organic compounds
Guanidinium bromide–18-crown-6 (2/1)
aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: seuwei@126.com
In the title compound, 2CH6N3+·2Br−·C12H24O6, the 18-crown-6 molecule lies about an inversion center, whereas the guanidinium cation and bromide anion are in general positions. The guanidinium cations link with the bromide anions and the crown ether molecules via N—H⋯O and N—H⋯Br hydrogen bonds, thus forming a three-dimensional network.
Related literature
For applications of et al. (1998). For ferroelectric metal-organic compounds, see: Fu et al. (2009, 2011); Ye et al. (2006); Zhang et al. (2008, 2010). For structures of 18-crown-6 see: Zhang & Zhao (2011); Ge & Zhao (2010)
see: ClarkExperimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812017394/yk2049sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812017394/yk2049Isup2.hkl
The hydrobromic acid (0.81 g, 10 mmol) and guanidinium carbonate (0.9 g, 5 mmol) were dissolved in 30 ml of water and the solution was combined with methanol solution of dibenzo-18-crown-6 (3.6 g 10 mmol). The mixture was stirred for 30 min to complete the reaction, and good quality blocky single crystals were obtained by slow evaporation of the filtrate after two weeks (the
72%).Amino H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.97 Å and N—H = 0.86 Å, Uiso(H) = 1.2Uiso(C,N).
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).2CH6N3+·2Br−·C12H24O6 | F(000) = 560 |
Mr = 544.31 | Dx = 1.463 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3638 reflections |
a = 8.9354 (18) Å | θ = 3.0–27.5° |
b = 9.860 (2) Å | µ = 3.32 mm−1 |
c = 14.306 (3) Å | T = 293 K |
β = 101.39 (3)° | Block, colourless |
V = 1235.6 (4) Å3 | 0.20 × 0.20 × 0.20 mm |
Z = 2 |
Rigaku SCXmini diffractometer | 2835 independent reflections |
Radiation source: fine-focus sealed tube | 1968 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.077 |
ω scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | h = −11→11 |
Tmin = 0.936, Tmax = 0.937 | k = −12→12 |
12464 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0528P)2] where P = (Fo2 + 2Fc2)/3 |
2835 reflections | (Δ/σ)max = 0.001 |
127 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.79 e Å−3 |
2CH6N3+·2Br−·C12H24O6 | V = 1235.6 (4) Å3 |
Mr = 544.31 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.9354 (18) Å | µ = 3.32 mm−1 |
b = 9.860 (2) Å | T = 293 K |
c = 14.306 (3) Å | 0.20 × 0.20 × 0.20 mm |
β = 101.39 (3)° |
Rigaku SCXmini diffractometer | 2835 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 1968 reflections with I > 2σ(I) |
Tmin = 0.936, Tmax = 0.937 | Rint = 0.077 |
12464 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.36 e Å−3 |
2835 reflections | Δρmin = −0.79 e Å−3 |
127 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O2 | 1.1811 (3) | −0.2005 (3) | 0.62582 (18) | 0.0572 (7) | |
O3 | 1.2804 (3) | 0.0677 (3) | 0.6025 (2) | 0.0649 (8) | |
O1 | 0.8672 (3) | −0.2293 (3) | 0.5560 (2) | 0.0759 (9) | |
C3 | 1.3789 (5) | −0.0401 (5) | 0.6413 (4) | 0.0701 (13) | |
H3A | 1.4677 | −0.0043 | 0.6844 | 0.084* | |
H3B | 1.4135 | −0.0887 | 0.5905 | 0.084* | |
C6 | 0.9606 (6) | −0.3369 (5) | 0.5989 (4) | 0.0805 (14) | |
H6A | 1.0024 | −0.3854 | 0.5509 | 0.097* | |
H6B | 0.9004 | −0.4000 | 0.6282 | 0.097* | |
C5 | 1.0855 (6) | −0.2815 (5) | 0.6716 (3) | 0.0748 (13) | |
H5A | 1.0439 | −0.2269 | 0.7168 | 0.090* | |
H5B | 1.1441 | −0.3549 | 0.7061 | 0.090* | |
C4 | 1.2942 (5) | −0.1325 (4) | 0.6931 (3) | 0.0641 (12) | |
H4A | 1.3635 | −0.1980 | 0.7292 | 0.077* | |
H4B | 1.2465 | −0.0814 | 0.7372 | 0.077* | |
C7 | 0.7498 (6) | −0.2745 (5) | 0.4820 (4) | 0.0882 (16) | |
H7A | 0.6934 | −0.3471 | 0.5050 | 0.106* | |
H7B | 0.7932 | −0.3093 | 0.4298 | 0.106* | |
C2 | 1.3526 (5) | 0.1611 (6) | 0.5511 (4) | 0.0848 (15) | |
H2A | 1.3809 | 0.1160 | 0.4969 | 0.102* | |
H2B | 1.4450 | 0.1949 | 0.5917 | 0.102* | |
N2 | 1.1162 (4) | −0.1452 (4) | 0.4063 (3) | 0.0766 (11) | |
H2C | 1.1030 | −0.1300 | 0.4633 | 0.092* | |
H2D | 1.0709 | −0.0954 | 0.3599 | 0.092* | |
Br1 | 1.01901 (4) | −0.03281 (4) | 0.16380 (3) | 0.05407 (18) | |
N3 | 1.2257 (4) | −0.2677 (4) | 0.3022 (2) | 0.0643 (9) | |
H3C | 1.2841 | −0.3325 | 0.2911 | 0.077* | |
H3D | 1.1801 | −0.2174 | 0.2562 | 0.077* | |
C1 | 1.2061 (4) | −0.2453 (4) | 0.3900 (3) | 0.0508 (9) | |
N1 | 1.2761 (4) | −0.3225 (3) | 0.4595 (2) | 0.0592 (9) | |
H1A | 1.3344 | −0.3871 | 0.4478 | 0.071* | |
H1B | 1.2638 | −0.3085 | 0.5168 | 0.071* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0681 (18) | 0.0558 (17) | 0.0495 (15) | 0.0000 (13) | 0.0161 (13) | −0.0003 (13) |
O3 | 0.0545 (17) | 0.078 (2) | 0.0651 (19) | −0.0106 (15) | 0.0176 (14) | 0.0009 (16) |
O1 | 0.082 (2) | 0.0625 (19) | 0.079 (2) | −0.0205 (16) | 0.0071 (17) | 0.0001 (17) |
C3 | 0.050 (3) | 0.087 (3) | 0.073 (3) | 0.000 (2) | 0.010 (2) | −0.027 (3) |
C6 | 0.100 (4) | 0.055 (3) | 0.091 (4) | −0.019 (3) | 0.032 (3) | 0.009 (3) |
C5 | 0.095 (3) | 0.065 (3) | 0.065 (3) | 0.005 (3) | 0.018 (3) | 0.021 (2) |
C4 | 0.071 (3) | 0.067 (3) | 0.050 (2) | 0.017 (2) | 0.002 (2) | −0.010 (2) |
C7 | 0.106 (4) | 0.087 (4) | 0.068 (3) | −0.055 (3) | 0.009 (3) | 0.002 (3) |
C2 | 0.060 (3) | 0.122 (4) | 0.074 (3) | −0.040 (3) | 0.015 (2) | 0.003 (3) |
N2 | 0.101 (3) | 0.074 (2) | 0.059 (2) | 0.034 (2) | 0.026 (2) | 0.0060 (19) |
Br1 | 0.0649 (3) | 0.0498 (3) | 0.0474 (3) | 0.00012 (18) | 0.01084 (19) | 0.00461 (18) |
N3 | 0.070 (2) | 0.076 (2) | 0.045 (2) | 0.0250 (18) | 0.0076 (16) | 0.0070 (17) |
C1 | 0.050 (2) | 0.049 (2) | 0.052 (2) | −0.0038 (17) | 0.0091 (18) | 0.000 (2) |
N1 | 0.075 (2) | 0.060 (2) | 0.0410 (18) | 0.0135 (17) | 0.0093 (16) | 0.0063 (17) |
O2—C4 | 1.418 (5) | C7—C2i | 1.464 (7) |
O2—C5 | 1.420 (5) | C7—H7A | 0.9700 |
O3—C2 | 1.411 (5) | C7—H7B | 0.9700 |
O3—C3 | 1.421 (5) | C2—C7i | 1.464 (7) |
O1—C7 | 1.407 (5) | C2—H2A | 0.9700 |
O1—C6 | 1.413 (5) | C2—H2B | 0.9700 |
C3—C4 | 1.474 (6) | N2—C1 | 1.322 (5) |
C3—H3A | 0.9700 | N2—H2C | 0.8600 |
C3—H3B | 0.9700 | N2—H2D | 0.8600 |
C6—C5 | 1.472 (7) | N3—C1 | 1.320 (5) |
C6—H6A | 0.9700 | N3—H3C | 0.8600 |
C6—H6B | 0.9700 | N3—H3D | 0.8600 |
C5—H5A | 0.9700 | C1—N1 | 1.309 (5) |
C5—H5B | 0.9700 | N1—H1A | 0.8600 |
C4—H4A | 0.9700 | N1—H1B | 0.8600 |
C4—H4B | 0.9700 | ||
C4—O2—C5 | 111.5 (3) | H4A—C4—H4B | 108.4 |
C2—O3—C3 | 112.3 (4) | O1—C7—C2i | 109.1 (4) |
C7—O1—C6 | 112.1 (4) | O1—C7—H7A | 109.9 |
O3—C3—C4 | 108.6 (3) | C2i—C7—H7A | 109.9 |
O3—C3—H3A | 110.0 | O1—C7—H7B | 109.9 |
C4—C3—H3A | 110.0 | C2i—C7—H7B | 109.9 |
O3—C3—H3B | 110.0 | H7A—C7—H7B | 108.3 |
C4—C3—H3B | 110.0 | O3—C2—C7i | 110.3 (4) |
H3A—C3—H3B | 108.4 | O3—C2—H2A | 109.6 |
O1—C6—C5 | 109.2 (4) | C7i—C2—H2A | 109.6 |
O1—C6—H6A | 109.8 | O3—C2—H2B | 109.6 |
C5—C6—H6A | 109.8 | C7i—C2—H2B | 109.6 |
O1—C6—H6B | 109.8 | H2A—C2—H2B | 108.1 |
C5—C6—H6B | 109.8 | C1—N2—H2C | 120.0 |
H6A—C6—H6B | 108.3 | C1—N2—H2D | 120.0 |
O2—C5—C6 | 108.9 (4) | H2C—N2—H2D | 120.0 |
O2—C5—H5A | 109.9 | C1—N3—H3C | 120.0 |
C6—C5—H5A | 109.9 | C1—N3—H3D | 120.0 |
O2—C5—H5B | 109.9 | H3C—N3—H3D | 120.0 |
C6—C5—H5B | 109.9 | N1—C1—N3 | 119.5 (4) |
H5A—C5—H5B | 108.3 | N1—C1—N2 | 121.0 (4) |
O2—C4—C3 | 108.6 (3) | N3—C1—N2 | 119.5 (4) |
O2—C4—H4A | 110.0 | C1—N1—H1A | 120.0 |
C3—C4—H4A | 110.0 | C1—N1—H1B | 120.0 |
O2—C4—H4B | 110.0 | H1A—N1—H1B | 120.0 |
C3—C4—H4B | 110.0 |
Symmetry code: (i) −x+2, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Br1ii | 0.86 | 2.68 | 3.470 (3) | 154 |
N1—H1B···O2 | 0.86 | 2.14 | 2.938 (4) | 155 |
N2—H2C···O2 | 0.86 | 2.40 | 3.127 (5) | 143 |
N2—H2D···Br1 | 0.86 | 2.82 | 3.582 (4) | 149 |
N3—H3D···Br1 | 0.86 | 2.53 | 3.354 (3) | 162 |
N3—H3C···Br1ii | 0.86 | 2.64 | 3.440 (3) | 156 |
Symmetry code: (ii) −x+5/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | 2CH6N3+·2Br−·C12H24O6 |
Mr | 544.31 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 8.9354 (18), 9.860 (2), 14.306 (3) |
β (°) | 101.39 (3) |
V (Å3) | 1235.6 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.32 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Rigaku SCXmini diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.936, 0.937 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12464, 2835, 1968 |
Rint | 0.077 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.127, 1.11 |
No. of reflections | 2835 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.79 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Br1i | 0.86 | 2.68 | 3.470 (3) | 154.2 |
N1—H1B···O2 | 0.86 | 2.14 | 2.938 (4) | 154.6 |
N2—H2C···O2 | 0.86 | 2.40 | 3.127 (5) | 143.3 |
N2—H2D···Br1 | 0.86 | 2.82 | 3.582 (4) | 149.1 |
N3—H3D···Br1 | 0.86 | 2.53 | 3.354 (3) | 162.0 |
N3—H3C···Br1i | 0.86 | 2.64 | 3.440 (3) | 155.6 |
Symmetry code: (i) −x+5/2, y−1/2, −z+1/2. |
Acknowledgements
The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.
References
Clark, D. L., Keogh, D. W. & Palmer, C. L. (1998). Angew. Chem. Int. Ed. 37, 164–169. CrossRef CAS Google Scholar
Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997. Web of Science CSD CrossRef CAS Google Scholar
Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z. & Xiong, R.-G. (2011). J. Am. Chem. Soc. 133, 12780–12786. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ge, J.-Z. & Zhao, M.-M. (2010). Acta Cryst. E66, o1478. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhang, Y. & Zhao, M.-M. (2011). Acta Cryst. E67, o596. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recent years, crown ethers have attracted much attention because of their wide application in catalysis, solvent extraction, separation of isotopes, host–guest and supramolecular chemistry (Clark et al., 1998). Several 18-crown-6 clathrates were discovered to be dielectric-ferroelectric materials (Fu et al., 2011), hence we designed the title compound in attempts to find new hydrogen-bonded dielectric materials. Dielectric-ferroelectric materials, comprising organic ligands, metal-organic coordination compounds and organic-inorganic hybrids almost show temperature dependence of their dielectric constants (Fu et al., 2009; Zhang et al., 2010; Zhang et al., 2008; Ye et al., 2006). Unfortunately, the study of temperature dependence of dielectric constant of the title compound indicates that the permittivity is basically temperature-independent below its melting point (395K—396K). Herein we descibe the crystal structure of this compound.
At room temperature (25°C), the single-crystal X-ray diffraction reveals that the asymmetric unit of the title compound consists of a guanidinium cation, a bromide anion and a half of 18-crown-6 molecule (Fig. 1). The three NH2-groups of guanidinium interact with the oxygen atoms of crown ether molecule and with two bromide anions through two N—H···O and N—H···Br hydrogen bonds (Table 1), thus forming a three-dimensional network (Fig. 2).