metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m624-m625

catena-Poly[[[penta­aqua­cerium(III)]-μ-pyridine-2,4,6-tri­carboxyl­ato-κ4N,O2,O6:O6′] tetra­hydrate]

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore, Pakistan, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 4 April 2012; accepted 11 April 2012; online 18 April 2012)

The CeIII atom in the title compound, {[Ce(C8H2NO6)(H2O)5]·4H2O}n, is N,O,O′-chelated by the carboxyl­ate trianion and is coordinated by five water mol­ecules; a carboxyl O atom from an adjacent trianion bridges the CeIII atom, resulting in a chain running along the a axis. The nine atoms surrounding the metal atom comprise a tricapped trigonal-prismatic polyhedron. The coordinated and lattice water mol­ecules inter­act with each other and with the carboxyl O atoms by O—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

For the isotypic SmIII, EuIII, TbIII and HoIII analogs, see: Wang et al. (2007[Wang, H.-S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Cryst. Growth Des. 7, 1851-1857.]). For the synthesis of 2,4,6-pyridine­tricarb­oxy­lic acid, see: Syper et al. (1980[Syper, L., Kloc, K. & Mlochowski, J. (1980). Tetrahedron, 36, 123-129.]).

[Scheme 1]

Experimental

Crystal data
  • [Ce(C8H2NO6)(H2O)5]·4H2O

  • Mr = 510.37

  • Orthorhombic, P n a 21

  • a = 6.8437 (3) Å

  • b = 13.3207 (5) Å

  • c = 17.9045 (7) Å

  • V = 1632.23 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.87 mm−1

  • T = 293 K

  • 0.21 × 0.06 × 0.04 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.584, Tmax = 0.894

  • 19512 measured reflections

  • 3690 independent reflections

  • 3336 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.078

  • S = 1.07

  • 3690 reflections

  • 226 parameters

  • 25 restraints

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.51 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1757 Friedel pairs

  • Flack parameter: −0.05 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H12⋯O6wi 0.84 2.00 2.789 (7) 157
O1w—H11⋯O5ii 0.84 2.00 2.723 (7) 144
O2w—H21⋯O3iii 0.84 2.05 2.762 (7) 142
O2w—H22⋯O6w 0.84 2.31 2.699 (7) 109
O3w—H31⋯O9w 0.84 1.89 2.710 (10) 165
O4w—H41⋯O4ii 0.84 2.03 2.693 (7) 136
O4w—H42⋯O4iii 0.84 2.02 2.713 (7) 139
O5w—H52⋯O7w 0.84 2.25 2.762 (9) 119
O6w—H61⋯O1iv 0.84 2.04 2.751 (7) 142
O6w—H62⋯O8wii 0.84 2.09 2.825 (9) 146
O7w—H71⋯O3iv 0.84 1.99 2.818 (9) 169
O7w—H72⋯O8wv 0.84 2.36 3.169 (10) 162
O8w—H81⋯O5 0.84 2.22 2.778 (8) 124
O8w—H82⋯O9w 0.84 2.45 2.756 (11) 103
O9w—H91⋯O4wvi 0.84 2.29 2.895 (9) 130
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (v) x+1, y, z; (vi) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Some lanthanide coordination polymers of 2,4,6-pyridinetricarboxylic acid exhibit photoluminescence; the Sm, Eu, Tb and Ho derivatives are isostructural pentaaqua-coordinated tetrahydrates having the rare-earth atoms in tricapped trigonal prismatic geometries (Wang et al., 2007). The cerium analog is also isostructural; The Ce(III) atom in Ce(H2O)5(C8H2NO6).4H2O (Scheme I, Fig. 1) is N,O,O'-chelated by the carboxylate trianion and is coordinated by five water molecules. A carboxyl O atom from an adjacent trianion results in a chain running along the a-axis of the orthorhombic unit cell. The nine atoms surrounding the metal atom comprises a tricapped trigonal prismatic polyhedron (Fig. 2). The coordinated and lattice water molecules interact by themselves and with the carboxyl O-atoms by O–H···O hydrogen bonds to generate a three-dimensional network (Table 1).

Related literature top

For the isotypic SmIII, EuIII, TbIII and HoIII analogs, see: Wang et al. (2007). For the synthesis of 2,4,6-pyridinetricarboxylic acid, see: Syper et al. (1980).

Experimental top

Pyridinetricarboxylic acid was synthesized by using a reported method (Syper et al., 1980). The compound (0.110 g, 0.5 mmol) was dissolved in water (7 ml) and added to a solution of cerium nitrate (0.054 g. 0.5 mmol) dissolved in 50% aqueous methanol (5 ml). The solution was heated for a hour, and then set aside for the growth of yellow prisms. These appeared after three weeks. mixture was refluxed for two hours. Yellow prisms like crystals were obtained after three weeks.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The water H-atoms were placed in chemically sensible positions on the basis of hydrogen bonds (O–H 0.8 Å); their temperature factors were fixed ats 1.5 times those of the parent O-atoms.

The anisotropic temperature factors of the O-atoms of the lattice water molecules were restrained to be nearly isotropic.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the formular unit of polymeric Ce(H2O)5(C8H2NO6).4H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Tricapped trigonal prismatic geometry of the Ce(III) atom in Ce(H2O)5(C8H2NO6).4H2O.
catena-Poly[[[pentaaquacerium(III)]-µ-pyridine-2,4,6-tricarboxylato- κ4N,\<i>O2,O6:O6')] tetrahydrate] top
Crystal data top
[Ce(C8H2NO6)(H2O)5]·4H2OF(000) = 1012
Mr = 510.37Dx = 2.077 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 7136 reflections
a = 6.8437 (3) Åθ = 3.1–28.2°
b = 13.3207 (5) ŵ = 2.87 mm1
c = 17.9045 (7) ÅT = 293 K
V = 1632.23 (11) Å3Prism, yellow
Z = 40.21 × 0.06 × 0.04 mm
Data collection top
Bruker APEXII
diffractometer
3690 independent reflections
Radiation source: fine-focus sealed tube3336 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 85
Tmin = 0.584, Tmax = 0.894k = 1716
19512 measured reflectionsl = 2322
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0295P)2 + 6.9973P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3690 reflectionsΔρmax = 0.68 e Å3
226 parametersΔρmin = 0.51 e Å3
25 restraintsAbsolute structure: Flack (1983), 1757 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (2)
Crystal data top
[Ce(C8H2NO6)(H2O)5]·4H2OV = 1632.23 (11) Å3
Mr = 510.37Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 6.8437 (3) ŵ = 2.87 mm1
b = 13.3207 (5) ÅT = 293 K
c = 17.9045 (7) Å0.21 × 0.06 × 0.04 mm
Data collection top
Bruker APEXII
diffractometer
3690 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3336 reflections with I > 2σ(I)
Tmin = 0.584, Tmax = 0.894Rint = 0.034
19512 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.68 e Å3
S = 1.07Δρmin = 0.51 e Å3
3690 reflectionsAbsolute structure: Flack (1983), 1757 Friedel pairs
226 parametersAbsolute structure parameter: 0.05 (2)
25 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.48574 (3)0.464973 (17)0.49983 (4)0.01583 (8)
O10.5984 (6)0.2872 (3)0.5134 (2)0.0230 (10)
O20.6815 (6)0.1363 (3)0.4705 (2)0.0245 (9)
O30.5476 (11)0.0845 (5)0.1892 (4)0.0538 (19)
O40.6142 (9)0.2190 (4)0.1212 (3)0.0446 (14)
O50.4457 (8)0.5584 (3)0.2552 (3)0.0346 (11)
O60.4253 (7)0.5458 (3)0.3787 (2)0.0279 (9)
O1w0.3428 (7)0.4311 (4)0.6266 (3)0.0392 (12)
H110.43220.41360.65600.059*
H120.25970.38500.62330.059*
O2w0.7604 (7)0.4543 (3)0.5942 (3)0.0336 (11)
H210.77830.51100.61350.050*
H220.86330.43560.57270.050*
O3w0.1808 (6)0.5787 (4)0.5174 (3)0.0368 (13)
H310.17330.61940.48170.055*
H320.19070.61050.55770.055*
O4w0.5804 (7)0.6370 (3)0.5462 (3)0.0308 (10)
H410.50900.65280.58260.046*
H420.69770.63600.56000.046*
O5w0.8185 (7)0.5032 (4)0.4421 (3)0.0386 (11)
H510.82720.56500.43350.058*
H520.83050.47120.40190.058*
O6w1.0103 (8)0.3123 (4)0.6438 (3)0.0423 (13)
H611.01180.26100.61650.063*
H620.98980.29610.68840.063*
O7w0.9175 (12)0.5539 (6)0.2974 (4)0.0593 (19)
H710.95400.50660.26970.089*
H721.00530.59770.30070.089*
O8w0.2199 (9)0.7304 (5)0.2708 (4)0.0668 (18)
H810.33880.71490.26860.100*
H820.19790.78480.29310.100*
O9w0.1128 (17)0.7295 (6)0.4192 (5)0.113 (3)
H910.16220.78120.43830.169*
H920.00870.73840.41950.169*
N10.5422 (7)0.3589 (3)0.3789 (3)0.0167 (9)
C10.6225 (7)0.2232 (4)0.4618 (3)0.0174 (11)
C20.5789 (8)0.2597 (4)0.3837 (3)0.0159 (10)
C30.5835 (8)0.1987 (4)0.3213 (4)0.0205 (11)
H30.60240.12980.32620.025*
C40.5595 (8)0.2415 (4)0.2508 (3)0.0201 (11)
C50.5308 (8)0.3449 (4)0.2457 (3)0.0192 (11)
H50.52280.37630.19940.023*
C60.5142 (7)0.4002 (4)0.3112 (3)0.0172 (10)
C70.4583 (8)0.5113 (4)0.3140 (3)0.0199 (11)
C80.5716 (9)0.1763 (5)0.1811 (4)0.0272 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.02002 (12)0.01382 (12)0.01366 (12)0.00054 (9)0.0016 (3)0.0023 (2)
O10.041 (2)0.0170 (17)0.011 (3)0.0042 (15)0.0039 (16)0.0025 (15)
O20.029 (2)0.019 (2)0.025 (2)0.0062 (16)0.0011 (17)0.0015 (16)
O30.082 (5)0.035 (3)0.045 (4)0.009 (3)0.024 (3)0.021 (3)
O40.067 (4)0.043 (3)0.024 (3)0.027 (3)0.005 (2)0.000 (2)
O50.058 (3)0.027 (2)0.019 (2)0.011 (2)0.003 (2)0.0068 (19)
O60.043 (2)0.021 (2)0.019 (2)0.0103 (19)0.0019 (19)0.0015 (17)
O1w0.040 (3)0.062 (3)0.016 (2)0.012 (2)0.0009 (19)0.000 (2)
O2w0.038 (3)0.030 (2)0.033 (3)0.003 (2)0.019 (2)0.010 (2)
O3w0.033 (2)0.040 (3)0.038 (4)0.0065 (19)0.0004 (19)0.012 (2)
O4w0.032 (2)0.025 (2)0.036 (3)0.0027 (18)0.004 (2)0.0116 (19)
O5w0.031 (2)0.051 (3)0.033 (3)0.006 (2)0.005 (2)0.007 (2)
O6w0.055 (3)0.034 (3)0.038 (3)0.004 (2)0.003 (2)0.007 (2)
O7w0.065 (4)0.065 (4)0.048 (4)0.003 (3)0.010 (3)0.003 (3)
O8w0.057 (4)0.067 (4)0.077 (4)0.014 (3)0.002 (3)0.001 (3)
O9w0.172 (8)0.076 (5)0.090 (5)0.046 (5)0.008 (6)0.014 (4)
N10.018 (2)0.016 (2)0.017 (2)0.0018 (17)0.0022 (17)0.0001 (18)
C10.015 (2)0.014 (3)0.023 (3)0.0001 (19)0.002 (2)0.002 (2)
C20.017 (2)0.013 (2)0.018 (3)0.0021 (19)0.000 (2)0.002 (2)
C30.018 (3)0.018 (3)0.026 (3)0.001 (2)0.001 (2)0.001 (2)
C40.018 (2)0.022 (3)0.020 (3)0.003 (2)0.004 (2)0.002 (2)
C50.021 (3)0.022 (3)0.015 (3)0.003 (2)0.000 (2)0.001 (2)
C60.018 (2)0.019 (3)0.015 (3)0.0012 (19)0.001 (2)0.001 (2)
C70.024 (3)0.018 (3)0.018 (3)0.001 (2)0.001 (2)0.003 (2)
C80.028 (3)0.034 (3)0.020 (3)0.006 (3)0.004 (2)0.010 (3)
Geometric parameters (Å, º) top
Ce1—O62.456 (4)O4w—H420.8399
Ce1—O12.502 (4)O5w—H510.8400
Ce1—O1w2.512 (5)O5w—H520.8399
Ce1—O4w2.523 (4)O6w—H610.8399
Ce1—O2w2.532 (4)O6w—H620.8401
Ce1—O2i2.536 (4)O7w—H710.8399
Ce1—O5w2.552 (5)O7w—H720.8401
Ce1—O3w2.598 (4)O8w—H810.8400
Ce1—N12.615 (5)O8w—H820.8400
O1—C11.268 (6)O9w—H910.8400
O2—C11.237 (6)O9w—H920.8399
O2—Ce1ii2.536 (4)N1—C61.344 (7)
O3—C81.242 (9)N1—C21.347 (7)
O4—C81.249 (8)C1—C21.509 (8)
O5—C71.228 (7)C2—C31.383 (8)
O6—C71.266 (7)C3—C41.394 (8)
O1w—H110.8399C3—H30.9300
O1w—H120.8400C4—C51.395 (8)
O2w—H210.8399C4—C81.523 (8)
O2w—H220.8400C5—C61.390 (8)
O3w—H310.8401C5—H50.9300
O3w—H320.8399C6—C71.530 (8)
O4w—H410.8401
O6—Ce1—O1123.53 (13)Ce1—O2w—H22109.5
O6—Ce1—O1w144.17 (17)H21—O2w—H22109.5
O1—Ce1—O1w82.09 (16)Ce1—O3w—H31109.5
O6—Ce1—O4w86.32 (15)Ce1—O3w—H32109.5
O1—Ce1—O4w138.49 (14)H31—O3w—H32109.5
O1w—Ce1—O4w88.02 (17)Ce1—O4w—H41109.4
O6—Ce1—O2w137.65 (17)Ce1—O4w—H42109.1
O1—Ce1—O2w69.70 (14)H41—O4w—H42109.5
O1w—Ce1—O2w71.10 (17)Ce1—O5w—H51109.4
O4w—Ce1—O2w68.94 (14)Ce1—O5w—H52109.5
O6—Ce1—O2i84.95 (15)H51—O5w—H52109.5
O1—Ce1—O2i76.68 (13)H61—O6w—H62110.3
O1w—Ce1—O2i76.83 (15)H71—O7w—H72110.5
O4w—Ce1—O2i139.67 (14)H81—O8w—H82114.1
O2w—Ce1—O2i135.89 (16)H91—O9w—H92106.3
O6—Ce1—O5w72.86 (17)C6—N1—C2119.1 (5)
O1—Ce1—O5w87.32 (17)C6—N1—Ce1120.3 (4)
O1w—Ce1—O5w138.51 (17)C2—N1—Ce1120.3 (3)
O4w—Ce1—O5w73.92 (17)O2—C1—O1125.5 (5)
O2w—Ce1—O5w67.60 (18)O2—C1—C2118.9 (5)
O2i—Ce1—O5w139.01 (16)O1—C1—C2115.6 (4)
O6—Ce1—O3w73.51 (15)N1—C2—C3121.9 (5)
O1—Ce1—O3w141.96 (15)N1—C2—C1114.4 (4)
O1w—Ce1—O3w71.48 (17)C3—C2—C1123.7 (5)
O4w—Ce1—O3w68.68 (14)C2—C3—C4119.2 (5)
O2w—Ce1—O3w123.26 (15)C2—C3—H3120.4
O2i—Ce1—O3w71.08 (13)C4—C3—H3120.4
O5w—Ce1—O3w130.50 (17)C3—C4—C5118.7 (5)
O6—Ce1—N162.00 (14)C3—C4—C8120.1 (5)
O1—Ce1—N161.53 (13)C5—C4—C8121.1 (5)
O1w—Ce1—N1135.14 (16)C6—C5—C4118.6 (5)
O4w—Ce1—N1136.56 (16)C6—C5—H5120.7
O2w—Ce1—N1114.37 (15)C4—C5—H5120.7
O2i—Ce1—N170.25 (14)N1—C6—C5122.2 (5)
O5w—Ce1—N168.94 (16)N1—C6—C7113.8 (5)
O3w—Ce1—N1122.29 (14)C5—C6—C7124.1 (5)
C1—O1—Ce1127.3 (3)O5—C7—O6125.9 (5)
C1—O2—Ce1ii142.4 (4)O5—C7—C6118.9 (5)
C7—O6—Ce1128.2 (4)O6—C7—C6115.1 (5)
Ce1—O1w—H11109.4O3—C8—O4125.4 (7)
Ce1—O1w—H12109.4O3—C8—C4117.3 (6)
H11—O1w—H12109.5O4—C8—C4117.2 (6)
Ce1—O2w—H21109.4
O6—Ce1—O1—C14.4 (5)Ce1ii—O2—C1—C2105.5 (6)
O1w—Ce1—O1—C1148.5 (5)Ce1—O1—C1—O2178.7 (4)
O4w—Ce1—O1—C1133.6 (4)Ce1—O1—C1—C20.4 (7)
O2w—Ce1—O1—C1138.8 (5)C6—N1—C2—C31.8 (8)
O2i—Ce1—O1—C170.2 (4)Ce1—N1—C2—C3171.2 (4)
O5w—Ce1—O1—C171.7 (5)C6—N1—C2—C1175.7 (5)
O3w—Ce1—O1—C1102.7 (5)Ce1—N1—C2—C111.3 (6)
N1—Ce1—O1—C14.3 (4)O2—C1—C2—N1171.1 (5)
O1—Ce1—O6—C76.2 (6)O1—C1—C2—N17.3 (7)
O1w—Ce1—O6—C7135.7 (5)O2—C1—C2—C36.3 (8)
O4w—Ce1—O6—C7142.8 (5)O1—C1—C2—C3175.2 (5)
O2w—Ce1—O6—C790.0 (5)N1—C2—C3—C43.4 (8)
O2i—Ce1—O6—C776.6 (5)C1—C2—C3—C4173.9 (5)
O5w—Ce1—O6—C768.5 (5)C2—C3—C4—C50.3 (8)
O3w—Ce1—O6—C7148.3 (5)C2—C3—C4—C8177.7 (5)
N1—Ce1—O6—C76.3 (5)C3—C4—C5—C64.2 (8)
O6—Ce1—N1—C61.1 (4)C8—C4—C5—C6177.8 (5)
O1—Ce1—N1—C6178.8 (4)C2—N1—C6—C53.0 (8)
O1w—Ce1—N1—C6141.2 (4)Ce1—N1—C6—C5176.0 (4)
O4w—Ce1—N1—C647.1 (5)C2—N1—C6—C7175.5 (5)
O2w—Ce1—N1—C6131.6 (4)Ce1—N1—C6—C72.6 (6)
O2i—Ce1—N1—C696.0 (4)C4—C5—C6—N16.0 (8)
O5w—Ce1—N1—C680.1 (4)C4—C5—C6—C7172.4 (5)
O3w—Ce1—N1—C645.3 (4)Ce1—O6—C7—O5171.5 (5)
O6—Ce1—N1—C2171.8 (5)Ce1—O6—C7—C69.8 (7)
O1—Ce1—N1—C28.3 (4)N1—C6—C7—O5173.9 (5)
O1w—Ce1—N1—C231.7 (5)C5—C6—C7—O57.6 (8)
O4w—Ce1—N1—C2140.1 (4)N1—C6—C7—O67.4 (7)
O2w—Ce1—N1—C255.5 (4)C5—C6—C7—O6171.1 (5)
O2i—Ce1—N1—C276.9 (4)C3—C4—C8—O319.8 (9)
O5w—Ce1—N1—C2107.0 (4)C5—C4—C8—O3162.2 (7)
O3w—Ce1—N1—C2127.5 (4)C3—C4—C8—O4156.7 (6)
Ce1ii—O2—C1—O172.8 (9)C5—C4—C8—O421.2 (9)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H12···O6wiii0.842.002.789 (7)157
O1w—H11···O5iv0.842.002.723 (7)144
O2w—H21···O3v0.842.052.762 (7)142
O2w—H22···O6w0.842.312.699 (7)109
O3w—H31···O9w0.841.892.710 (10)165
O4w—H41···O4iv0.842.032.693 (7)136
O4w—H42···O4v0.842.022.713 (7)139
O5w—H52···O7w0.842.252.762 (9)119
O6w—H61···O1ii0.842.042.751 (7)142
O6w—H62···O8wiv0.842.092.825 (9)146
O7w—H71···O3ii0.841.992.818 (9)169
O7w—H72···O8wvi0.842.363.169 (10)162
O8w—H81···O50.842.222.778 (8)124
O8w—H82···O9w0.842.452.756 (11)103
O9w—H91···O4wvii0.842.292.895 (9)130
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x1, y, z; (iv) x+1, y+1, z+1/2; (v) x+3/2, y+1/2, z+1/2; (vi) x+1, y, z; (vii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Ce(C8H2NO6)(H2O)5]·4H2O
Mr510.37
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)6.8437 (3), 13.3207 (5), 17.9045 (7)
V3)1632.23 (11)
Z4
Radiation typeMo Kα
µ (mm1)2.87
Crystal size (mm)0.21 × 0.06 × 0.04
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.584, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
19512, 3690, 3336
Rint0.034
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.078, 1.07
No. of reflections3690
No. of parameters226
No. of restraints25
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.51
Absolute structureFlack (1983), 1757 Friedel pairs
Absolute structure parameter0.05 (2)

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H12···O6wi0.842.002.789 (7)157
O1w—H11···O5ii0.842.002.723 (7)144
O2w—H21···O3iii0.842.052.762 (7)142
O2w—H22···O6w0.842.312.699 (7)109
O3w—H31···O9w0.841.892.710 (10)165
O4w—H41···O4ii0.842.032.693 (7)136
O4w—H42···O4iii0.842.022.713 (7)139
O5w—H52···O7w0.842.252.762 (9)119
O6w—H61···O1iv0.842.042.751 (7)142
O6w—H62···O8wii0.842.092.825 (9)146
O7w—H71···O3iv0.841.992.818 (9)169
O7w—H72···O8wv0.842.363.169 (10)162
O8w—H81···O50.842.222.778 (8)124
O8w—H82···O9w0.842.452.756 (11)103
O9w—H91···O4wvi0.842.292.895 (9)130
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z; (v) x+1, y, z; (vi) x1/2, y+3/2, z.
 

Acknowledgements

We thank the Higher Education Commission of Pakistan, the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSyper, L., Kloc, K. & Mlochowski, J. (1980). Tetrahedron, 36, 123–129.  CrossRef CAS Web of Science Google Scholar
First citationWang, H.-S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Cryst. Growth Des. 7, 1851–1857.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m624-m625
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds