organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1581

[(3aS,5aR,8aR,8bS)-2,2,7,7-Tetra­methyl­tetra­hydro-3aH-bis­­[1,3]dioxolo[4,5-b:4′,5′-d]pyran-3a-yl]methyl (R)-N-(1-phenyl­eth­yl)sulfamate

aSchool of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Mail Box 40, 103 Wenhua Road, Shenhe District, Shenyang 110016, People's Republic of China
*Correspondence e-mail: shayu@syphu.edu.cn

(Received 3 April 2012; accepted 17 April 2012; online 28 April 2012)

In the title compound, C20H29NO8S, the two five-membered rings adopt envelope conformations (with an O atom at the flap in each case), while the six-membered pyran ring displays a twist-boat conformation. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into a supra­molecular chain running along the a axis.

Related literature

For general background to the drug topiramate [systematic name: 2,3:4,5-bis-O-(1-methyl­ethyl­idene)-beta-D-fructopyran­ose sulfamate] and its potential bioactivity, see: Maryanoff (2009[Maryanoff, B. E. (2009). J. Med. Chem. 52, 3431-3440.]); Maryanoff et al. (2008[Maryanoff, B. E., McComsey, D. F., Lee, J., Smith-Swintosky, V. L., Wang, Y.-P., Minor, L. K. & Todd, M. J. (2008). J. Med. Chem. 51, 2518-2521.]). For related structures, see: Maryanoff et al. (1998[Maryanoff, B. E., Costanzo, M. J., Nortey, S. O., Greco, M. N., Shank, R. P., Schupsky, J. J., Ortegon, M. P. & Vaught, J. L. (1998). J. Med. Chem. 41, 1315-1343.]); Winum et al. (2006[Winum, J., Temperini, C., Cheikh, K. E., Innocenti, A., Vullo, D., Ciattini, S., Montero, J., Scozzafava, A. & Supuran, C. T. (2006). J. Med. Chem. 49, 7024-7031.]).

[Scheme 1]

Experimental

Crystal data
  • C20H29NO8S

  • Mr = 443.50

  • Orthorhombic, P 21 21 21

  • a = 9.5733 (9) Å

  • b = 15.0134 (14) Å

  • c = 15.9462 (15) Å

  • V = 2291.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.28 × 0.20 × 0.15 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.973

  • 13609 measured reflections

  • 4041 independent reflections

  • 3348 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.100

  • S = 1.04

  • 4041 reflections

  • 276 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1736 Friedel pairs

  • Flack parameter: −0.02 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.93 2.06 2.959 (3) 163
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The marketed drug Topiramate is a moderate inhibitor of carbonic anhydrase-II(CA—II), which is marketed worldwide for the treatmen of epilepsy and the prophylaxis of migraine headache(Maryanoff et al., 2008). Topiramate easily qualifies as a "billion-dollar molecule". Given the disabling effects of epileptic seizures and the misery associated with recurrent migraine attacks, this drug has helped millions of patients in need across the globe (Maryanoff, 2009). Topiramate is a sulfa-derivative monosaccharide, it contains a sulfamide group, but a sulfamate group is much more effective than the sulfamide group for inhibiting human CA—II (Maryanoff et al., 1998; Winum et al., 2006).

As the derivative of Topiramate that contains a sulfamate group are of great pharmaceutical importance, we have undertaken the crystal structure determination of the title compound. C20H29N2O8S, by X-ray diffraction in the crystal packing of (I),[Fig. 2] The bond lengths and angles are within normal ranges. The six-membered ring O4—C10—C11—C12—C13—C14 (substituted pyranoid) is far from planar, and its shape approximates to a twist-boat conformation. In this description applied to this title compound (Fig. 1), atoms C10, C11, C13 and C14 from the bottom of the boat (deviation from the mean C10/C11/C13/C14 plane = 0.176 (4) Å), O4 the prow, and C12 the stern [deviations from the C10/C11/C13/C14 mean plane = 0.557, 0.387 Å, respectively]. The two five-membered rings C10—O6—C15—O5—C11 and C12—O7—C18—O8—C13 (substituted 1,3-dioxolane rings) are non-planar and adopt nearly envelope conformation (deviation from the mean C10/O6/C15/ C11 plane = 0.007 (4) Å, C12/ C18/O8/C13 plane= 0.038 (4) Å). The O5 atom is located above the plane [deviations from the C10/N2/C13/C12 mean plane = 0.473 Å], while the O7 atom is located above the plane [deviations from the C12/ C13/ O8/C18 mean plane = 0.363 Å], Atom C7 of the title molecule is chiral: R configuration was assigned to this atom based on the known chirality of the equivalent atom in the starting material, otherwise, the C10, C11, C12, C13 of the title molecule is chiral: S, S, R, R, respectively. The suIfonyl O atom is engaged in H-bonding with the N—H of the adjacent molecular.

Related literature top

For general background to the drug topiramate [systematic name: 2,3:4,5-bis-O-(1-methylethylidene)-beta-D-fructopyranose sulfamate] and its potential bioactivity, see: Maryanoff (2009); Maryanoff et al. (2008). For related structures, see: Maryanoff et al. (1998); Winum et al. (2006).

Experimental top

((3aS,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis[1,3]dioxolo [4,5 - b:4',5'-d]pyran-3a-yl)methyl sulfochloridate(7.16 g, 20 mmol) was placed in a round-bottomed flask, and dissolved in acetone(100 ml). Triethylamine(100 mmol)was added and then the (s)-benzenemethanamin (2.57 ml, 20 mmol) and the solution was heated to reflux for 2 h. The mixture was filtered and the filtrate was concentrated under vacuum. The pure product was obtained through silica gel chromatography(eluant petroleum ether:ethyl acetate, 2:1). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a dilute solution of the title compound in n-hexane:ethyl acetate,6:1 at room temperature.

Refinement top

The H atom of the NH group was located in a difference map, other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.98 Å. H atoms were refined in riding mode with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound(I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The molecular packing of (I), the molecular packing viewed along the b axis, H atoms not involved in hydrogen bonding have been omitted.
[(3aS,5aR,8aR,8bS)-2,2,7,7-Tetramethyltetrahydro- 3aH-bis[1,3]dioxolo[4,5-b:4',5'-d]pyran-3a-yl]methyl (R)-N-(1-phenylethyl)sulfamate top
Crystal data top
C20H29NO8SDx = 1.285 Mg m3
Mr = 443.50Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3967 reflections
a = 9.5733 (9) Åθ = 2.5–20.8°
b = 15.0134 (14) ŵ = 0.19 mm1
c = 15.9462 (15) ÅT = 293 K
V = 2291.9 (4) Å3Block, colourless
Z = 40.28 × 0.20 × 0.15 mm
F(000) = 944
Data collection top
Bruker APEX CCD area-detector
diffractometer
4041 independent reflections
Radiation source: fine-focus sealed tube3348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.950, Tmax = 0.973k = 1716
13609 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.0232P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4041 reflectionsΔρmax = 0.14 e Å3
276 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 1736 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (8)
Crystal data top
C20H29NO8SV = 2291.9 (4) Å3
Mr = 443.50Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.5733 (9) ŵ = 0.19 mm1
b = 15.0134 (14) ÅT = 293 K
c = 15.9462 (15) Å0.28 × 0.20 × 0.15 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
4041 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3348 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.973Rint = 0.029
13609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.14 e Å3
S = 1.04Δρmin = 0.19 e Å3
4041 reflectionsAbsolute structure: Flack (1983), 1736 Friedel pairs
276 parametersAbsolute structure parameter: 0.02 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19640 (7)0.77181 (4)0.55630 (4)0.05958 (19)
O10.15464 (15)0.71781 (12)0.63697 (9)0.0589 (4)
O20.1225 (3)0.85374 (12)0.55749 (13)0.0841 (6)
O30.34363 (19)0.76955 (16)0.55879 (13)0.0908 (7)
O40.12573 (18)0.71591 (11)0.78266 (10)0.0623 (5)
O50.1236 (2)0.59605 (12)0.84887 (12)0.0785 (6)
O60.11065 (19)0.73889 (11)0.80456 (10)0.0623 (5)
O70.15017 (18)0.53273 (13)0.70728 (12)0.0706 (5)
O80.3187 (2)0.55560 (17)0.80406 (14)0.0970 (7)
N10.1465 (2)0.71749 (13)0.47609 (12)0.0551 (5)
H1A0.05380.73370.46850.066*
C10.1733 (3)0.55498 (16)0.50384 (15)0.0590 (6)
C20.0399 (3)0.5210 (2)0.5013 (2)0.0891 (10)
H20.02580.54530.46500.107*
C30.0038 (5)0.4506 (3)0.5529 (3)0.1323 (19)
H30.08640.42780.55100.159*
C40.0982 (9)0.4147 (3)0.6059 (3)0.155 (3)
H40.07300.36750.64050.186*
C50.2294 (8)0.4476 (3)0.6085 (3)0.140 (2)
H50.29440.42310.64520.168*
C60.2678 (4)0.5177 (2)0.5567 (2)0.0941 (11)
H60.35890.53920.55820.113*
C70.2137 (2)0.63303 (15)0.44935 (14)0.0525 (5)
H70.31500.64090.45410.063*
C80.1798 (3)0.6189 (2)0.35758 (16)0.0782 (8)
H8A0.08050.61360.35080.117*
H8B0.22420.56540.33820.117*
H8C0.21310.66870.32560.117*
C90.0129 (2)0.72335 (19)0.66670 (14)0.0575 (6)
H9A0.04730.68590.63280.069*
H9B0.02040.78420.66290.069*
C100.0103 (3)0.69241 (16)0.75731 (14)0.0512 (6)
C110.0462 (3)0.59463 (16)0.77320 (16)0.0594 (6)
H110.10450.57170.72750.071*
C120.0800 (3)0.53558 (18)0.78492 (18)0.0679 (7)
H120.05200.47570.80260.082*
C130.1909 (3)0.57379 (19)0.84437 (17)0.0749 (8)
H130.18730.54240.89820.090*
C140.1693 (3)0.67232 (19)0.85826 (17)0.0769 (9)
H14A0.25580.69880.87780.092*
H14B0.09900.68110.90130.092*
C150.2006 (4)0.67763 (19)0.84864 (18)0.0754 (8)
C160.3370 (3)0.6682 (2)0.8038 (3)0.1010 (12)
H16A0.39600.62760.83390.151*
H16B0.38180.72530.80030.151*
H16C0.32080.64570.74830.151*
C170.2157 (5)0.7101 (3)0.9384 (2)0.1217 (15)
H17A0.12480.71760.96280.183*
H17B0.26420.76610.93880.183*
H17C0.26770.66720.97030.183*
C180.2960 (3)0.5233 (2)0.72210 (19)0.0735 (8)
C190.3362 (4)0.4256 (3)0.7196 (3)0.1220 (14)
H19A0.28240.39340.76030.183*
H19B0.31780.40220.66470.183*
H19C0.43380.41960.73210.183*
C200.3716 (4)0.5806 (3)0.6615 (2)0.1097 (12)
H20A0.47030.57600.67120.164*
H20B0.35080.56160.60540.164*
H20C0.34260.64140.66860.164*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0639 (4)0.0605 (4)0.0542 (3)0.0178 (3)0.0103 (3)0.0063 (3)
O10.0513 (9)0.0788 (11)0.0467 (9)0.0067 (8)0.0047 (7)0.0040 (8)
O20.1259 (17)0.0482 (10)0.0781 (13)0.0087 (10)0.0276 (13)0.0058 (10)
O30.0632 (12)0.1228 (17)0.0865 (13)0.0377 (11)0.0139 (10)0.0305 (14)
O40.0721 (10)0.0594 (10)0.0555 (10)0.0228 (8)0.0178 (8)0.0063 (9)
O50.0932 (14)0.0661 (12)0.0762 (13)0.0151 (10)0.0197 (11)0.0193 (10)
O60.0838 (11)0.0538 (10)0.0495 (9)0.0132 (9)0.0116 (8)0.0001 (8)
O70.0681 (12)0.0765 (12)0.0671 (12)0.0053 (9)0.0197 (10)0.0090 (10)
O80.0785 (14)0.1293 (19)0.0832 (14)0.0074 (13)0.0282 (12)0.0074 (14)
N10.0599 (12)0.0553 (12)0.0501 (11)0.0039 (10)0.0009 (9)0.0037 (9)
C10.0752 (18)0.0509 (13)0.0508 (14)0.0014 (13)0.0123 (12)0.0048 (11)
C20.091 (2)0.0660 (19)0.111 (3)0.0071 (16)0.040 (2)0.0001 (19)
C30.172 (4)0.067 (2)0.158 (4)0.026 (3)0.110 (4)0.011 (3)
C40.327 (9)0.051 (2)0.086 (3)0.015 (4)0.099 (5)0.006 (2)
C50.284 (8)0.072 (3)0.063 (2)0.047 (4)0.000 (4)0.005 (2)
C60.146 (3)0.0672 (19)0.0687 (19)0.0207 (19)0.022 (2)0.0035 (17)
C70.0501 (13)0.0562 (13)0.0511 (13)0.0018 (10)0.0042 (12)0.0031 (12)
C80.103 (2)0.0783 (18)0.0530 (15)0.0034 (17)0.0046 (16)0.0068 (14)
C90.0544 (14)0.0732 (17)0.0449 (12)0.0045 (13)0.0020 (10)0.0071 (13)
C100.0605 (14)0.0505 (13)0.0426 (12)0.0122 (11)0.0030 (11)0.0020 (10)
C110.0684 (16)0.0535 (14)0.0562 (15)0.0158 (12)0.0046 (13)0.0027 (12)
C120.0800 (19)0.0528 (15)0.0709 (18)0.0119 (14)0.0089 (15)0.0088 (14)
C130.091 (2)0.0798 (19)0.0543 (15)0.0030 (17)0.0198 (16)0.0136 (14)
C140.095 (2)0.087 (2)0.0487 (15)0.0202 (17)0.0263 (15)0.0026 (14)
C150.095 (2)0.0631 (17)0.0684 (18)0.0118 (16)0.0278 (17)0.0084 (14)
C160.075 (2)0.087 (2)0.141 (3)0.0195 (17)0.036 (2)0.010 (2)
C170.176 (4)0.121 (3)0.068 (2)0.001 (3)0.055 (2)0.009 (2)
C180.0679 (18)0.0804 (18)0.0722 (18)0.0053 (15)0.0199 (16)0.0013 (16)
C190.117 (3)0.091 (2)0.158 (4)0.032 (2)0.040 (3)0.005 (3)
C200.085 (2)0.138 (3)0.106 (3)0.005 (2)0.008 (2)0.027 (3)
Geometric parameters (Å, º) top
S1—O31.411 (2)C8—H8A0.9600
S1—O21.419 (2)C8—H8B0.9600
S1—O11.5722 (17)C8—H8C0.9600
S1—N11.590 (2)C9—C101.518 (3)
O1—C91.440 (3)C9—H9A0.9700
O4—C101.409 (3)C9—H9B0.9700
O4—C141.434 (3)C10—C111.529 (3)
O5—C111.416 (3)C11—C121.510 (4)
O5—C151.430 (3)C11—H110.9800
O6—C101.406 (3)C12—C131.535 (4)
O6—C151.443 (3)C12—H120.9800
O7—C121.409 (3)C13—C141.510 (4)
O7—C181.423 (3)C13—H130.9800
O8—C131.408 (4)C14—H14A0.9700
O8—C181.411 (3)C14—H14B0.9700
N1—C71.485 (3)C15—C161.496 (5)
N1—H1A0.9275C15—C171.519 (4)
C1—C61.358 (4)C16—H16A0.9600
C1—C21.375 (4)C16—H16B0.9600
C1—C71.509 (3)C16—H16C0.9600
C2—C31.383 (5)C17—H17A0.9600
C2—H20.9300C17—H17B0.9600
C3—C41.349 (8)C17—H17C0.9600
C3—H30.9300C18—C201.483 (4)
C4—C51.350 (8)C18—C191.516 (5)
C4—H40.9300C19—H19A0.9600
C5—C61.387 (6)C19—H19B0.9600
C5—H50.9300C19—H19C0.9600
C6—H60.9300C20—H20A0.9600
C7—C81.514 (4)C20—H20B0.9600
C7—H70.9800C20—H20C0.9600
O3—S1—O2121.23 (14)C12—C11—C10113.8 (2)
O3—S1—O1102.63 (12)O5—C11—H11110.0
O2—S1—O1108.03 (11)C12—C11—H11110.0
O3—S1—N1108.09 (11)C10—C11—H11110.0
O2—S1—N1107.80 (13)O7—C12—C11106.9 (2)
O1—S1—N1108.49 (10)O7—C12—C13103.0 (2)
C9—O1—S1118.64 (14)C11—C12—C13114.3 (2)
C10—O4—C14113.32 (19)O7—C12—H12110.8
C11—O5—C15106.29 (19)C11—C12—H12110.8
C10—O6—C15110.64 (19)C13—C12—H12110.8
C12—O7—C18108.9 (2)O8—C13—C14112.1 (3)
C13—O8—C18110.8 (2)O8—C13—C12104.3 (2)
C7—N1—S1122.60 (16)C14—C13—C12111.2 (2)
C7—N1—H1A126.9O8—C13—H13109.7
S1—N1—H1A104.9C14—C13—H13109.7
C6—C1—C2118.9 (3)C12—C13—H13109.7
C6—C1—C7120.4 (3)O4—C14—C13111.3 (2)
C2—C1—C7120.6 (3)O4—C14—H14A109.4
C1—C2—C3119.9 (4)C13—C14—H14A109.4
C1—C2—H2120.1O4—C14—H14B109.4
C3—C2—H2120.1C13—C14—H14B109.4
C4—C3—C2120.7 (5)H14A—C14—H14B108.0
C4—C3—H3119.7O5—C15—O6103.9 (2)
C2—C3—H3119.7O5—C15—C16111.8 (3)
C5—C4—C3119.8 (5)O6—C15—C16110.4 (2)
C5—C4—H4120.1O5—C15—C17108.8 (3)
C3—C4—H4120.1O6—C15—C17108.1 (3)
C4—C5—C6120.3 (5)C16—C15—C17113.4 (3)
C4—C5—H5119.8C15—C16—H16A109.5
C6—C5—H5119.8C15—C16—H16B109.5
C1—C6—C5120.4 (4)H16A—C16—H16B109.5
C1—C6—H6119.8C15—C16—H16C109.5
C5—C6—H6119.8H16A—C16—H16C109.5
N1—C7—C1112.74 (18)H16B—C16—H16C109.5
N1—C7—C8107.7 (2)C15—C17—H17A109.5
C1—C7—C8113.1 (2)C15—C17—H17B109.5
N1—C7—H7107.7H17A—C17—H17B109.5
C1—C7—H7107.7C15—C17—H17C109.5
C8—C7—H7107.7H17A—C17—H17C109.5
C7—C8—H8A109.5H17B—C17—H17C109.5
C7—C8—H8B109.5O8—C18—O7105.7 (2)
H8A—C8—H8B109.5O8—C18—C20109.2 (3)
C7—C8—H8C109.5O7—C18—C20108.2 (2)
H8A—C8—H8C109.5O8—C18—C19108.6 (3)
H8B—C8—H8C109.5O7—C18—C19109.9 (3)
O1—C9—C10108.12 (18)C20—C18—C19114.8 (3)
O1—C9—H9A110.1C18—C19—H19A109.5
C10—C9—H9A110.1C18—C19—H19B109.5
O1—C9—H9B110.1H19A—C19—H19B109.5
C10—C9—H9B110.1C18—C19—H19C109.5
H9A—C9—H9B108.4H19A—C19—H19C109.5
O6—C10—O4110.70 (18)H19B—C19—H19C109.5
O6—C10—C9110.3 (2)C18—C20—H20A109.5
O4—C10—C9102.21 (18)C18—C20—H20B109.5
O6—C10—C11103.55 (19)H20A—C20—H20B109.5
O4—C10—C11113.6 (2)C18—C20—H20C109.5
C9—C10—C11116.6 (2)H20A—C20—H20C109.5
O5—C11—C12108.8 (2)H20B—C20—H20C109.5
O5—C11—C10104.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.932.062.959 (3)163
Symmetry code: (i) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC20H29NO8S
Mr443.50
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.5733 (9), 15.0134 (14), 15.9462 (15)
V3)2291.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.28 × 0.20 × 0.15
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.950, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
13609, 4041, 3348
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 1.04
No. of reflections4041
No. of parameters276
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.19
Absolute structureFlack (1983), 1736 Friedel pairs
Absolute structure parameter0.02 (8)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.932.062.959 (3)162.9
Symmetry code: (i) x1/2, y+3/2, z+1.
 

Acknowledgements

This work was supported by the program of the Education Department of Liaoning Province (No. L2010533), and the program of the Science and Technology Department of Liaoning Province, China (No. 2009226015–5).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMaryanoff, B. E. (2009). J. Med. Chem. 52, 3431–3440.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaryanoff, B. E., Costanzo, M. J., Nortey, S. O., Greco, M. N., Shank, R. P., Schupsky, J. J., Ortegon, M. P. & Vaught, J. L. (1998). J. Med. Chem. 41, 1315–1343.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMaryanoff, B. E., McComsey, D. F., Lee, J., Smith-Swintosky, V. L., Wang, Y.-P., Minor, L. K. & Todd, M. J. (2008). J. Med. Chem. 51, 2518–2521.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinum, J., Temperini, C., Cheikh, K. E., Innocenti, A., Vullo, D., Ciattini, S., Montero, J., Scozzafava, A. & Supuran, C. T. (2006). J. Med. Chem. 49, 7024–7031.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1581
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds