metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di-μ3-acetato-μ8-(naphthalene-1,5-di­sulfonato)-dilead(II)]

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 23 April 2012; accepted 24 April 2012; online 28 April 2012)

In the polymeric title complex, [Pb2(CH3CO2)2(C10H6O6S2)]n, the acetate anion functions in a chelating mode and both O atoms also coordinate to adjacent PbII atoms. The naphthalene-1,5-disulfonate dianion, which lies on a center of inversion, is connected to four PbII atoms. The bridging modes of the monoanion and dianion give rise to a three-dimensional coordination polymer. The PbII atom is eight-coordinate in the form of an undefined coordination polyhedron.

Related literature

For a review of metal arene­sulfonates, see: Cai (2004[Cai, J. (2004). Coord. Chem. Rev. 248, 1061-1083.]). For an example of a μ3-chelating acetate in a lead(II) system, see: Morsali & Mahjoub (2004[Morsali, A. & Mahjoub, A. R. (2004). Helv. Chim. Acta, 87, 2717-2722.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb2(C2H3O2)2(C10H6O6S2)]

  • Mr = 818.74

  • Monoclinic, P 21 /c

  • a = 10.442 (4) Å

  • b = 12.666 (6) Å

  • c = 6.803 (4) Å

  • β = 96.897 (19)°

  • V = 893.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 19.11 mm−1

  • T = 293 K

  • 0.26 × 0.21 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.083, Tmax = 0.150

  • 8599 measured reflections

  • 2041 independent reflections

  • 1922 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.076

  • S = 1.05

  • 2041 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 2.09 e Å−3

  • Δρmin = −2.53 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Metal arenesulfonates are generally crystalline compounds; in some, the metal is connected to the arenesulfonate by a covalent bond whereas in others, the arenesulfonate interacts indirectly with the metal center in an outer-sphere type of coordination (Cai, 2004). A lead(II) derivative of naphthalene-1,5-disulfonate is known in which the coordination number is high. This is attributed to the diverse binding modes of the sulfonate entity. In this example (Morsali & Mahjoub, 2004), the acetate ion engages in µ3-bridging. Both features are observed in polymeric Pb2(C2H3O2)2(C10H6O6S2) (Scheme I, Fig. 1). (The acetate anion is a part of the lead(II) acetate reactant.) The acetate ion functions in a chelating mode; both O atoms are further involved in coordinating to adjacent PbII atoms. The naphthalene-1,5-disulfonate ion lies on a center-of-inversion; the sulfonate –SO3 group is connected to four PbII atoms. The bridging modes of the monoanion and dianion give rise to a three-dimensional coordination polymer (Fig. 1). The PbII atom is eight-coordinate in an undefined coordination geometry (Fig. 2).

Related literature top

For a review of metal arenesulfonates, see: Cai (2004). For an example of a µ3-chelating acetate in a lead(II) system, see: Morsali & Mahjoub (2004).

Experimental top

Equal molar amounts of lead(II) acetate (1 mmol, 327 mg) and naphthalene-1,5-disulfonic acid tetrahydrate (1 mmol, 360 mg) were dissolved in water (10 ml). The solution was filtered and then set aside for the growth of crystals. Colorless crystals separated from solution after several days.

Refinement top

Carbon- and nitrogen-bound H-atoms were placed in calculated positions (C–H 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

The final difference Fourier map had a peak in the vicinity of Pb1 as well as a hole in the vicinity of this atom.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) illustrating the geometry of PbII of polymeric Pb2(C2H3O2)2(C10H6O6S2) at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Eight-coordinate geometry of PbII.
Poly[di-µ3-acetato-µ8-(naphthalene-1,5-disulfonato)-dilead(II)] top
Crystal data top
[Pb2(C2H3O2)2(C10H6O6S2)]F(000) = 744
Mr = 818.74Dx = 3.044 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7836 reflections
a = 10.442 (4) Åθ = 3.2–27.5°
b = 12.666 (6) ŵ = 19.11 mm1
c = 6.803 (4) ÅT = 293 K
β = 96.897 (19)°Prism, brown
V = 893.3 (7) Å30.26 × 0.21 × 0.16 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2041 independent reflections
Radiation source: fine-focus sealed tube1922 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scanθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1113
Tmin = 0.083, Tmax = 0.150k = 1516
8599 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0383P)2 + 2.2119P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2041 reflectionsΔρmax = 2.09 e Å3
129 parametersΔρmin = 2.53 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0153 (7)
Crystal data top
[Pb2(C2H3O2)2(C10H6O6S2)]V = 893.3 (7) Å3
Mr = 818.74Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.442 (4) ŵ = 19.11 mm1
b = 12.666 (6) ÅT = 293 K
c = 6.803 (4) Å0.26 × 0.21 × 0.16 mm
β = 96.897 (19)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2041 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1922 reflections with I > 2σ(I)
Tmin = 0.083, Tmax = 0.150Rint = 0.060
8599 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.05Δρmax = 2.09 e Å3
2041 reflectionsΔρmin = 2.53 e Å3
129 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.465191 (17)0.638470 (13)0.64777 (3)0.01655 (12)
S10.30857 (11)0.58790 (9)0.14316 (19)0.0152 (3)
O10.6125 (5)0.5588 (3)0.4215 (7)0.0293 (10)
O20.5932 (4)0.7294 (3)0.3948 (6)0.0241 (9)
O30.2901 (4)0.6274 (3)0.3396 (7)0.0229 (9)
O40.3610 (4)0.4829 (3)0.1445 (6)0.0233 (8)
O50.3804 (4)0.6622 (3)0.0349 (7)0.0249 (9)
C10.6511 (6)0.6459 (4)0.3576 (9)0.0176 (11)
C20.7677 (7)0.6495 (5)0.2497 (10)0.0262 (13)
H2A0.80850.71720.26920.039*
H2B0.74240.63830.11100.039*
H2C0.82710.59530.29990.039*
C30.1528 (5)0.5777 (4)0.0066 (8)0.0171 (10)
C40.1285 (6)0.6372 (4)0.1604 (10)0.0237 (13)
H40.18920.68600.19250.028*
C50.0110 (6)0.6250 (5)0.2852 (10)0.0286 (14)
H50.00470.66540.39970.034*
C60.0786 (5)0.5550 (4)0.2391 (9)0.0232 (12)
H60.15440.54660.32450.028*
C70.0591 (5)0.4946 (4)0.0642 (7)0.0149 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01896 (16)0.01700 (16)0.01406 (16)0.00039 (6)0.00350 (9)0.00111 (6)
S10.0139 (5)0.0152 (5)0.0158 (6)0.0021 (4)0.0013 (4)0.0009 (4)
O10.042 (2)0.0187 (18)0.029 (3)0.0062 (18)0.0096 (19)0.0069 (17)
O20.027 (2)0.0229 (18)0.023 (2)0.0090 (16)0.0041 (17)0.0050 (16)
O30.019 (2)0.0274 (19)0.021 (2)0.0020 (15)0.0027 (17)0.0056 (15)
O40.0222 (18)0.0194 (17)0.027 (2)0.0057 (15)0.0022 (16)0.0030 (16)
O50.0185 (19)0.0312 (19)0.025 (2)0.0104 (17)0.0004 (17)0.0063 (18)
C10.020 (3)0.018 (2)0.014 (3)0.0008 (18)0.000 (2)0.0008 (18)
C20.029 (3)0.032 (3)0.020 (3)0.000 (2)0.012 (3)0.001 (2)
C30.013 (2)0.017 (2)0.021 (3)0.0008 (19)0.0000 (19)0.003 (2)
C40.023 (3)0.025 (3)0.024 (3)0.0028 (19)0.004 (2)0.010 (2)
C50.027 (3)0.034 (3)0.023 (3)0.007 (2)0.005 (3)0.017 (2)
C60.020 (3)0.029 (3)0.018 (3)0.002 (2)0.007 (2)0.006 (2)
C70.016 (2)0.016 (2)0.012 (3)0.0002 (18)0.0012 (19)0.0014 (18)
Geometric parameters (Å, º) top
Pb1—O12.515 (5)O4—Pb1i2.653 (4)
Pb1—O1i2.652 (4)O5—Pb1iv2.754 (4)
Pb1—O22.574 (5)C1—C21.496 (9)
Pb1—O2ii2.622 (4)C2—H2A0.9600
Pb1—O32.615 (4)C2—H2B0.9600
Pb1—O4i2.653 (4)C2—H2C0.9600
Pb1—O5iii2.893 (5)C3—C41.361 (8)
Pb1—O5ii2.754 (4)C3—C7v1.429 (7)
S1—O41.438 (4)C4—C51.414 (9)
S1—O51.457 (4)C4—H40.9300
S1—O31.461 (5)C5—C61.353 (8)
S1—C31.778 (5)C5—H50.9300
O1—C11.269 (6)C6—C71.409 (7)
O1—Pb1i2.652 (4)C6—H60.9300
O2—C11.259 (6)C7—C3v1.429 (7)
O2—Pb1iv2.622 (4)C7—C7v1.431 (9)
O1—Pb1—O250.61 (14)C1—O1—Pb195.9 (4)
O1—Pb1—O384.72 (15)C1—O1—Pb1i149.4 (4)
O2—Pb1—O381.78 (14)Pb1—O1—Pb1i106.87 (16)
O1—Pb1—O2ii110.26 (14)C1—O2—Pb193.4 (4)
O2—Pb1—O2ii82.95 (9)C1—O2—Pb1iv128.9 (4)
O3—Pb1—O2ii143.29 (12)Pb1—O2—Pb1iv116.65 (15)
O1—Pb1—O1i73.13 (16)S1—O3—Pb1126.5 (2)
O2—Pb1—O1i118.36 (13)S1—O4—Pb1i140.8 (2)
O3—Pb1—O1i68.75 (13)S1—O5—Pb1iv128.3 (3)
O2ii—Pb1—O1i146.84 (12)O2—C1—O1118.8 (6)
O1—Pb1—O4i70.34 (14)O2—C1—C2120.8 (5)
O2—Pb1—O4i103.77 (13)O1—C1—C2120.4 (5)
O3—Pb1—O4i139.81 (11)C1—C2—H2A109.5
O2ii—Pb1—O4i76.41 (13)C1—C2—H2B109.5
O1i—Pb1—O4i73.99 (13)H2A—C2—H2B109.5
O1—Pb1—O5ii113.41 (13)C1—C2—H2C109.5
O2—Pb1—O5ii65.11 (12)H2A—C2—H2C109.5
O3—Pb1—O5ii69.81 (12)H2B—C2—H2C109.5
O2ii—Pb1—O5ii73.47 (12)C4—C3—C7v121.2 (5)
O1i—Pb1—O5ii137.12 (15)C4—C3—S1117.6 (4)
O4i—Pb1—O5ii148.89 (12)C7v—C3—S1121.1 (4)
O1—Pb1—O5iii151.11 (12)C3—C4—C5120.2 (5)
O2—Pb1—O5iii143.35 (12)C3—C4—H4119.9
O3—Pb1—O5iii118.32 (14)C5—C4—H4119.9
O2ii—Pb1—O5iii62.50 (12)C6—C5—C4120.5 (6)
O1i—Pb1—O5iii98.00 (13)C6—C5—H5119.8
O4i—Pb1—O5iii80.81 (13)C4—C5—H5119.8
O5ii—Pb1—O5iii92.01 (12)C5—C6—C7121.2 (5)
O4—S1—O5112.5 (3)C5—C6—H6119.4
O4—S1—O3113.8 (2)C7—C6—H6119.4
O5—S1—O3111.9 (3)C6—C7—C3v123.1 (4)
O4—S1—C3105.1 (2)C6—C7—C7v119.3 (6)
O5—S1—C3106.0 (2)C3v—C7—C7v117.6 (6)
O3—S1—C3106.9 (3)
O2—Pb1—O1—C16.4 (3)O2—Pb1—O3—S150.2 (3)
O3—Pb1—O1—C190.1 (4)O2ii—Pb1—O3—S1116.6 (3)
O2ii—Pb1—O1—C155.4 (4)O1i—Pb1—O3—S174.6 (3)
O1i—Pb1—O1—C1159.4 (4)O4i—Pb1—O3—S151.4 (4)
O4i—Pb1—O1—C1122.0 (4)O5ii—Pb1—O3—S1116.6 (3)
O5ii—Pb1—O1—C124.7 (4)O5iii—Pb1—O3—S1162.3 (2)
O5iii—Pb1—O1—C1125.0 (3)O5—S1—O4—Pb1i88.6 (4)
O2—Pb1—O1—Pb1i153.0 (2)O3—S1—O4—Pb1i39.9 (5)
O3—Pb1—O1—Pb1i69.36 (16)C3—S1—O4—Pb1i156.4 (4)
O2ii—Pb1—O1—Pb1i145.14 (13)O4—S1—O5—Pb1iv133.6 (3)
O1i—Pb1—O1—Pb1i0.0O3—S1—O5—Pb1iv4.0 (4)
O4i—Pb1—O1—Pb1i78.59 (16)C3—S1—O5—Pb1iv112.1 (3)
O5ii—Pb1—O1—Pb1i134.68 (15)Pb1—O2—C1—O111.2 (6)
O5iii—Pb1—O1—Pb1i75.6 (3)Pb1iv—O2—C1—O1117.4 (5)
O1—Pb1—O2—C16.4 (3)Pb1—O2—C1—C2165.4 (5)
O3—Pb1—O2—C196.3 (3)Pb1iv—O2—C1—C265.9 (7)
O2ii—Pb1—O2—C1117.2 (3)Pb1—O1—C1—O211.5 (6)
O1i—Pb1—O2—C135.9 (4)Pb1i—O1—C1—O2127.1 (7)
O4i—Pb1—O2—C143.1 (3)Pb1—O1—C1—C2165.1 (5)
O5ii—Pb1—O2—C1167.8 (4)Pb1i—O1—C1—C256.3 (10)
O5iii—Pb1—O2—C1136.2 (3)O4—S1—C3—C4120.1 (5)
O1—Pb1—O2—Pb1iv130.8 (2)O5—S1—C3—C40.8 (5)
O3—Pb1—O2—Pb1iv40.84 (16)O3—S1—C3—C4118.7 (5)
O2ii—Pb1—O2—Pb1iv105.7 (2)O4—S1—C3—C7v56.5 (5)
O1i—Pb1—O2—Pb1iv101.22 (19)O5—S1—C3—C7v175.8 (4)
O4i—Pb1—O2—Pb1iv179.76 (14)O3—S1—C3—C7v64.7 (5)
O5ii—Pb1—O2—Pb1iv30.66 (15)C7v—C3—C4—C52.7 (9)
O5iii—Pb1—O2—Pb1iv86.7 (2)S1—C3—C4—C5173.9 (5)
O4—S1—O3—Pb154.8 (3)C3—C4—C5—C60.6 (10)
O5—S1—O3—Pb174.1 (3)C4—C5—C6—C71.7 (10)
C3—S1—O3—Pb1170.2 (2)C5—C6—C7—C3v177.9 (6)
O1—Pb1—O3—S10.7 (3)C5—C6—C7—C7v1.8 (10)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y, z+1; (iv) x, y+3/2, z1/2; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Pb2(C2H3O2)2(C10H6O6S2)]
Mr818.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.442 (4), 12.666 (6), 6.803 (4)
β (°) 96.897 (19)
V3)893.3 (7)
Z2
Radiation typeMo Kα
µ (mm1)19.11
Crystal size (mm)0.26 × 0.21 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.083, 0.150
No. of measured, independent and
observed [I > 2σ(I)] reflections
8599, 2041, 1922
Rint0.060
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.05
No. of reflections2041
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.09, 2.53

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (Nos. 12511z023, 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University (Hdtd2010–04), and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationCai, J. (2004). Coord. Chem. Rev. 248, 1061–1083.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMorsali, A. & Mahjoub, A. R. (2004). Helv. Chim. Acta, 87, 2717–2722.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds