cryst. E66, m158.]); Munakata et al. (1997[Munakata, M., Wu, L. P., Sowa, T. K., Maekawa, M., Moriwaki, K. & Kitagawa, S. (1997). Inorg. Chem. 36, 5416-5418.]); Pacigova et al. (2008[Pacigova, S., Gyepes, R., Tatiersky, J. & Sivak, M. (2008). Dalton Trans. pp. 121-130.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C5H5N3O)2(H2O)](NO3)2

  • Mr = 453.67

  • Monoclinic, P 21 /c

  • a = 10.4889 (11) Å

  • b = 15.7477 (16) Å

  • c = 9.9332 (10) Å

  • β = 97.664 (8)°

  • V = 1626.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.58 mm−1

  • T = 298 K

  • 0.23 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.070, Tmax = 0.240

  • 9288 measured reflections

  • 3192 independent reflections

  • 2088 reflections with I > 2σ(I)

  • Rint = 0.123

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.103

  • S = 1.06

  • 3192 reflections

  • 261 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.064 (3)
Zn1—O2 2.073 (3)
Zn1—O3 2.042 (6)
Zn1—N1 2.180 (5)
Zn1—N4 2.193 (5)
Zn1—N5i 2.179 (5)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O8ii 0.76 (7) 2.05 (7) 2.810 (8) 177 (7)
O3—H3C⋯O4 0.75 (6) 2.06 (7) 2.781 (8) 162 (9)
N3—H3D⋯O3ii 0.86 2.50 3.193 (8) 138
N3—H3D⋯O5ii 0.86 2.42 3.163 (8) 144
N3—H3E⋯O7 0.86 2.08 2.937 (8) 172
N6—H6B⋯O4iii 0.86 2.07 2.913 (7) 166
N6—H6C⋯O5iv 0.86 2.41 3.231 (8) 161
C1—H1⋯O8v 0.93 2.39 3.292 (8) 162
C3—H3⋯O7 0.93 2.31 3.227 (8) 169
C6—H6⋯O6vi 0.93 2.60 3.295 (8) 132
C7—H7⋯O5vi 0.93 2.49 3.362 (8) 156
C8—H8⋯O4iii 0.93 2.39 3.298 (7) 167
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+1; (v) x+1, y, z; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In a recent paper, we reported the synthesis and crystal structure of [ZnBr2(pzc)2] (Shirvan & Haydari Dezfuli, 2012), where pzc is the pyrazine-2-carboxamide. Pyrazine-2-carboxamide is a good ligand, and a few complexes with pzc have been prepared, such as that of mercury (Azhdari Tehrani et al., 2010; Mir Mohammad Sadegh et al., 2010) and vanadium (Pacigova et al., 2008), manganese (Abu-Youssef et al., 2006) and copper (Kristiansson, 2002; Munakata et al., 1997; Goher & Mautner, 2000). Here, we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains one ZnII cation, two pyrazine-2-carboxamide ligands, one water molecule and two NO3- counter-ions. The ZnII atom is six-coordinated in a distorted octahedral configuration by two N and two O atoms from two pyrazine-2-carboxamide ligands and one O atom from one water molecule. The sixth coordination site is occupied by N atom from one bridging pyrazine-2-carboxamide ligand. The Zn—O and Zn—N bond lengths and angles are collected in Table 1.

In the crystal structure, intra and intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 2, Fig. 2) may stabilize the structure.

Related literature top

For related structures, see: Shirvan & Haydari Dezfuli (2012); Abu-Youssef et al. (2006); Azhdari Tehrani et al. (2010); Goher & Mautner (2000); Kristiansson (2002); Mir Mohammad Sadegh et al. (2010); Munakata et al. (1997); Pacigova et al. (2008).

Experimental top

A solution of pyrazine-2-carboxamide (0.25 g, 2.0 mmol) in methanol (10 ml) was added to a solution of Zn(NO3)2.4H2O (0.26 g, 1.0 mmol) in methanol (10 ml) and the resulting colorless solution was stirred for 15 min at room temperature. This solution was left to evaporate slowly at room temperature. After one week, colorless block crystals of the title compound were isolated (yield 0.36 g, 79.3%).

Refinement top

Water H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically with C—H = 0.93 and N—H = 0.86 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(N,C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (b) x,3/2 - y,1/2 + z].
[Figure 2] Fig. 2. Unit-cell packing diagram for title molecule. Hydrogen bonds are shown as dashed lines.
catena-Poly[[[aqua(pyrazine-2-carboxamide- κ2N1,O)zinc]-µ-pyrazine-2-carboxamide- κ3N1,O:N4] dinitrate] top
Crystal data top
[Zn(C5H5N3O)2(H2O)](NO3)2F(000) = 920
Mr = 453.67Dx = 1.853 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9288 reflections
a = 10.4889 (11) Åθ = 2.4–26.0°
b = 15.7477 (16) ŵ = 1.58 mm1
c = 9.9332 (10) ÅT = 298 K
β = 97.664 (8)°Block, colorless
V = 1626.1 (3) Å30.23 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area detector
diffractometer
3192 independent reflections
Radiation source: fine-focus sealed tube2088 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.123
ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.070, Tmax = 0.240k = 1919
9288 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0237P)2]
where P = (Fo2 + 2Fc2)/3
3192 reflections(Δ/σ)max = 0.006
261 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Zn(C5H5N3O)2(H2O)](NO3)2V = 1626.1 (3) Å3
Mr = 453.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4889 (11) ŵ = 1.58 mm1
b = 15.7477 (16) ÅT = 298 K
c = 9.9332 (10) Å0.23 × 0.12 × 0.10 mm
β = 97.664 (8)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
3192 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2088 reflections with I > 2σ(I)
Tmin = 0.070, Tmax = 0.240Rint = 0.123
9288 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.46 e Å3
3192 reflectionsΔρmin = 0.52 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7871 (6)0.4587 (4)0.1320 (7)0.0329 (15)
H10.87480.47010.14170.039*
C20.7334 (6)0.4048 (5)0.0291 (7)0.0445 (17)
H20.78590.38190.03000.053*
C30.5393 (6)0.4184 (4)0.1012 (7)0.0387 (16)
H30.45260.40430.09460.046*
C40.5906 (5)0.4738 (3)0.2038 (6)0.0210 (12)
C50.5169 (5)0.5161 (3)0.3017 (6)0.0237 (13)
C60.6418 (5)0.7234 (4)0.1580 (7)0.0248 (14)
H60.56240.70480.17820.030*
C70.6463 (5)0.7868 (4)0.0610 (7)0.0292 (15)
H70.56990.80840.01540.035*
C80.8651 (5)0.7831 (3)0.0990 (6)0.0240 (14)
H80.94450.80330.08140.029*
C90.8615 (5)0.7189 (3)0.1932 (6)0.0189 (12)
C100.9758 (5)0.6759 (3)0.2712 (6)0.0207 (13)
N10.7158 (4)0.4940 (3)0.2159 (5)0.0246 (12)
N20.6089 (5)0.3848 (4)0.0128 (6)0.0483 (16)
N30.3939 (5)0.5002 (3)0.3014 (6)0.0366 (14)
H3D0.35150.52640.35710.044*
H3E0.35580.46370.24540.044*
N40.7479 (4)0.6893 (3)0.2219 (5)0.0228 (12)
N50.7584 (4)0.8170 (3)0.0325 (5)0.0225 (11)
N61.0915 (4)0.7048 (3)0.2613 (5)0.0317 (13)
H6C1.15760.68140.30710.038*
H6B1.10120.74720.20900.038*
N70.7146 (5)0.3192 (3)0.4190 (7)0.0350 (13)
N80.1273 (5)0.4024 (4)0.1241 (6)0.0361 (13)
O10.5749 (3)0.5684 (2)0.3812 (4)0.0300 (11)
O20.9561 (3)0.6152 (2)0.3448 (4)0.0252 (9)
O30.8371 (5)0.5012 (4)0.5193 (6)0.0397 (13)
H3C0.850 (7)0.456 (4)0.503 (8)0.04 (3)*
H3B0.853 (6)0.510 (4)0.595 (7)0.03 (2)*
O40.8335 (4)0.3362 (3)0.4190 (5)0.0437 (12)
O50.6640 (5)0.3426 (4)0.5181 (7)0.080 (2)
O60.6571 (5)0.2815 (4)0.3235 (6)0.0633 (16)
O70.2393 (5)0.3816 (3)0.1188 (7)0.0622 (15)
O80.1027 (5)0.4586 (4)0.2039 (6)0.0669 (17)
O90.0400 (5)0.3687 (4)0.0522 (8)0.098 (3)
Zn10.76855 (6)0.58798 (4)0.37477 (7)0.02037 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.021 (3)0.037 (3)0.042 (4)0.001 (3)0.007 (3)0.005 (3)
C20.044 (4)0.049 (4)0.041 (4)0.003 (4)0.008 (3)0.020 (4)
C30.030 (3)0.048 (4)0.038 (4)0.012 (3)0.004 (3)0.020 (4)
C40.020 (3)0.028 (3)0.015 (3)0.003 (2)0.000 (2)0.001 (3)
C50.023 (3)0.023 (3)0.025 (4)0.003 (2)0.001 (3)0.005 (3)
C60.018 (3)0.025 (3)0.033 (4)0.004 (2)0.007 (3)0.006 (3)
C70.013 (3)0.035 (4)0.039 (4)0.001 (2)0.001 (3)0.003 (3)
C80.021 (3)0.019 (3)0.033 (4)0.001 (2)0.007 (3)0.001 (3)
C90.017 (3)0.020 (3)0.018 (3)0.002 (2)0.001 (2)0.001 (2)
C100.022 (3)0.021 (3)0.020 (3)0.003 (2)0.004 (2)0.004 (3)
N10.021 (2)0.030 (3)0.023 (3)0.001 (2)0.003 (2)0.003 (2)
N20.038 (3)0.060 (4)0.046 (4)0.004 (3)0.003 (3)0.021 (3)
N30.023 (3)0.052 (3)0.035 (4)0.004 (2)0.009 (2)0.011 (3)
N40.020 (2)0.020 (3)0.029 (3)0.000 (2)0.006 (2)0.003 (2)
N50.022 (2)0.024 (2)0.021 (3)0.005 (2)0.004 (2)0.002 (2)
N60.015 (2)0.039 (3)0.041 (4)0.001 (2)0.003 (2)0.017 (3)
N70.027 (3)0.025 (3)0.053 (4)0.002 (2)0.004 (3)0.004 (3)
N80.030 (3)0.035 (3)0.042 (4)0.003 (3)0.002 (3)0.001 (3)
O10.022 (2)0.034 (3)0.035 (3)0.0099 (18)0.0051 (19)0.017 (2)
O20.020 (2)0.025 (2)0.031 (3)0.0002 (16)0.0029 (18)0.0098 (18)
O30.053 (3)0.034 (3)0.030 (4)0.009 (3)0.000 (3)0.005 (3)
O40.024 (2)0.052 (3)0.056 (4)0.001 (2)0.007 (2)0.017 (3)
O50.063 (4)0.087 (4)0.103 (5)0.015 (3)0.057 (4)0.041 (4)
O60.045 (3)0.077 (4)0.063 (4)0.022 (3)0.009 (3)0.006 (3)
O70.028 (3)0.065 (3)0.094 (4)0.006 (3)0.010 (3)0.022 (3)
O80.052 (3)0.088 (4)0.056 (4)0.018 (3)0.009 (3)0.039 (3)
O90.026 (3)0.135 (6)0.127 (6)0.003 (3)0.007 (3)0.092 (5)
Zn10.0182 (3)0.0208 (3)0.0216 (3)0.0026 (3)0.0009 (2)0.0004 (4)
Geometric parameters (Å, º) top
Zn1—O12.064 (3)N4—C91.345 (7)
Zn1—O22.073 (3)N4—C61.320 (7)
Zn1—O32.042 (6)N5—C81.333 (7)
Zn1—N12.180 (5)N5—C71.333 (7)
Zn1—N42.193 (5)N6—C101.312 (7)
Zn1—N5i2.179 (5)N3—H3E0.8600
O1—C51.243 (6)N3—H3D0.8600
O2—C101.237 (6)N6—H6B0.8600
O3—H3B0.76 (7)N6—H6C0.8600
O3—H3C0.75 (6)C1—C21.389 (10)
O4—N71.276 (7)C3—C41.394 (9)
O5—N71.235 (9)C4—C51.479 (8)
O6—N71.210 (9)C6—C71.393 (9)
O7—N81.227 (8)C8—C91.382 (7)
O8—N81.238 (9)C9—C101.500 (8)
O9—N81.207 (9)C1—H10.9300
N1—C41.341 (7)C2—H20.9300
N1—C11.315 (8)C3—H30.9300
N2—C21.332 (8)C6—H60.9300
N2—C31.325 (9)C7—H70.9300
N3—C51.314 (7)C8—H80.9300
Zn1···H3Dii3.5800N4···C102.385 (7)
O1···O33.092 (6)N4···N5i3.074 (7)
O1···N12.627 (6)N5···N4viii3.074 (7)
O1···N43.192 (6)N5···O3viii2.987 (8)
O1···C42.330 (7)N5···O1viii2.907 (6)
O1···O5ii3.148 (7)N5···N42.766 (7)
O1···N5i2.907 (6)N5···O2viii3.154 (6)
O1···C7i2.932 (7)N6···O6ix3.117 (7)
O2···C92.350 (6)N6···O4ix2.913 (7)
O2···O32.892 (7)N6···O4iii3.233 (7)
O2···N42.629 (6)N6···O5iii3.231 (8)
O2···C8i3.240 (7)N7···C43.383 (8)
O2···O3iii3.018 (7)N7···O33.243 (8)
O2···O4iii3.095 (6)N8···C8v3.323 (8)
O2···N5i3.154 (6)N8···C9v3.406 (8)
O3···N13.113 (8)N2···H6vii2.8100
O3···O53.087 (8)N3···H3Bii2.92 (6)
O3···N5i2.987 (8)N3···H32.6900
O3···O2iii3.018 (7)N5···H3Bviii2.94 (6)
O3···O13.092 (6)N6···H82.6900
O3···O22.892 (7)N7···H6Ciii2.8700
O3···O42.781 (8)N7···H3C2.65 (7)
O3···O8ii2.810 (8)N7···H6Biv2.7000
O3···N73.243 (8)N8···H1vi2.8800
O3···N3ii3.193 (8)N8···H3E2.7100
O4···O32.781 (8)C1···O9x3.199 (9)
O4···C8iv3.298 (7)C1···O8x3.292 (8)
O4···N6iii3.233 (7)C2···O9x3.244 (8)
O4···O2iii3.095 (6)C3···O63.213 (9)
O4···N6iv2.913 (7)C3···O73.227 (8)
O5···C7v3.362 (8)C3···C4vii3.580 (9)
O5···N6iii3.231 (8)C3···C3vii3.299 (9)
O5···N3ii3.163 (8)C4···C3vii3.580 (9)
O5···O1ii3.148 (7)C4···O63.294 (8)
O5···O33.087 (8)C4···N73.383 (8)
O6···N6iv3.117 (7)C6···N2vii3.392 (8)
O6···C43.294 (8)C6···O6xi3.295 (8)
O6···C33.213 (9)C7···O5xi3.362 (8)
O6···C6v3.295 (8)C8···N8xi3.323 (8)
O7···C33.227 (8)C8···O9vii3.059 (8)
O7···N32.937 (8)C8···O8xi3.378 (8)
O8···C8v3.378 (8)C8···O4ix3.298 (7)
O8···C1vi3.292 (8)C9···N8xi3.406 (8)
O8···N33.148 (8)C9···O9vii3.096 (9)
O8···O3ii2.810 (8)C10···O9vii3.271 (10)
O9···C9vii3.096 (9)C3···H3E2.6500
O9···C2vi3.244 (8)C8···H6B2.6300
O9···C8vii3.059 (8)H1···O8x2.3900
O9···C1vi3.199 (9)H1···O9x2.6000
O9···C10vii3.271 (10)H1···N8x2.8800
O1···H7i2.3600H2···O9x2.6900
O2···H3Ciii2.62 (7)H3···N32.6900
O2···H3Biii2.82 (6)H3···H3E2.1300
O2···H8i2.6900H3···O72.3100
O3···H3Dii2.5000H3B···O2iii2.82 (6)
O4···H3C2.06 (7)H3B···H3Dii2.3300
O4···H6Ciii2.7200H3B···O8ii2.05 (7)
O4···H6Biv2.0700H3B···N3ii2.92 (6)
O4···H8iv2.3900H3C···O52.66 (7)
O5···H3C2.66 (7)H3C···O42.06 (7)
O5···H6Ciii2.4100H3C···N72.65 (7)
O5···H7v2.4900H3C···O2iii2.62 (7)
O5···H3Dii2.4200H3D···Zn1ii3.5800
O6···H6v2.6000H3D···H3Bii2.3300
O6···H6Biv2.6500H3D···O3ii2.5000
O7···H32.3100H3D···O5ii2.4200
O7···H3E2.0800H3E···O72.0800
O8···H3E2.6300H3E···O82.6300
O8···H1vi2.3900H3E···N82.7100
O8···H3Bii2.05 (7)H3E···C32.6500
O9···H2vi2.6900H3E···H32.1300
O9···H1vi2.6000H6···N2vii2.8100
N1···C52.382 (7)H6···O6xi2.6000
N1···O12.627 (6)H6B···O6ix2.6500
N1···N22.772 (8)H6B···O4ix2.0700
N1···N43.094 (7)H6B···N7ix2.7000
N1···O33.113 (8)H6B···H82.1300
N2···N12.772 (8)H6B···C82.6300
N2···C6vii3.392 (8)H6C···O5iii2.4100
N3···O5ii3.163 (8)H6C···O4iii2.7200
N3···O72.937 (8)H6C···N7iii2.8700
N3···O3ii3.193 (8)H7···O5xi2.4900
N3···O83.148 (8)H7···O1viii2.3600
N4···N13.094 (7)H8···O4ix2.3900
N4···O13.192 (6)H8···O2viii2.6900
N4···O22.629 (6)H8···N62.6900
N4···N52.766 (7)H8···H6B2.1300
O1—Zn1—O2172.71 (15)O4—N7—O5117.5 (6)
O1—Zn1—O397.70 (18)O4—N7—O6119.2 (6)
O1—Zn1—N176.42 (15)O5—N7—O6123.3 (6)
O1—Zn1—N497.09 (15)O8—N8—O9119.1 (6)
O1—Zn1—N5i86.43 (15)O7—N8—O8120.0 (6)
O2—Zn1—O389.28 (18)O7—N8—O9120.8 (6)
O2—Zn1—N1100.98 (15)N1—C1—C2121.0 (6)
O2—Zn1—N476.01 (15)N2—C2—C1121.9 (6)
O2—Zn1—N5i95.71 (15)N2—C3—C4122.8 (6)
O3—Zn1—N194.9 (2)C3—C4—C5125.3 (5)
O3—Zn1—N4165.13 (19)N1—C4—C5115.2 (5)
O3—Zn1—N5i90.0 (2)N1—C4—C3119.5 (5)
N1—Zn1—N490.03 (18)O1—C5—C4117.5 (5)
N1—Zn1—N5i162.62 (16)O1—C5—N3121.7 (5)
N4—Zn1—N5i89.34 (18)N3—C5—C4120.8 (5)
Zn1—O1—C5118.7 (3)N4—C6—C7121.4 (5)
Zn1—O2—C10118.8 (3)N5—C7—C6121.0 (5)
H3B—O3—H3C112 (8)N5—C8—C9122.1 (5)
Zn1—O3—H3C123 (6)C8—C9—C10126.0 (5)
Zn1—O3—H3B126 (5)N4—C9—C10113.8 (5)
C1—N1—C4118.4 (5)N4—C9—C8120.2 (5)
Zn1—N1—C4112.1 (4)O2—C10—C9118.0 (5)
Zn1—N1—C1129.4 (4)N6—C10—C9119.2 (5)
C2—N2—C3116.3 (6)O2—C10—N6122.8 (5)
Zn1—N4—C6128.9 (4)C2—C1—H1120.00
Zn1—N4—C9113.0 (3)N1—C1—H1119.00
C6—N4—C9118.1 (5)N2—C2—H2119.00
Zn1viii—N5—C8120.9 (4)C1—C2—H2119.00
C7—N5—C8117.3 (5)N2—C3—H3119.00
Zn1viii—N5—C7121.8 (4)C4—C3—H3119.00
C5—N3—H3E120.00C7—C6—H6119.00
H3D—N3—H3E120.00N4—C6—H6119.00
C5—N3—H3D120.00N5—C7—H7120.00
C10—N6—H6B120.00C6—C7—H7119.00
C10—N6—H6C120.00C9—C8—H8119.00
H6B—N6—H6C120.00N5—C8—H8119.00
O3—Zn1—O1—C592.4 (4)Zn1—O2—C10—N6170.5 (4)
N1—Zn1—O1—C50.9 (4)Zn1—O2—C10—C98.1 (6)
N4—Zn1—O1—C589.2 (4)Zn1—N1—C4—C52.1 (6)
N5i—Zn1—O1—C5178.1 (4)C1—N1—C4—C31.8 (8)
O3—Zn1—O2—C10171.7 (4)C4—N1—C1—C23.0 (9)
N1—Zn1—O2—C1093.4 (4)Zn1—N1—C4—C3176.1 (4)
N4—Zn1—O2—C106.2 (4)Zn1—N1—C1—C2174.5 (5)
N5i—Zn1—O2—C1081.7 (4)C1—N1—C4—C5180.0 (5)
O1—Zn1—N1—C1178.4 (6)C2—N2—C3—C41.9 (10)
O2—Zn1—N1—C15.4 (6)C3—N2—C2—C10.8 (10)
O3—Zn1—N1—C184.9 (5)Zn1—N4—C9—C8179.9 (4)
N4—Zn1—N1—C181.1 (5)Zn1—N4—C6—C7178.8 (5)
O1—Zn1—N1—C40.8 (4)C6—N4—C9—C10180.0 (5)
O2—Zn1—N1—C4172.3 (4)Zn1—N4—C9—C100.3 (6)
O3—Zn1—N1—C497.5 (4)C6—N4—C9—C80.1 (8)
N4—Zn1—N1—C496.5 (4)C9—N4—C6—C71.6 (9)
O1—Zn1—N4—C60.4 (5)C8—N5—C7—C61.0 (9)
O2—Zn1—N4—C6177.3 (6)Zn1viii—N5—C7—C6177.2 (5)
N1—Zn1—N4—C676.0 (5)Zn1viii—N5—C8—C9175.8 (4)
N5i—Zn1—N4—C686.7 (5)C7—N5—C8—C90.4 (8)
O1—Zn1—N4—C9179.3 (4)N1—C1—C2—N21.7 (11)
O2—Zn1—N4—C93.0 (4)N2—C3—C4—C5177.3 (6)
N1—Zn1—N4—C9104.3 (4)N2—C3—C4—N10.7 (9)
N5i—Zn1—N4—C993.0 (4)N1—C4—C5—N3178.8 (5)
O1viii—Zn1viii—N5—C714.9 (5)N1—C4—C5—O13.0 (7)
O2viii—Zn1viii—N5—C7158.1 (5)C3—C4—C5—N33.2 (9)
O3viii—Zn1viii—N5—C7112.6 (5)C3—C4—C5—O1175.1 (5)
N4viii—Zn1viii—N5—C782.2 (5)N4—C6—C7—N52.1 (10)
O1viii—Zn1viii—N5—C8169.1 (4)N5—C8—C9—N40.9 (8)
O2viii—Zn1viii—N5—C817.9 (4)N5—C8—C9—C10178.9 (5)
O3viii—Zn1viii—N5—C871.4 (4)N4—C9—C10—O25.0 (7)
N4viii—Zn1viii—N5—C893.8 (4)C8—C9—C10—N66.5 (8)
Zn1—O1—C5—N3179.4 (4)N4—C9—C10—N6173.6 (5)
Zn1—O1—C5—C42.3 (6)C8—C9—C10—O2174.9 (5)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x+2, y1/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x1, y, z; (vii) x+1, y+1, z; (viii) x, y+3/2, z1/2; (ix) x+2, y+1/2, z+1/2; (x) x+1, y, z; (xi) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O8ii0.76 (7)2.05 (7)2.810 (8)177 (7)
O3—H3C···O40.75 (6)2.06 (7)2.781 (8)162 (9)
N3—H3D···O3ii0.862.503.193 (8)138
N3—H3D···O5ii0.862.423.163 (8)144
N3—H3E···O70.862.082.937 (8)172
N6—H6B···O4ix0.862.072.913 (7)166
N6—H6C···O5iii0.862.413.231 (8)161
C1—H1···O8x0.932.393.292 (8)162
C3—H3···O70.932.313.227 (8)169
C6—H6···O6xi0.932.603.295 (8)132
C7—H7···O5xi0.932.493.362 (8)156
C8—H8···O4ix0.932.393.298 (7)167
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (ix) x+2, y+1/2, z+1/2; (x) x+1, y, z; (xi) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C5H5N3O)2(H2O)](NO3)2
Mr453.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.4889 (11), 15.7477 (16), 9.9332 (10)
β (°) 97.664 (8)
V3)1626.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.58
Crystal size (mm)0.23 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.070, 0.240
No. of measured, independent and
observed [I > 2σ(I)] reflections
9288, 3192, 2088
Rint0.123
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.103, 1.06
No. of reflections3192
No. of parameters261
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.52

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O12.064 (3)Zn1—N12.180 (5)
Zn1—O22.073 (3)Zn1—N42.193 (5)
Zn1—O32.042 (6)Zn1—N5i2.179 (5)
Symmetry code: (i) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O8ii0.76 (7)2.05 (7)2.810 (8)177 (7)
O3—H3C···O40.75 (6)2.06 (7)2.781 (8)162 (9)
N3—H3D···O3ii0.862.50003.193 (8)138
N3—H3D···O5ii0.862.42003.163 (8)144
N3—H3E···O70.862.08002.937 (8)172
N6—H6B···O4iii0.862.07002.913 (7)166
N6—H6C···O5iv0.862.41003.231 (8)161
C1—H1···O8v0.932.39003.292 (8)162
C3—H3···O70.932.31003.227 (8)169
C6—H6···O6vi0.932.60003.295 (8)132
C7—H7···O5vi0.932.49003.362 (8)156
C8—H8···O4iii0.932.39003.298 (7)167
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+2, y+1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x+1, y, z; (vi) x+1, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to the Islamic Azad University, Omidieh Branch for financial support.

References

First citationAbu-Youssef, M. A. M., Escuer, A. & Langer, V. (2006). Eur. J. Inorg. Chem. pp. 3177–3184.  Google Scholar
First citationAzhdari Tehrani, A., Mir Mohammad Sadegh, B. & Khavasi, H. R. (2010). Acta Cryst. E66, m261.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGoher, M. A. S. & Mautner, F. A. (2000). Polyhedron, 19, 601–606.  Web of Science CSD CrossRef CAS Google Scholar
First citationKristiansson, O. (2002). Acta Cryst. E58, m130–m132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMir Mohammad Sadegh, B., Azhdari Tehrani, A. & Khavasi, H. R. (2010). Acta Cryst. E66, m158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMunakata, M., Wu, L. P., Sowa, T. K., Maekawa, M., Moriwaki, K. & Kitagawa, S. (1997). Inorg. Chem. 36, 5416–5418.  CSD CrossRef CAS Web of Science Google Scholar
First citationPacigova, S., Gyepes, R., Tatiersky, J. & Sivak, M. (2008). Dalton Trans. pp. 121–130.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirvan, S. A. & Haydari Dezfuli, S. (2012). Acta Cryst. E68, m546.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m627-m628
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds