metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino­benzo­thia­zol-3-ium) bis­­(7-oxabi­cyclo­[2.2.1]heptane-2,3-di­carboxyl­ato-κ3O2,O3,O7)nickelate(II) hexa­hydrate

aDepartment of Chemistry, Lishui University, Lishui 323000, Zhejiang, People's Republic of China, and bCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: wangguixian@126.com

(Received 18 April 2012; accepted 20 April 2012; online 28 April 2012)

In the title compound, (C7H7N2S)2[Ni(C8H8O5)2]·6H2O, the NiII cation is located on an inversion center and is O,O′,O′′-chelated by two symmetry-related 7-oxabicyclo­[2.2.1]heptane-2,3-dicarboxyl­ate anions in a distorted octa­hedral geometry. The 2-amino­benzothia­zol-3-ium cation links with the Ni complex anion via N—H⋯O hydrogen bonding. Extensive O—H⋯O and N—H⋯O hydrogen bonds involving the lattice water mol­ecules also occur in the crystal structure.

Related literature

For background to the applications of norcantharidin (systematic name: 7-oxabicyclo­[2,2,1]heptane-2,3-dicarb­oxy­lic anhydride), see: Hill et al. (2007[Hill, T.-A., Stewart, S.-G., Sauer, B., Gilbert, J., Ackland, S.-P., Sakoff, J.-A. & McCluskey, A. (2007). Bioorg. Med. Chem. Lett. 17, 3392-3397.]). The isotypic MnII, CoII and NiII analogues were reported by Wang et al. (2010a[Wang, N., Wen, Y.-H., Lin, Q.-Y. & Feng, J. (2010a). Acta Cryst. E66, m762.],b[Wang, N., Lin, Q.-Y., Feng, J., Li, S.-K. & Zhao, J.-J. (2010b). Acta Cryst. E66, m763-m764.]) and Zhang et al. (2012[Zhang, F., Lv, T.-X., Feng, J. & Lin, Q. Y. (2012). Acta Cryst. E68, m684.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • (C7H7N2S)2[Ni(C8H8O5)2]·6H2O

  • Mr = 837.51

  • Triclinic, [P \overline 1]

  • a = 6.6907 (1) Å

  • b = 10.0963 (2) Å

  • c = 13.2283 (3) Å

  • α = 90.284 (1)°

  • β = 91.192 (1)°

  • γ = 99.709 (1)°

  • V = 880.57 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 296 K

  • 0.27 × 0.21 × 0.07 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.828, Tmax = 0.951

  • 11942 measured reflections

  • 3083 independent reflections

  • 2654 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.06

  • 3083 reflections

  • 241 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4i 0.85 1.97 2.815 (2) 179
O1W—H1WB⋯O3W 0.85 2.28 3.029 (3) 147
O2W—H2WA⋯O2ii 0.85 1.83 2.682 (2) 179
O2W—H2WB⋯O1Wiii 0.85 1.95 2.798 (3) 178
O3W—H3WA⋯O1Wiv 0.85 1.92 2.769 (3) 179
O3W—H3WB⋯O2W 0.85 1.95 2.772 (3) 161
N1—H1A⋯O4i 0.86 1.82 2.673 (2) 173
N2—H2A⋯O3i 0.86 2.01 2.863 (2) 173
N2—H2B⋯O2Wi 0.86 2.00 2.818 (3) 158
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z; (iii) -x+1, -y, -z+1; (iv) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

7-oxabicyclo[2,2,1]heptane-2,3-dicarboxylic anhydride (norcantharidin), which has been considered as potent inhibitor of the serine/threonine protein, has great anti-cancer activity (Hill et al., 2007). A isostructural manganese complex (Wang et al., 2010a) and a cobalt complex (Wang et al., 2010b) has been reported. The molecular structure of the title complex is shown in Fig.1. The nickel atom is six-coordinated in a distorted octahedral coordination mode, binding to two bridging O atoms of the bicycloheptane unit and four carboxylate O atoms of two symmetry-related and fully deprotonated ligands. 2-aminobenzothiazole don't involved the coordination, and N atom of thiazole ring is protonated. The crystal structure is stabilized by N—H···O hydrogen-bonding interactions between the cations and anions and O—H···O hydrogen bonds including the crystal water molecules.

Related literature top

For background to the applications of norcantharidin (systematic name: 7-oxabicyclo[2,2,1]heptane-2,3-dicarboxylic anhydride), see: Hill et al. (2007). The isotypic MnII, CoII and NiII analogues were reported by Wang et al. (2010a,b and Zhang et al. (2012), respectively.

Experimental top

A mixture of 0.5 mmol norcantharidin, 0.5 mmol nickel acetate, 0.5 mmol 2-aminobenzothiazole and 15 mL distilled water was sealed in a 25 mL Teflon-lined stainless vessel and heated at 443 K for 3 d, then cooled slowly to room temperature. The solution was filtered and block green crystals were obtained.

Refinement top

The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (3) Å and Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.97–0.98 and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability.
Bis(2-aminobenzothiazol-3-ium) bis(7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylato- κ3O2,O3,O7)nickelate(II) hexahydrate top
Crystal data top
(C7H7N2S)2[Ni(C8H8O5)2]·6H2OZ = 1
Mr = 837.51F(000) = 438
Triclinic, P1Dx = 1.579 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6907 (1) ÅCell parameters from 3486 reflections
b = 10.0963 (2) Åθ = 1.5–25.0°
c = 13.2283 (3) ŵ = 0.75 mm1
α = 90.284 (1)°T = 296 K
β = 91.192 (1)°Block, green
γ = 99.709 (1)°0.27 × 0.21 × 0.07 mm
V = 880.57 (3) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3083 independent reflections
Radiation source: fine-focus sealed tube2654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.828, Tmax = 0.951k = 1111
11942 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.2846P]
where P = (Fo2 + 2Fc2)/3
3083 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.38 e Å3
3 restraintsΔρmin = 0.44 e Å3
Crystal data top
(C7H7N2S)2[Ni(C8H8O5)2]·6H2Oγ = 99.709 (1)°
Mr = 837.51V = 880.57 (3) Å3
Triclinic, P1Z = 1
a = 6.6907 (1) ÅMo Kα radiation
b = 10.0963 (2) ŵ = 0.75 mm1
c = 13.2283 (3) ÅT = 296 K
α = 90.284 (1)°0.27 × 0.21 × 0.07 mm
β = 91.192 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3083 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2654 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 0.951Rint = 0.032
11942 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0323 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
3083 reflectionsΔρmin = 0.44 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.00000.02482 (13)
S10.32763 (10)0.76888 (6)0.52853 (4)0.03601 (17)
O10.3599 (2)0.64286 (15)0.06025 (12)0.0324 (4)
O1W0.1930 (3)0.1034 (2)0.62809 (15)0.0559 (5)
H1WA0.20290.17470.66360.084*
H1WB0.21020.12180.56590.084*
H2WA0.46130.03790.23410.084*
H2WB0.60010.01550.30780.084*
H3WA0.07340.00170.39460.084*
H3WB0.27210.02060.36030.084*
O20.3555 (2)0.83685 (16)0.13816 (12)0.0374 (4)
O2W0.5108 (3)0.02150 (17)0.27766 (14)0.0495 (5)
O30.6790 (2)0.51244 (15)0.13147 (11)0.0330 (4)
O3W0.1917 (3)0.0438 (2)0.40342 (16)0.0651 (6)
O40.7719 (3)0.65778 (16)0.25730 (11)0.0358 (4)
O50.7091 (2)0.65098 (14)0.06734 (11)0.0284 (3)
N10.2773 (3)0.53206 (18)0.60097 (13)0.0275 (4)
H1A0.26700.46690.64320.033*
N20.3472 (3)0.6994 (2)0.72380 (14)0.0369 (5)
H2A0.34010.64130.77150.044*
H2B0.37340.78380.73800.044*
C60.8514 (4)0.8692 (2)0.10948 (17)0.0347 (5)
H6A0.87370.96130.08480.042*
H6B0.84240.86890.18280.042*
C51.0189 (4)0.7933 (2)0.07100 (18)0.0356 (5)
H5A1.08510.75650.12660.043*
H5B1.11990.85100.02990.043*
C10.6635 (3)0.7873 (2)0.06430 (16)0.0277 (5)
H1B0.53770.79650.10090.033*
C40.8995 (3)0.6828 (2)0.00850 (16)0.0286 (5)
H4A0.96830.60530.00130.034*
C20.6554 (3)0.8135 (2)0.04989 (15)0.0253 (5)
H2C0.69160.90990.06430.030*
C30.8288 (3)0.7379 (2)0.08999 (16)0.0259 (5)
H3A0.93910.80260.12080.031*
C70.4422 (3)0.7606 (2)0.08724 (16)0.0271 (5)
C80.7543 (3)0.6281 (2)0.16535 (16)0.0261 (5)
C90.2752 (3)0.6322 (2)0.44420 (17)0.0305 (5)
C100.2573 (4)0.6336 (3)0.34006 (18)0.0417 (6)
H10A0.27230.71420.30500.050*
C110.2165 (4)0.5119 (3)0.28954 (19)0.0466 (7)
H11A0.20560.51020.21930.056*
C120.1917 (4)0.3922 (3)0.34191 (19)0.0433 (6)
H12A0.16220.31140.30620.052*
C130.2098 (3)0.3900 (3)0.44640 (18)0.0356 (5)
H13A0.19410.30930.48130.043*
C140.2521 (3)0.5118 (2)0.49681 (16)0.0278 (5)
C150.3181 (3)0.6592 (2)0.62951 (16)0.0284 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0312 (2)0.0187 (2)0.0230 (2)0.00043 (16)0.00167 (16)0.00208 (15)
S10.0480 (4)0.0277 (3)0.0308 (3)0.0020 (3)0.0013 (3)0.0062 (2)
O10.0328 (8)0.0246 (8)0.0385 (9)0.0009 (7)0.0025 (7)0.0048 (7)
O1W0.0682 (13)0.0494 (12)0.0491 (11)0.0083 (10)0.0104 (10)0.0136 (9)
O20.0374 (9)0.0340 (9)0.0420 (9)0.0097 (7)0.0030 (8)0.0128 (7)
O2W0.0574 (12)0.0350 (10)0.0550 (11)0.0068 (9)0.0154 (9)0.0122 (8)
O30.0443 (9)0.0234 (8)0.0281 (8)0.0023 (7)0.0070 (7)0.0032 (6)
O3W0.0550 (12)0.0735 (15)0.0625 (13)0.0023 (11)0.0085 (10)0.0073 (11)
O40.0520 (10)0.0285 (9)0.0250 (8)0.0017 (7)0.0048 (7)0.0019 (6)
O50.0357 (8)0.0213 (8)0.0266 (8)0.0006 (6)0.0005 (7)0.0037 (6)
N10.0330 (10)0.0266 (10)0.0230 (9)0.0049 (8)0.0001 (8)0.0033 (7)
N20.0556 (13)0.0273 (10)0.0265 (10)0.0036 (9)0.0016 (9)0.0004 (8)
C60.0505 (15)0.0250 (12)0.0266 (11)0.0000 (10)0.0037 (11)0.0014 (9)
C50.0372 (13)0.0330 (13)0.0352 (13)0.0012 (10)0.0068 (11)0.0012 (10)
C10.0339 (12)0.0226 (11)0.0264 (11)0.0051 (9)0.0043 (9)0.0014 (9)
C40.0284 (11)0.0247 (11)0.0328 (12)0.0051 (9)0.0005 (10)0.0011 (9)
C20.0317 (12)0.0176 (10)0.0256 (11)0.0021 (9)0.0015 (9)0.0012 (8)
C30.0284 (11)0.0209 (11)0.0263 (11)0.0014 (9)0.0034 (9)0.0013 (9)
C70.0331 (12)0.0251 (12)0.0235 (10)0.0062 (9)0.0029 (9)0.0015 (9)
C80.0260 (11)0.0251 (11)0.0261 (11)0.0019 (9)0.0059 (9)0.0025 (9)
C90.0291 (12)0.0351 (13)0.0267 (11)0.0039 (10)0.0005 (9)0.0016 (9)
C100.0430 (14)0.0522 (16)0.0298 (12)0.0069 (12)0.0026 (11)0.0089 (12)
C110.0444 (15)0.071 (2)0.0244 (12)0.0112 (14)0.0016 (11)0.0049 (13)
C120.0362 (14)0.0556 (17)0.0378 (14)0.0075 (12)0.0013 (11)0.0194 (12)
C130.0319 (12)0.0374 (14)0.0379 (13)0.0067 (10)0.0014 (10)0.0053 (11)
C140.0230 (11)0.0353 (13)0.0253 (11)0.0051 (9)0.0023 (9)0.0016 (9)
C150.0298 (12)0.0292 (12)0.0262 (11)0.0049 (9)0.0006 (9)0.0024 (9)
Geometric parameters (Å, º) top
Ni1—O1i2.0174 (15)C6—C11.520 (3)
Ni1—O12.0174 (15)C6—C51.541 (3)
Ni1—O3i2.0823 (15)C6—H6A0.9700
Ni1—O32.0823 (15)C6—H6B0.9700
Ni1—O52.1024 (14)C5—C41.517 (3)
Ni1—O5i2.1024 (14)C5—H5A0.9700
S1—C151.735 (2)C5—H5B0.9700
S1—C91.754 (2)C1—C21.536 (3)
O1—C71.269 (3)C1—H1B0.9800
O1W—H1WA0.8500C4—C31.529 (3)
O1W—H1WB0.8500C4—H4A0.9800
O2—C71.243 (3)C2—C71.529 (3)
O2W—H2WA0.8502C2—C31.577 (3)
O2W—H2WB0.8503C2—H2C0.9800
O3—C81.267 (3)C3—C81.522 (3)
O3W—H3WA0.8503C3—H3A0.9800
O3W—H3WB0.8503C9—C101.381 (3)
O4—C81.250 (3)C9—C141.391 (3)
O5—C11.459 (3)C10—C111.379 (4)
O5—C41.467 (3)C10—H10A0.9300
N1—C151.318 (3)C11—C121.383 (4)
N1—C141.394 (3)C11—H11A0.9300
N1—H1A0.8600C12—C131.386 (3)
N2—C151.310 (3)C12—H12A0.9300
N2—H2A0.8600C13—C141.380 (3)
N2—H2B0.8600C13—H13A0.9300
O1i—Ni1—O1180.0C2—C1—H1B113.3
O1i—Ni1—O3i87.63 (6)O5—C4—C5101.81 (17)
O1—Ni1—O3i92.37 (6)O5—C4—C3101.95 (16)
O1i—Ni1—O392.37 (6)C5—C4—C3111.62 (18)
O1—Ni1—O387.63 (6)O5—C4—H4A113.4
O3i—Ni1—O3180.00 (9)C5—C4—H4A113.4
O1i—Ni1—O590.51 (6)C3—C4—H4A113.4
O1—Ni1—O589.49 (6)C7—C2—C1109.66 (17)
O3i—Ni1—O589.20 (6)C7—C2—C3116.01 (17)
O3—Ni1—O590.80 (6)C1—C2—C3100.63 (16)
O1i—Ni1—O5i89.49 (6)C7—C2—H2C110.0
O1—Ni1—O5i90.51 (6)C1—C2—H2C110.0
O3i—Ni1—O5i90.80 (6)C3—C2—H2C110.0
O3—Ni1—O5i89.20 (6)C8—C3—C4112.85 (17)
O5—Ni1—O5i180.0C8—C3—C2112.99 (17)
C15—S1—C990.16 (11)C4—C3—C2101.37 (16)
C7—O1—Ni1126.63 (14)C8—C3—H3A109.8
H1WA—O1W—H1WB111.0C4—C3—H3A109.8
H2WA—O2W—H2WB102.3C2—C3—H3A109.8
C8—O3—Ni1118.10 (13)O2—C7—O1123.6 (2)
H3WA—O3W—H3WB110.3O2—C7—C2118.55 (19)
C1—O5—C495.27 (15)O1—C7—C2117.79 (18)
C1—O5—Ni1116.89 (12)O4—C8—O3123.94 (19)
C4—O5—Ni1112.33 (12)O4—C8—C3117.72 (19)
C15—N1—C14114.58 (18)O3—C8—C3118.34 (18)
C15—N1—H1A122.7C10—C9—C14121.1 (2)
C14—N1—H1A122.7C10—C9—S1128.6 (2)
C15—N2—H2A120.0C14—C9—S1110.31 (16)
C15—N2—H2B120.0C11—C10—C9118.0 (2)
H2A—N2—H2B120.0C11—C10—H10A121.0
C1—C6—C5101.64 (17)C9—C10—H10A121.0
C1—C6—H6A111.4C10—C11—C12120.9 (2)
C5—C6—H6A111.4C10—C11—H11A119.6
C1—C6—H6B111.4C12—C11—H11A119.6
C5—C6—H6B111.4C11—C12—C13121.4 (2)
H6A—C6—H6B109.3C11—C12—H12A119.3
C4—C5—C6101.95 (19)C13—C12—H12A119.3
C4—C5—H5A111.4C14—C13—C12117.6 (2)
C6—C5—H5A111.4C14—C13—H13A121.2
C4—C5—H5B111.4C12—C13—H13A121.2
C6—C5—H5B111.4C13—C14—C9120.9 (2)
H5A—C5—H5B109.2C13—C14—N1126.8 (2)
O5—C1—C6102.53 (17)C9—C14—N1112.23 (19)
O5—C1—C2102.03 (16)N2—C15—N1124.1 (2)
C6—C1—C2111.26 (18)N2—C15—S1123.20 (17)
O5—C1—H1B113.3N1—C15—S1112.73 (16)
C6—C1—H1B113.3
O3i—Ni1—O1—C7120.43 (17)C5—C4—C3—C272.7 (2)
O3—Ni1—O1—C759.57 (17)C7—C2—C3—C83.4 (2)
O5—Ni1—O1—C731.25 (17)C1—C2—C3—C8121.57 (18)
O5i—Ni1—O1—C7148.75 (17)C7—C2—C3—C4117.67 (19)
O1i—Ni1—O3—C8134.35 (16)C1—C2—C3—C40.53 (19)
O1—Ni1—O3—C845.65 (16)Ni1—O1—C7—O2168.26 (16)
O5—Ni1—O3—C843.80 (16)Ni1—O1—C7—C215.2 (3)
O5i—Ni1—O3—C8136.20 (16)C1—C2—C7—O2128.9 (2)
O1i—Ni1—O5—C1169.62 (13)C3—C2—C7—O2118.0 (2)
O1—Ni1—O5—C110.38 (13)C1—C2—C7—O147.8 (2)
O3i—Ni1—O5—C182.01 (13)C3—C2—C7—O165.2 (2)
O3—Ni1—O5—C197.99 (13)Ni1—O3—C8—O4142.42 (18)
O1i—Ni1—O5—C481.74 (13)Ni1—O3—C8—C337.8 (2)
O1—Ni1—O5—C498.26 (13)C4—C3—C8—O4151.24 (19)
O3i—Ni1—O5—C4169.35 (13)C2—C3—C8—O494.5 (2)
O3—Ni1—O5—C410.65 (13)C4—C3—C8—O328.5 (3)
C1—C6—C5—C41.2 (2)C2—C3—C8—O385.8 (2)
C4—O5—C1—C656.54 (18)C15—S1—C9—C10179.3 (2)
Ni1—O5—C1—C6174.86 (12)C15—S1—C9—C140.40 (17)
C4—O5—C1—C258.75 (18)C14—C9—C10—C110.2 (4)
Ni1—O5—C1—C259.58 (17)S1—C9—C10—C11179.49 (19)
C5—C6—C1—O534.3 (2)C9—C10—C11—C120.8 (4)
C5—C6—C1—C274.1 (2)C10—C11—C12—C131.0 (4)
C1—O5—C4—C557.14 (18)C11—C12—C13—C140.5 (4)
Ni1—O5—C4—C5179.07 (13)C12—C13—C14—C90.1 (3)
C1—O5—C4—C358.27 (18)C12—C13—C14—N1179.7 (2)
Ni1—O5—C4—C363.67 (16)C10—C9—C14—C130.2 (3)
C6—C5—C4—O536.1 (2)S1—C9—C14—C13180.00 (18)
C6—C5—C4—C372.0 (2)C10—C9—C14—N1179.5 (2)
O5—C1—C2—C786.34 (19)S1—C9—C14—N10.2 (2)
C6—C1—C2—C7164.94 (18)C15—N1—C14—C13179.6 (2)
O5—C1—C2—C336.40 (19)C15—N1—C14—C90.2 (3)
C6—C1—C2—C372.3 (2)C14—N1—C15—N2179.9 (2)
O5—C4—C3—C885.9 (2)C14—N1—C15—S10.5 (2)
C5—C4—C3—C8166.13 (18)C9—S1—C15—N2179.9 (2)
O5—C4—C3—C235.25 (19)C9—S1—C15—N10.52 (18)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4ii0.851.972.815 (2)179
O1W—H1WB···O3W0.852.283.029 (3)147
O2W—H2WA···O2iii0.851.832.682 (2)179
O2W—H2WB···O1Wiv0.851.952.798 (3)178
O3W—H3WA···O1Wv0.851.922.769 (3)179
O3W—H3WB···O2W0.851.952.772 (3)161
N1—H1A···O4ii0.861.822.673 (2)173
N2—H2A···O3ii0.862.012.863 (2)173
N2—H2B···O2Wii0.862.002.818 (3)158
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x+1, y, z+1; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula(C7H7N2S)2[Ni(C8H8O5)2]·6H2O
Mr837.51
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.6907 (1), 10.0963 (2), 13.2283 (3)
α, β, γ (°)90.284 (1), 91.192 (1), 99.709 (1)
V3)880.57 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.27 × 0.21 × 0.07
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.828, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
11942, 3083, 2654
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.06
No. of reflections3083
No. of parameters241
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.44

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.851.972.815 (2)178.5
O1W—H1WB···O3W0.852.283.029 (3)147.2
O2W—H2WA···O2ii0.851.832.682 (2)178.7
O2W—H2WB···O1Wiii0.851.952.798 (3)177.8
O3W—H3WA···O1Wiv0.851.922.769 (3)178.9
O3W—H3WB···O2W0.851.952.772 (3)161.2
N1—H1A···O4i0.861.822.673 (2)172.6
N2—H2A···O3i0.862.012.863 (2)172.5
N2—H2B···O2Wi0.862.002.818 (3)158.4
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x, y, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301) for financial support.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHill, T.-A., Stewart, S.-G., Sauer, B., Gilbert, J., Ackland, S.-P., Sakoff, J.-A. & McCluskey, A. (2007). Bioorg. Med. Chem. Lett. 17, 3392–3397.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, N., Lin, Q.-Y., Feng, J., Li, S.-K. & Zhao, J.-J. (2010b). Acta Cryst. E66, m763–m764.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, N., Wen, Y.-H., Lin, Q.-Y. & Feng, J. (2010a). Acta Cryst. E66, m762.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, F., Lv, T.-X., Feng, J. & Lin, Q. Y. (2012). Acta Cryst. E68, m684.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds