organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1544-o1545

3-Anilino­methyl-5-chloro-1,3-­benzoxazol-2(3H)-one

aDepartment of Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, 35100 Ízmir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: aaydin@kastamonu.edu.tr

(Received 5 April 2012; accepted 20 April 2012; online 28 April 2012)

In the title compound, C14H11ClN2O2, the 2,3-dihydro-1,3-benzoxazole ring system is essentially planar [maximum deviation = 0.009 (2) Å] and makes a dihedral angle of 79.15 (7)° with the phenyl ring. Inter­molecular N—H⋯O and weak C—H⋯Cl hydrogen bonds occur in the crystal structure.

Related literature

For the synthesis and biological activity of compounds with a benzoxazolone nucleus, see; Varma & Nobles (1968[Varma, R. S. & Nobles, W. L. (1968). J. Pharm. Sci. 57, 39-44.]); Courtois et al. (2004[Courtois, M., Mincheva, Z., Andreu, F., Rideau, M. & Viaud-Massuard, M. C. (2004). J. Enzyme Inhib. Med. Chem. 19, 559-565.]); Deng et al. (2006[Deng, B. L., Cullen, M. D., Zhou, Z., Hartman, T. L., Buckheit, R. W. Jr, Pannecouque, C., Clercq, E. D., Fanwick, P. E. & Cushman, M. (2006). Bioorg. Med. Chem. 14, 2366-2374.]); Ivanova et al. (2007[Ivanova, Y., Momekov, G., Petrov, O., Karaivanova, M. & Kalcheva, V. (2007). Eur. J. Med. Chem. 42, 1382-1387.]); Koksal et al. (2002[Koksal, M., Gokhan, N., Erdogan, H., Ozalp, M. & Ekizoglu, M. (2002). Il Farmaco, 57, 535-538.], 2005[Koksal, M., Gokhan, N., Kupeli, E., Yesilada, E. & Erdogan, H. (2005). Arch. Pharm. Chem. Life Sci. 338, 117-125.]); Onkol et al. (2001[Onkol, T., Ito, S., Yildirim, E., Erol, K. & Sahin, M. F. (2001). Arch. Pharm. Pharm. Med. Chem. 334, 17-20.]); Soyer et al. (2005[Soyer, Z., Bas, M., Pabuccuoglu, A. & Pabuccuoglu, V. (2005). Arch. Pharm. Chem. Life Sci. 338, 405-410.]); Ucar et al. (1998[Ucar, H., Vanderpoorten, K., Cacciaguerra, S., Spampinato, S., Stables, J. P., Depovere, P., Isa, M., Masereel, B., Delarge, J. & Poupaert, J. H. (1998). J. Med. Chem. 41, 1138-1145.]); Unlu et al. (2003[Unlu, S., Onkol, T., Dundar, Y., Okcelik, B., Kupeli, E., Yesilada, E., Noyanalpan, N. & Sahin, M. F. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 353-361.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Aydın et al. (2004[Aydın, A., Önkol, T., Akkurt, M., Büyükgüngör, O. & Ünlü, S. (2004). Acta Cryst. E60, o244-o245.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClN2O2

  • Mr = 274.70

  • Monoclinic, P 21 /n

  • a = 9.7379 (5) Å

  • b = 12.4797 (7) Å

  • c = 10.2392 (7) Å

  • β = 93.129 (5)°

  • V = 1242.48 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.80 × 0.48 × 0.26 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.837, Tmax = 0.924

  • 20574 measured reflections

  • 3051 independent reflections

  • 2544 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.106

  • S = 1.07

  • 3051 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.30 3.1296 (17) 162
C11—H11⋯Cl1ii 0.93 2.70 3.5295 (17) 150
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The benzoxazolone nucleus represents an important pharmacophore present in pharmaceutical products. The compounds possessing this structure have a broad spectrum of biological activities, such as anti-HIV (Deng et al., 2006), anticancer (Ivanova et al., 2007), analgesic (Unlu et al., 2003), anti-inflammatory (Koksal et al., 2005), antinociceptive (Onkol et al., 2001), antimicrobial (Koksal et al., 2002), anticonvulsant (Ucar et al., 1998), antimalarial (Courtois et al., 2004), human leukocyte MPO clorinating inhibitor activity (Soyer et al., 2005).

In addition to, this compound was synthesized before by (Varma & Nobles, 1968) and they reported that most benzoxazolinone compounds have shown significant antibacterial activity.

In the title compound (I), (Fig. 1), the mean planes of the 2,3-dihydro-1,3-benzoxazole and phenyl rings make a dihedral angle of 79.15 (7)° with each other. The N1—C8—N2—C9 torsion angle is -72.99 (18)°. The bond lengths in (I) are normal and correspond to those observed in the related compound (Allen et al., 1987).

The Cl1—C3 and N1—C1 bond lengths are 1.7315 (16) Å, and 1.3914 (18) Å, respectively. The Cl1—C3—C4 and O2—C7—N1 bond angles are 118.73 (13) ° and 129.27 (15) °, respectively. The bond lengths and the bond angles of (I) are comparable to those observed in related structure (Aydın et al., 2004).

The crystal structure is stabilized by intermolecular N—H···O and C—H···Cl interactions (Table 1 and Fig. 2), connecting the molecules along the [001] direction.

Related literature top

For the synthesis and biological activity of compounds with a benzoxazolone nucleus, see; Varma & Nobles (1968); Courtois et al. (2004); Deng et al. (2006); Ivanova et al. (2007); Koksal et al. (2002, 2005); Onkol et al. (2001); Soyer et al. (2005); Ucar et al. (1998); Unlu et al. (2003). For bond-length data, see: Allen et al. (1987). For a related structure, see: Aydın et al. (2004).

Experimental top

4-Chloro-2-aminophenol (10 mmol), urea (50 mmol) and 37% HCl (2.5 ml) were irradiated (300 W, 413 K) for 15 min in a microwave oven. After completion of reaction (by monitoring with TLC), water (10 ml) was added to the reaction mixture and stirred at room temperature for 1 h. The resulting precipitate was filtered and washed with water. The crude product crystallized from ethanol-water (1:1) to yield 5-chloro-2(3H)-benzoxazolone. This compound (2 mmol) was dissolved in methanol (5 ml). Aniline (2 mmol) and 37% formalin (2.5 mmol) were added to this solution. The mixture was stirred vigorously for 3 h. The resulting precipitate was filtered and washed with cold methanol. The crude product was crystallized from methanol.

M.p.: 463 K. Yield 84%; IR vmax (FTIR/ATR): 3398, 3066, 1750, 1604 cm-1; 1H-NMR (DMSO-d6): δ 5.23 (2H, d, J=7.0 Hz, CH2), 6.61(1H, t, J=7.4 Hz, H-Aniline), 6.73-6.75 (2H, m, H-Aniline), 6.96 (1H, t, J=7.3 Hz, NH), 7.09 (2H, t, J=7.4 Hz, H-Aniline) 7.14 (1H, dd, J=2.3; 8.6 Hz, H-Benzoxazolone), 7.31 (1H, d, J=8.6 Hz, H-Benzoxazolone), 7.70 (1H, d, J=2.3 Hz, H-Benzoxazolone) p.p.m.; MS (ESI) m/z (%): 275 (M+H, 11), 277 (M+H+2, 4).

Refinement top

H atoms were positioned geometrically and refined using a riding model with N—H = 0.86 Å, C—H = 0.93 and 0.97 Å, and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecule shown with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding of (I) viewed down the a axis. H atoms not involved in hydrogen bondings are omitted for the sake of clarity.
3-Anilinomethyl-5-chloro-1,3-benzoxazol-2(3H)-one top
Crystal data top
C14H11ClN2O2F(000) = 568
Mr = 274.70Dx = 1.469 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 27572 reflections
a = 9.7379 (5) Åθ = 2.1–28.6°
b = 12.4797 (7) ŵ = 0.31 mm1
c = 10.2392 (7) ÅT = 296 K
β = 93.129 (5)°Prism, colourless
V = 1242.48 (13) Å30.80 × 0.48 × 0.26 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
3051 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2544 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.046
Detector resolution: 6.67 pixels mm-1θmax = 28.2°, θmin = 2.6°
ω scansh = 1212
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1616
Tmin = 0.837, Tmax = 0.924l = 1313
20574 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.2748P]
where P = (Fo2 + 2Fc2)/3
3051 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H11ClN2O2V = 1242.48 (13) Å3
Mr = 274.70Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7379 (5) ŵ = 0.31 mm1
b = 12.4797 (7) ÅT = 296 K
c = 10.2392 (7) Å0.80 × 0.48 × 0.26 mm
β = 93.129 (5)°
Data collection top
Stoe IPDS 2
diffractometer
3051 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2544 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.924Rint = 0.046
20574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.07Δρmax = 0.22 e Å3
3051 reflectionsΔρmin = 0.22 e Å3
172 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.37199 (5)0.42730 (6)0.40607 (5)0.0887 (2)
O10.61747 (10)0.34298 (10)0.11087 (11)0.0535 (3)
O20.52561 (13)0.24080 (12)0.26644 (11)0.0679 (4)
N10.41738 (11)0.26396 (10)0.06103 (11)0.0428 (4)
N20.16989 (12)0.24829 (12)0.04683 (12)0.0508 (4)
C10.45104 (13)0.32285 (11)0.04809 (13)0.0392 (4)
C20.38425 (14)0.33757 (13)0.16827 (14)0.0454 (4)
C30.45056 (16)0.40463 (14)0.25277 (15)0.0520 (5)
C40.57449 (16)0.45354 (13)0.22095 (18)0.0553 (5)
C50.64095 (15)0.43708 (13)0.09935 (17)0.0539 (5)
C60.57568 (14)0.37153 (12)0.01549 (15)0.0447 (4)
C70.51813 (15)0.27708 (13)0.15798 (15)0.0495 (5)
C80.29647 (15)0.19414 (13)0.06944 (15)0.0479 (5)
C90.11468 (13)0.31842 (12)0.13447 (13)0.0422 (4)
C100.17189 (15)0.33453 (13)0.26004 (14)0.0475 (4)
C110.10954 (17)0.40404 (15)0.34387 (16)0.0565 (5)
C120.00743 (18)0.45947 (15)0.30515 (19)0.0624 (6)
C130.06427 (19)0.44406 (16)0.1809 (2)0.0659 (6)
C140.00497 (17)0.37461 (15)0.09612 (16)0.0567 (5)
H20.300600.305000.191400.0550*
H2A0.124300.236900.026100.0610*
H40.614000.498000.281400.0660*
H50.725200.468800.076100.0650*
H8A0.302100.136800.005900.0580*
H8B0.298600.161800.155700.0580*
H100.252000.298700.287800.0570*
H110.147700.413400.428300.0680*
H120.047500.506700.362100.0750*
H130.143700.481000.153700.0790*
H140.044900.364900.012400.0680*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0635 (3)0.1420 (6)0.0602 (3)0.0059 (3)0.0005 (2)0.0431 (3)
O10.0397 (5)0.0669 (7)0.0528 (6)0.0022 (5)0.0074 (4)0.0061 (5)
O20.0674 (8)0.0890 (9)0.0457 (6)0.0034 (7)0.0112 (5)0.0084 (6)
N10.0373 (6)0.0508 (7)0.0399 (6)0.0004 (5)0.0007 (4)0.0013 (5)
N20.0387 (6)0.0736 (9)0.0397 (6)0.0032 (6)0.0006 (5)0.0068 (6)
C10.0332 (6)0.0416 (7)0.0429 (7)0.0030 (5)0.0039 (5)0.0028 (6)
C20.0337 (6)0.0572 (9)0.0452 (7)0.0012 (6)0.0011 (5)0.0028 (6)
C30.0433 (7)0.0645 (10)0.0486 (8)0.0091 (7)0.0050 (6)0.0111 (7)
C40.0468 (8)0.0528 (9)0.0678 (10)0.0010 (7)0.0166 (7)0.0096 (8)
C50.0391 (7)0.0515 (9)0.0716 (10)0.0055 (6)0.0082 (7)0.0054 (8)
C60.0353 (6)0.0478 (8)0.0507 (8)0.0027 (6)0.0002 (6)0.0068 (6)
C70.0431 (7)0.0582 (9)0.0464 (8)0.0066 (7)0.0044 (6)0.0024 (7)
C80.0477 (8)0.0487 (8)0.0476 (8)0.0050 (6)0.0049 (6)0.0000 (6)
C90.0365 (6)0.0503 (8)0.0400 (7)0.0100 (6)0.0033 (5)0.0036 (6)
C100.0385 (7)0.0609 (9)0.0427 (7)0.0069 (6)0.0008 (5)0.0020 (7)
C110.0523 (9)0.0708 (11)0.0463 (8)0.0130 (8)0.0010 (6)0.0104 (8)
C120.0565 (9)0.0612 (10)0.0704 (11)0.0046 (8)0.0110 (8)0.0156 (9)
C130.0523 (9)0.0667 (11)0.0778 (12)0.0099 (8)0.0039 (8)0.0028 (9)
C140.0493 (8)0.0695 (11)0.0501 (8)0.0016 (7)0.0081 (7)0.0007 (8)
Geometric parameters (Å, º) top
Cl1—C31.7315 (16)C9—C141.398 (2)
O1—C61.3817 (19)C9—C101.388 (2)
O1—C71.3769 (19)C10—C111.384 (2)
O2—C71.198 (2)C11—C121.373 (2)
N1—C11.3914 (18)C12—C131.373 (3)
N1—C71.3669 (19)C13—C141.376 (3)
N1—C81.4711 (19)C2—H20.9300
N2—C81.414 (2)C4—H40.9300
N2—C91.3831 (19)C5—H50.9300
N2—H2A0.8600C8—H8A0.9700
C1—C21.3725 (19)C8—H8B0.9700
C1—C61.3818 (19)C10—H100.9300
C2—C31.388 (2)C11—H110.9300
C3—C41.376 (2)C12—H120.9300
C4—C51.387 (2)C13—H130.9300
C5—C61.368 (2)C14—H140.9300
C6—O1—C7107.78 (11)C9—C10—C11119.87 (14)
C1—N1—C7109.19 (11)C10—C11—C12121.47 (16)
C1—N1—C8125.75 (11)C11—C12—C13118.90 (17)
C7—N1—C8124.99 (12)C12—C13—C14120.73 (17)
C8—N2—C9124.23 (12)C9—C14—C13120.73 (15)
C9—N2—H2A118.00C1—C2—H2122.00
C8—N2—H2A118.00C3—C2—H2122.00
N1—C1—C6106.29 (12)C3—C4—H4120.00
N1—C1—C2132.05 (12)C5—C4—H4120.00
C2—C1—C6121.65 (13)C4—C5—H5122.00
C1—C2—C3115.20 (13)C6—C5—H5122.00
Cl1—C3—C4118.73 (13)N1—C8—H8A109.00
Cl1—C3—C2117.77 (12)N1—C8—H8B109.00
C2—C3—C4123.49 (15)N2—C8—H8A109.00
C3—C4—C5120.48 (15)N2—C8—H8B109.00
C4—C5—C6116.25 (14)H8A—C8—H8B108.00
C1—C6—C5122.93 (14)C9—C10—H10120.00
O1—C6—C5128.24 (13)C11—C10—H10120.00
O1—C6—C1108.83 (12)C10—C11—H11119.00
O1—C7—N1107.90 (12)C12—C11—H11119.00
O1—C7—O2122.84 (14)C11—C12—H12121.00
O2—C7—N1129.27 (15)C13—C12—H12121.00
N1—C8—N2113.63 (13)C12—C13—H13120.00
N2—C9—C10122.83 (13)C14—C13—H13120.00
C10—C9—C14118.29 (14)C9—C14—H14120.00
N2—C9—C14118.87 (13)C13—C14—H14120.00
C7—O1—C6—C5179.00 (16)N1—C1—C2—C3179.08 (15)
C6—O1—C7—O2178.94 (16)C6—C1—C2—C30.3 (2)
C7—O1—C6—C10.57 (16)N1—C1—C6—O10.04 (16)
C6—O1—C7—N10.88 (16)C2—C1—C6—C50.0 (2)
C7—N1—C1—C2178.96 (16)C1—C2—C3—Cl1179.79 (12)
C8—N1—C1—C23.9 (2)C1—C2—C3—C40.2 (2)
C1—N1—C7—O10.86 (16)C2—C3—C4—C50.3 (3)
C8—N1—C7—O1176.31 (13)Cl1—C3—C4—C5179.75 (13)
C1—N1—C7—O2178.93 (17)C3—C4—C5—C60.6 (2)
C8—N1—C7—O23.9 (3)C4—C5—C6—C10.5 (2)
C1—N1—C8—N259.57 (18)C4—C5—C6—O1179.03 (15)
C7—N1—C8—N2123.72 (15)N2—C9—C10—C11178.47 (15)
C8—N1—C1—C6176.64 (13)C14—C9—C10—C110.6 (2)
C7—N1—C1—C60.51 (16)N2—C9—C14—C13179.13 (16)
C8—N2—C9—C106.8 (2)C10—C9—C14—C130.0 (2)
C9—N2—C8—N172.99 (18)C9—C10—C11—C121.1 (3)
C8—N2—C9—C14174.17 (15)C10—C11—C12—C130.9 (3)
C2—C1—C6—O1179.57 (13)C11—C12—C13—C140.3 (3)
N1—C1—C6—C5179.55 (14)C12—C13—C14—C90.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.303.1296 (17)162
C11—H11···Cl1ii0.932.703.5295 (17)150
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H11ClN2O2
Mr274.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.7379 (5), 12.4797 (7), 10.2392 (7)
β (°) 93.129 (5)
V3)1242.48 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.80 × 0.48 × 0.26
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.837, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
20574, 3051, 2544
Rint0.046
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.106, 1.07
No. of reflections3051
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.303.1296 (17)162
C11—H11···Cl1ii0.932.703.5295 (17)150
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAydın, A., Önkol, T., Akkurt, M., Büyükgüngör, O. & Ünlü, S. (2004). Acta Cryst. E60, o244–o245.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCourtois, M., Mincheva, Z., Andreu, F., Rideau, M. & Viaud-Massuard, M. C. (2004). J. Enzyme Inhib. Med. Chem. 19, 559–565.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeng, B. L., Cullen, M. D., Zhou, Z., Hartman, T. L., Buckheit, R. W. Jr, Pannecouque, C., Clercq, E. D., Fanwick, P. E. & Cushman, M. (2006). Bioorg. Med. Chem. 14, 2366–2374.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationIvanova, Y., Momekov, G., Petrov, O., Karaivanova, M. & Kalcheva, V. (2007). Eur. J. Med. Chem. 42, 1382–1387.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoksal, M., Gokhan, N., Erdogan, H., Ozalp, M. & Ekizoglu, M. (2002). Il Farmaco, 57, 535–538.  Web of Science PubMed CAS Google Scholar
First citationKoksal, M., Gokhan, N., Kupeli, E., Yesilada, E. & Erdogan, H. (2005). Arch. Pharm. Chem. Life Sci. 338, 117–125.  CAS Google Scholar
First citationOnkol, T., Ito, S., Yildirim, E., Erol, K. & Sahin, M. F. (2001). Arch. Pharm. Pharm. Med. Chem. 334, 17–20.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoyer, Z., Bas, M., Pabuccuoglu, A. & Pabuccuoglu, V. (2005). Arch. Pharm. Chem. Life Sci. 338, 405–410.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUcar, H., Vanderpoorten, K., Cacciaguerra, S., Spampinato, S., Stables, J. P., Depovere, P., Isa, M., Masereel, B., Delarge, J. & Poupaert, J. H. (1998). J. Med. Chem. 41, 1138–1145.  Web of Science CrossRef CAS PubMed Google Scholar
First citationUnlu, S., Onkol, T., Dundar, Y., Okcelik, B., Kupeli, E., Yesilada, E., Noyanalpan, N. & Sahin, M. F. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 353–361.  Google Scholar
First citationVarma, R. S. & Nobles, W. L. (1968). J. Pharm. Sci. 57, 39–44.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1544-o1545
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds