organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1450

5-Methyl-N-[2-(tri­fluoro­meth­yl)phen­yl]isoxazole-4-carboxamide

aState Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing University of Technology, Xinmofan Road No.5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: dc_wang@hotmail.com

(Received 15 April 2012; accepted 16 April 2012; online 21 April 2012)

In the title compound, C12H9F3N2O2, the benzene ring is nearly perpendicular to the isoxazole ring, making a dihedral angle of 82.97 (2)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into a supra­molecular chain running along the c axis.

Related literature

For applications of leflunomide [systematic name: 5-methyl-N-[4-(trifluoro­meth­yl) phen­yl]-isoxazole-4-carboxamide] in the treatment of rheumatoid arthritis, see: Shaw et al. (2011[Shaw, J. J., Chen, B., Wooley, P., Palfey, B., Lee, A. R., Huang, W. H. & Zeng, D. (2011). Am. J. Biomed. Sci. 3, 218-227.]); Schattenkirchner (2000[Schattenkirchner, M. (2000). Immunopharmacology, 47, 291-298.]). For leflunomide analogs, see: Huang et al. (2003[Huang, W. H., Yang, C. L., Lee, A. R. & Chiu, H. F. (2003). Chem. Pharm. Bull. 51, 313-314.]); Wang et al. (2011[Wang, D.-C., Huang, L.-C., Liu, Z.-Y., Wei, P. & Ou-yang, P.-K. (2011). Acta Cryst. E67, o3332.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9F3N2O2

  • Mr = 270.21

  • Monoclinic, P 21 /c

  • a = 15.839 (3) Å

  • b = 8.3260 (17) Å

  • c = 9.4250 (19) Å

  • β = 101.29 (3)°

  • V = 1218.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enref–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.974, Tmax = 0.987

  • 2193 measured reflections

  • 2193 independent reflections

  • 1125 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.164

  • S = 1.00

  • 2193 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.13 2.855 (3) 142
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius. Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Leflunomide is one of the most effective isoxazole-containing disease-modifying drugs for treating rheumatoid arthritis (Shaw et al., 2011; Schattenkirchner, 2000). Many leflunomide analogs have been synthesized and exhibit potent immunomodulating effect (Huang, et al., 2003). In our previous work, some anolog has been sucessfully sythesized (Wang et al., 2011). In this paper, one new leflunomide analog N-(2,4-difluorophenyl)-5-methylisoxazole-4-carboxamide monohydrate, was synthesized as a novel and potent immunomodulating drugs. We report herein its crystal structure.

As illustrated in Fig. 1, the molecular structure of the title compound is not planar. The C1-C6 benzene and the C9-C11/N2/O2 isoxazole ring is almost perpendicular to each other with the dihedral angle of 82.97 (2) °. The central nitrogen atom (N1) and carbon atom (C8) are nearly coplanar with the benzene ring and the isoxazole rings [N1-C5-C6-C1 torsion angles = -176.7 (3) ° and C8-C9-C10-O2 torsion angles = -177.9 (3) °], respectively. The length of the C11=N2 double bond is 1.295 (5) Å, slightly longer than standard 1.28 Å value of a C=N double bond. The crystal structure is stabilized by N—H···O hydrogen bonds(Table 1).

Related literature top

For applications of leflunomide [systematic name: 5-methyl-N-[4-(trifluoromethyl) phenyl]-isoxazole-4-carboxamide] in the treatment of rheumatoid arthritis, see: Shaw et al. (2011); Schattenkirchner (2000). For leflunomide analogs, see: Huang et al. (2003); Wang et al. (2011).

Experimental top

A solution of 0.05 mole of 5-methylisoxazole-4-carboxylic acid chloride (7.3 g) in 20 ml of acetonitrile is added drop-wise, while stirring, to 0.1 mole of 2-(trifluoromethyl)aniline (16.1g),dissolved in 150 ml of acetonitrile at room temperature.After stirring for 40 minutes, the precipitated 2-(trifluoromethyl)aniline hydrochloride is filtered off and washed with 100 ml portions of acetonitrile, and the combined filtrates are concentrated under reduced pressure.9.6g(69.51% of theory) of white crystalline 5-methyl-N-(2-(trifluoromethyl)phenyl)isoxazole-4- carboxamide are thus obtained. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an methylbenzene solution.

Refinement top

H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, Uiso(H) = 1.2 or 1.5 Ueq(C,N).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
5-Methyl-N-[2-(trifluoromethyl)phenyl]isoxazole-4-carboxamide top
Crystal data top
C12H9F3N2O2F(000) = 552
Mr = 270.21Dx = 1.472 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 15.839 (3) Åθ = 9–13°
b = 8.3260 (17) ŵ = 0.13 mm1
c = 9.4250 (19) ÅT = 293 K
β = 101.29 (3)°Block, colorless
V = 1218.9 (4) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enref–Nonius CAD-4
diffractometer
1125 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.2°, θmin = 1.3°
ω/2θ scansh = 1818
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.974, Tmax = 0.987l = 011
2193 measured reflections3 standard reflections every 200 reflections
2193 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.068P)2]
where P = (Fo2 + 2Fc2)/3
2193 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C12H9F3N2O2V = 1218.9 (4) Å3
Mr = 270.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.839 (3) ŵ = 0.13 mm1
b = 8.3260 (17) ÅT = 293 K
c = 9.4250 (19) Å0.20 × 0.10 × 0.10 mm
β = 101.29 (3)°
Data collection top
Enref–Nonius CAD-4
diffractometer
1125 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.974, Tmax = 0.9873 standard reflections every 200 reflections
2193 measured reflections intensity decay: 1%
2193 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
2193 reflectionsΔρmin = 0.19 e Å3
172 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.73554 (18)0.2300 (3)0.9712 (3)0.0540 (8)
H1A0.73860.25331.06100.065*
O10.67807 (16)0.2925 (3)0.7394 (2)0.0647 (8)
F10.9108 (2)0.3541 (4)1.0116 (3)0.1322 (13)
C10.9018 (3)0.0106 (6)0.8447 (4)0.0732 (12)
H1B0.95260.00390.81080.088*
O20.55089 (19)0.6534 (3)0.9342 (3)0.0782 (9)
N20.6083 (3)0.6480 (4)1.0694 (4)0.0790 (11)
F20.97802 (18)0.2773 (4)0.8551 (4)0.1233 (11)
C20.8701 (3)0.1615 (6)0.8525 (5)0.0844 (14)
H2B0.89890.24890.82320.101*
F30.85728 (19)0.3827 (3)0.7915 (3)0.1128 (10)
C30.7957 (3)0.1853 (5)0.9035 (5)0.0805 (13)
H3A0.77460.28860.91030.097*
C40.7526 (3)0.0551 (5)0.9447 (4)0.0650 (11)
H4A0.70230.07070.97970.078*
C50.7837 (2)0.0983 (4)0.9344 (3)0.0512 (9)
C60.8601 (2)0.1205 (5)0.8858 (4)0.0574 (10)
C70.9005 (3)0.2832 (5)0.8849 (5)0.0680 (11)
C80.6852 (2)0.3198 (4)0.8696 (4)0.0486 (9)
C90.6396 (2)0.4541 (4)0.9236 (4)0.0488 (9)
C100.5722 (3)0.5371 (5)0.8487 (4)0.0589 (10)
C110.6589 (3)0.5281 (5)1.0597 (4)0.0641 (11)
H11A0.70290.49481.13430.077*
C120.5197 (3)0.5268 (5)0.7026 (4)0.0761 (12)
H12A0.47700.61010.68970.114*
H12B0.49190.42400.68970.114*
H12C0.55590.53970.63270.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.066 (2)0.0617 (19)0.0402 (15)0.0153 (17)0.0235 (14)0.0065 (15)
O10.0783 (18)0.0810 (19)0.0400 (13)0.0171 (15)0.0239 (12)0.0014 (13)
F10.172 (3)0.127 (3)0.112 (2)0.071 (2)0.062 (2)0.0454 (19)
C10.064 (3)0.081 (3)0.083 (3)0.013 (2)0.035 (2)0.003 (2)
O20.093 (2)0.0569 (17)0.094 (2)0.0188 (16)0.0402 (19)0.0020 (16)
N20.111 (3)0.063 (2)0.069 (2)0.010 (2)0.035 (2)0.0060 (19)
F20.0791 (18)0.124 (2)0.182 (3)0.0192 (18)0.0619 (19)0.010 (2)
C20.091 (3)0.071 (3)0.100 (4)0.022 (3)0.040 (3)0.003 (3)
F30.108 (2)0.087 (2)0.135 (3)0.0171 (17)0.0032 (18)0.0453 (18)
C30.097 (3)0.049 (3)0.102 (3)0.003 (2)0.034 (3)0.014 (2)
C40.065 (3)0.068 (3)0.070 (3)0.001 (2)0.033 (2)0.015 (2)
C50.059 (2)0.054 (2)0.045 (2)0.0066 (19)0.0234 (18)0.0067 (16)
C60.058 (2)0.069 (3)0.050 (2)0.006 (2)0.0218 (18)0.0051 (19)
C70.065 (3)0.075 (3)0.071 (3)0.000 (2)0.033 (2)0.004 (2)
C80.050 (2)0.049 (2)0.052 (2)0.0024 (18)0.0254 (17)0.0047 (17)
C90.061 (2)0.044 (2)0.0470 (19)0.0004 (18)0.0261 (17)0.0010 (17)
C100.064 (3)0.049 (2)0.070 (2)0.004 (2)0.030 (2)0.004 (2)
C110.091 (3)0.056 (2)0.051 (2)0.003 (2)0.026 (2)0.0006 (19)
C120.076 (3)0.072 (3)0.081 (3)0.001 (2)0.017 (2)0.015 (2)
Geometric parameters (Å, º) top
N1—C81.346 (4)C3—C41.377 (5)
N1—C51.417 (4)C3—H3A0.9300
N1—H1A0.8600C4—C51.379 (5)
O1—C81.231 (4)C4—H4A0.9300
F1—C71.314 (4)C5—C61.387 (4)
C1—C21.361 (6)C6—C71.499 (5)
C1—C61.370 (5)C8—C91.475 (4)
C1—H1B0.9300C9—C101.350 (5)
O2—C101.345 (4)C9—C111.401 (5)
O2—N21.415 (4)C10—C121.465 (5)
N2—C111.295 (5)C11—H11A0.9300
F2—C71.312 (4)C12—H12A0.9600
C2—C31.370 (6)C12—H12B0.9600
C2—H2B0.9300C12—H12C0.9600
F3—C71.302 (5)
C8—N1—C5121.8 (3)F3—C7—F1106.5 (4)
C8—N1—H1A119.1F2—C7—F1104.9 (4)
C5—N1—H1A119.1F3—C7—C6114.2 (4)
C2—C1—C6121.1 (4)F2—C7—C6112.7 (4)
C2—C1—H1B119.5F1—C7—C6112.2 (3)
C6—C1—H1B119.5O1—C8—N1122.2 (3)
C10—O2—N2108.9 (3)O1—C8—C9121.8 (3)
C11—N2—O2105.0 (3)N1—C8—C9115.9 (3)
C1—C2—C3120.3 (4)C10—C9—C11105.2 (3)
C1—C2—H2B119.9C10—C9—C8126.8 (3)
C3—C2—H2B119.9C11—C9—C8128.0 (4)
C2—C3—C4119.5 (4)O2—C10—C9108.7 (3)
C2—C3—H3A120.3O2—C10—C12116.3 (4)
C4—C3—H3A120.3C9—C10—C12135.0 (4)
C3—C4—C5120.4 (3)N2—C11—C9112.2 (4)
C3—C4—H4A119.8N2—C11—H11A123.9
C5—C4—H4A119.8C9—C11—H11A123.9
C4—C5—C6119.5 (3)C10—C12—H12A109.5
C4—C5—N1118.9 (3)C10—C12—H12B109.5
C6—C5—N1121.6 (3)H12A—C12—H12B109.5
C1—C6—C5119.2 (4)C10—C12—H12C109.5
C1—C6—C7119.2 (3)H12A—C12—H12C109.5
C5—C6—C7121.6 (3)H12B—C12—H12C109.5
F3—C7—F2105.6 (3)
C10—O2—N2—C111.6 (4)C1—C6—C7—F1123.8 (4)
C6—C1—C2—C30.7 (7)C5—C6—C7—F152.7 (5)
C1—C2—C3—C41.0 (7)C5—N1—C8—O10.1 (5)
C2—C3—C4—C50.2 (6)C5—N1—C8—C9179.3 (3)
C3—C4—C5—C61.7 (6)O1—C8—C9—C1016.6 (5)
C3—C4—C5—N1177.1 (4)N1—C8—C9—C10163.9 (3)
C8—N1—C5—C4100.9 (4)O1—C8—C9—C11160.1 (3)
C8—N1—C5—C677.9 (4)N1—C8—C9—C1119.4 (5)
C2—C1—C6—C50.8 (6)N2—O2—C10—C91.4 (4)
C2—C1—C6—C7175.8 (4)N2—O2—C10—C12179.2 (3)
C4—C5—C6—C12.0 (5)C11—C9—C10—O20.7 (4)
N1—C5—C6—C1176.7 (3)C8—C9—C10—O2177.9 (3)
C4—C5—C6—C7174.5 (4)C11—C9—C10—C12180.0 (4)
N1—C5—C6—C76.7 (5)C8—C9—C10—C122.8 (6)
C1—C6—C7—F3114.9 (4)O2—N2—C11—C91.2 (4)
C5—C6—C7—F368.6 (5)C10—C9—C11—N20.4 (4)
C1—C6—C7—F25.7 (6)C8—C9—C11—N2176.9 (3)
C5—C6—C7—F2170.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.132.855 (3)142
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H9F3N2O2
Mr270.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.839 (3), 8.3260 (17), 9.4250 (19)
β (°) 101.29 (3)
V3)1218.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnref–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.974, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
2193, 2193, 1125
Rint0.000
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.164, 1.00
No. of reflections2193
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo,1995), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.132.855 (3)142.3
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The work was supported by the Center for Testing and Analysis, Nanjing University, China.

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius. Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHuang, W. H., Yang, C. L., Lee, A. R. & Chiu, H. F. (2003). Chem. Pharm. Bull. 51, 313–314.  CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSchattenkirchner, M. (2000). Immunopharmacology, 47, 291–298.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShaw, J. J., Chen, B., Wooley, P., Palfey, B., Lee, A. R., Huang, W. H. & Zeng, D. (2011). Am. J. Biomed. Sci. 3, 218–227.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, D.-C., Huang, L.-C., Liu, Z.-Y., Wei, P. & Ou-yang, P.-K. (2011). Acta Cryst. E67, o3332.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1450
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds