organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1574

Benzene-1,2-di(aminium) naphthalene-1,5-di­sulfonate methanol monosolvate trihydrate

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 23 April 2012; accepted 24 April 2012; online 28 April 2012)

In the title salt, C6H10N22+·C10H6O6S22−·CH3OH·3H2O, the cation lies on a mirror plane and the anion on a center of inversion. One lattice water mol­ecule is located on a mirror plane, another is equally disordered over two sites. The methanol solvent mol­ecule is disordered about a mirror plane. In the crystal, the cations, anions, water and methanol mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For other diammonium napthalene-1,5-disulfonates, see: Wei (2011[Wei, B. (2011). Acta Cryst. E67, o2811.]); Zhu et al. (2009[Zhu, Z.-B., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, o2658.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N22+·C10H6O6S22−·CH4O·3H2O

  • Mr = 482.52

  • Monoclinic, P 21 /m

  • a = 8.1727 (15) Å

  • b = 13.681 (2) Å

  • c = 9.5173 (15) Å

  • β = 98.390 (5)°

  • V = 1052.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.926, Tmax = 0.943

  • 10378 measured reflections

  • 2503 independent reflections

  • 1935 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.176

  • S = 1.13

  • 2503 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3 0.84 1.94 2.783 (6) 175
O1w—H1w⋯O2w 0.84 2.32 2.915 (6) 128
O1w—H1w⋯O2w 0.84 2.19 2.799 (7) 130
O2w—H2w2⋯O3i 0.84 2.35 2.873 (5) 121
O2w′—H2w4⋯O3i 0.84 2.25 2.808 (6) 124
N1—H12⋯O1ii 0.88 2.07 2.880 (3) 153
N1—H11⋯O2w 0.88 2.03 2.816 (5) 149
N2—H22⋯O1 0.88 1.99 2.815 (3) 156
N2—H21⋯O1wiii 0.88 1.88 2.735 (4) 164
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x, -y+{\script{3\over 2}}, z]; (iii) x, y, z-1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Naphthalene-1,5-disulfonic acid has been characterized as several diammonium salts, e.g., as the ethane-1,2-diammonium (Zhu et al., 2009), the piperizine-1,4-diium (Wei, 2011) derivatives. In the salt, C6H10N22+.C10H6O6S22–.3H2O.CH3OH (Scheme I, Fig. 1), the cation lies on a mirror plane and the anion on a center-of-inversion. The cation, anion, water and methanol molecules are linked by O–H···O hydrogen bonds to form a three-dimensional network (Table 1).

Related literature top

For other diammonium napthalene-1,5-disulfonates, see: Wei (2011); Zhu et al. (2009).

Experimental top

A methanol solution (5 ml) of 1,2-benzenediamine (1 mmol, 108 mg) was added to an aqueous solution (5 ml) of 1,5-naphthalenedisulfonic acid tetrahydrate (0.5 mmol, 180 mg). The mixture was heated at 343 K until the reactants dissolved completely. The solution was filtered; colorless crystals were isolated after several days.suitable for X-ray diffraction were isolated from the filtrate afterfour days.

Refinement top

Carbon- and nitrogen-bound H-atoms were placed in calculated positions (C–H 0.93, N–H 0.88 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C,N). The water H-atoms were placed in chemcally sensible positions on the basis of hydrogen bonding interactions (O–H 0.84 Å) and their temperature factors similar tied. One of the water molecules is disordered over a center-of-inversion.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C6H10N22+.C10H6O6S22–.3H2O.CH3OH at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The symmetry-related atoms of the anion are not labeled.
Benzene-1,2-di(aminium) naphthalene-1,5-disulfonate methanol monosolvate trihydrate top
Crystal data top
C6H10N22+·C10H6O6S22·CH4O·3H2OF(000) = 508
Mr = 482.52Dx = 1.522 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 6427 reflections
a = 8.1727 (15) Åθ = 3.1–27.5°
b = 13.681 (2) ŵ = 0.31 mm1
c = 9.5173 (15) ÅT = 293 K
β = 98.390 (5)°Prism, colorless
V = 1052.8 (3) Å30.25 × 0.22 × 0.19 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2503 independent reflections
Radiation source: fine-focus sealed tube1935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.926, Tmax = 0.943k = 1617
10378 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0909P)2 + 0.6772P]
where P = (Fo2 + 2Fc2)/3
2503 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C6H10N22+·C10H6O6S22·CH4O·3H2OV = 1052.8 (3) Å3
Mr = 482.52Z = 2
Monoclinic, P21/mMo Kα radiation
a = 8.1727 (15) ŵ = 0.31 mm1
b = 13.681 (2) ÅT = 293 K
c = 9.5173 (15) Å0.25 × 0.22 × 0.19 mm
β = 98.390 (5)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2503 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1935 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.943Rint = 0.044
10378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.13Δρmax = 0.85 e Å3
2503 reflectionsΔρmin = 0.41 e Å3
174 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.71163 (7)0.51770 (5)0.72850 (6)0.0322 (2)
O10.6469 (2)0.61258 (14)0.6776 (2)0.0425 (5)
O20.6097 (2)0.43755 (15)0.6701 (2)0.0443 (5)
O30.7450 (3)0.51585 (15)0.8836 (2)0.0433 (5)
O1w0.5509 (5)0.75001.2108 (4)0.0707 (10)
H1w0.49340.69981.19020.106*
N10.4198 (5)0.75000.7729 (4)0.0509 (9)
H110.37880.75000.85350.076*
H120.48090.80250.76850.076*
N20.4862 (4)0.75000.4847 (3)0.0368 (7)
H210.48670.75000.39230.055*
H220.53740.69750.52210.055*
C10.9077 (3)0.50513 (18)0.6689 (3)0.0300 (5)
C20.9198 (3)0.50489 (17)0.5204 (3)0.0292 (5)
C30.7803 (3)0.51357 (19)0.4131 (3)0.0338 (6)
H30.67520.51910.43880.041*
C40.7984 (3)0.5140 (2)0.2731 (3)0.0387 (6)
H4A0.70570.52070.20450.046*
C50.9552 (3)0.5044 (2)0.2309 (3)0.0373 (6)
H50.96590.50440.13490.045*
C60.2850 (5)0.75000.6545 (4)0.0354 (8)
C70.1240 (5)0.75000.6818 (5)0.0453 (10)
H70.10250.75000.77510.054*
C80.0050 (5)0.75000.5712 (6)0.0527 (11)
H80.11330.75000.59040.063*
C90.0245 (6)0.75000.4325 (5)0.0499 (10)
H90.06310.75000.35820.060*
C100.1866 (5)0.75000.4045 (4)0.0431 (9)
H100.20770.75000.31110.052*
C110.3153 (4)0.75000.5139 (4)0.0315 (7)
O40.7361 (8)0.6961 (4)1.0177 (6)0.0782 (17)0.50
H40.74260.64060.98120.117*0.50
C120.8778 (11)0.751 (2)1.0006 (8)0.090 (3)0.5
H12A0.87780.81101.05330.135*0.50
H12B0.87670.76580.90180.135*0.50
H12C0.97530.71431.03510.135*0.50
O2w0.4770 (6)0.6054 (4)0.9855 (5)0.0635 (13)0.50
H2w10.38970.63420.99870.095*0.50
H2w20.46370.54510.99550.095*0.50
O2w'0.2979 (7)0.6729 (4)1.0117 (5)0.0657 (13)0.50
H2w30.37890.63751.00010.099*0.50
H2w40.21960.63661.02710.099*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0272 (4)0.0378 (4)0.0335 (4)0.0033 (2)0.0108 (2)0.0024 (2)
O10.0421 (11)0.0428 (11)0.0451 (10)0.0138 (9)0.0152 (8)0.0056 (9)
O20.0313 (10)0.0483 (12)0.0553 (12)0.0061 (8)0.0127 (8)0.0051 (10)
O30.0434 (11)0.0557 (12)0.0333 (10)0.0051 (9)0.0143 (8)0.0054 (9)
O1w0.086 (3)0.083 (3)0.0472 (18)0.0000.0224 (18)0.000
N10.044 (2)0.074 (3)0.0366 (17)0.0000.0125 (15)0.000
N20.0354 (17)0.0422 (17)0.0341 (16)0.0000.0096 (13)0.000
C10.0241 (12)0.0339 (12)0.0335 (13)0.0028 (9)0.0096 (9)0.0008 (10)
C20.0265 (13)0.0297 (12)0.0314 (12)0.0016 (9)0.0045 (9)0.0021 (10)
C30.0219 (12)0.0428 (14)0.0367 (13)0.0009 (10)0.0050 (10)0.0003 (11)
C40.0281 (13)0.0520 (17)0.0343 (14)0.0034 (11)0.0007 (10)0.0015 (11)
C50.0339 (14)0.0480 (15)0.0299 (12)0.0026 (11)0.0045 (10)0.0024 (11)
C60.038 (2)0.0342 (18)0.0360 (18)0.0000.0101 (15)0.000
C70.043 (2)0.044 (2)0.054 (2)0.0000.0200 (19)0.000
C80.032 (2)0.048 (2)0.081 (3)0.0000.016 (2)0.000
C90.038 (2)0.045 (2)0.064 (3)0.0000.0007 (19)0.000
C100.043 (2)0.045 (2)0.040 (2)0.0000.0021 (17)0.000
C110.0317 (18)0.0271 (16)0.0372 (18)0.0000.0100 (14)0.000
O40.098 (4)0.069 (3)0.079 (4)0.002 (3)0.050 (3)0.012 (3)
C120.097 (6)0.093 (6)0.086 (5)0.035 (14)0.031 (4)0.009 (16)
O2w0.067 (3)0.060 (3)0.066 (3)0.004 (2)0.020 (2)0.002 (2)
O2w'0.071 (3)0.077 (3)0.051 (3)0.010 (3)0.015 (2)0.011 (2)
Geometric parameters (Å, º) top
S1—O21.439 (2)C6—C71.377 (5)
S1—O11.4578 (19)C6—C111.396 (5)
S1—O31.461 (2)C7—C81.377 (7)
S1—C11.785 (2)C7—H70.9300
O1w—H1w0.8391C8—C91.376 (7)
N1—C61.456 (5)C8—H80.9300
N1—H110.8800C9—C101.389 (6)
N1—H120.8800C9—H90.9300
N2—C111.463 (4)C10—C111.368 (5)
N2—H210.8800C10—H100.9300
N2—H220.8800O4—C121.41 (2)
C1—C5i1.367 (4)O4—H40.8400
C1—C21.430 (3)C12—H12A0.9600
C2—C31.420 (4)C12—H12B0.9600
C2—C2i1.428 (5)C12—H12C0.9600
C3—C41.362 (4)O2w—H2w10.8401
C3—H30.9300O2w—H2w20.8400
C4—C51.404 (4)O2w—H2w30.9423
C4—H4A0.9300O2w'—H2w10.9412
C5—C1i1.367 (4)O2w'—H2w30.8400
C5—H50.9300O2w'—H2w40.8400
O2—S1—O1112.86 (13)C1i—C5—H5120.1
O2—S1—O3112.92 (12)C4—C5—H5120.1
O1—S1—O3110.88 (12)C7—C6—C11119.2 (4)
O2—S1—C1107.45 (12)C7—C6—N1119.3 (3)
O1—S1—C1106.22 (12)C11—C6—N1121.5 (3)
O3—S1—C1105.98 (12)C8—C7—C6120.1 (4)
C6—N1—H11109.5C8—C7—H7119.9
C6—N1—H12109.5C6—C7—H7119.9
H11—N1—H12109.5C9—C8—C7120.8 (4)
C11—N2—H21109.5C9—C8—H8119.6
C11—N2—H22109.5C7—C8—H8119.6
H21—N2—H22109.5C8—C9—C10119.3 (4)
C5i—C1—C2121.4 (2)C8—C9—H9120.3
C5i—C1—S1118.00 (19)C10—C9—H9120.3
C2—C1—S1120.56 (19)C11—C10—C9120.2 (4)
C3—C2—C2i119.0 (3)C11—C10—H10119.9
C3—C2—C1123.1 (2)C9—C10—H10119.9
C2i—C2—C1117.9 (3)C10—C11—C6120.4 (3)
C4—C3—C2120.9 (2)C10—C11—N2120.3 (3)
C4—C3—H3119.6C6—C11—N2119.3 (3)
C2—C3—H3119.6H2w1—O2w—H2w2108.5
C3—C4—C5120.9 (2)H2w2—O2w—H2w3108.3
C3—C4—H4A119.5H2w1—O2w'—H2w4109.5
C5—C4—H4A119.5H2w3—O2w'—H2w4108.5
C1i—C5—C4119.9 (2)
O2—S1—C1—C5i120.4 (2)C3—C4—C5—C1i0.3 (4)
O1—S1—C1—C5i118.6 (2)C11—C6—C7—C80.000 (2)
O3—S1—C1—C5i0.6 (3)N1—C6—C7—C8180.000 (1)
O2—S1—C1—C259.5 (2)C6—C7—C8—C90.000 (2)
O1—S1—C1—C261.5 (2)C7—C8—C9—C100.000 (2)
O3—S1—C1—C2179.51 (19)C8—C9—C10—C110.000 (1)
C5i—C1—C2—C3179.3 (3)C9—C10—C11—C60.0
S1—C1—C2—C30.5 (3)C9—C10—C11—N2180.0
C5i—C1—C2—C2i0.5 (4)C7—C6—C11—C100.000 (1)
S1—C1—C2—C2i179.7 (2)N1—C6—C11—C10180.000 (1)
C2i—C2—C3—C40.9 (4)C7—C6—C11—N2180.000 (1)
C1—C2—C3—C4179.3 (2)N1—C6—C11—N20.000 (1)
C2—C3—C4—C50.9 (4)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.841.942.783 (6)175
O1w—H1w···O2w0.842.322.915 (6)128
O1w—H1w···O2w0.842.192.799 (7)130
O2w—H2w2···O3ii0.842.352.873 (5)121
O2w—H2w4···O3ii0.842.252.808 (6)124
N1—H12···O1iii0.882.072.880 (3)153
N1—H11···O2w0.882.032.816 (5)149
N2—H22···O10.881.992.815 (3)156
N2—H21···O1wiv0.881.882.735 (4)164
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x, y+3/2, z; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formulaC6H10N22+·C10H6O6S22·CH4O·3H2O
Mr482.52
Crystal system, space groupMonoclinic, P21/m
Temperature (K)293
a, b, c (Å)8.1727 (15), 13.681 (2), 9.5173 (15)
β (°) 98.390 (5)
V3)1052.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.926, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
10378, 2503, 1935
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.176, 1.13
No. of reflections2503
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.41

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.841.942.783 (6)175
O1w—H1w···O2w0.842.322.915 (6)128
O1w—H1w···O2w'0.842.192.799 (7)130
O2w—H2w2···O3i0.842.352.873 (5)121
O2w'—H2w4···O3i0.842.252.808 (6)124
N1—H12···O1ii0.882.072.880 (3)153
N1—H11···O2w'0.882.032.816 (5)149
N2—H22···O10.881.992.815 (3)156
N2—H21···O1wiii0.881.882.735 (4)164
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z; (iii) x, y, z1.
 

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (Nos. 12511z023 and 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 td03), Heilongjiang University (Hdtd2010–04), and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, B. (2011). Acta Cryst. E67, o2811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, Z.-B., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, o2658.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1574
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds