organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1383-o1384

2-(5-Bromo­thio­phen-2-yl)-5-[5-(10-ethyl­pheno­thia­zin-3-yl)thio­phen-2-yl]-1,3,4-oxa­diazole

aCollege of Chemistry, Dalian University of Technology, 116024 Dalian, Liaoning, People's Republic of China, bState Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology, 116024 Dalian, Liaoning, People's Republic of China, and cDepartment of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Stockholm 10044, Sweden
*Correspondence e-mail: liujh@dlut.edu.cn, lichengs@kth.se

(Received 19 March 2012; accepted 29 March 2012; online 13 April 2012)

The mol­ecule of the title compound, C24H16BrN3OS3, contains three approximately planar fragments, viz. an oxadiazole ring plus two adjacent thio­phene groups, and two phenothia­zine benzene rings, with largest deviations from the least-squares planes of 0.051 (3), 0.019 (4) and 0.014 (3) Å, respectively. The phenothia­zine unit adopts a butterfly conformation, with a dihedral angle of 38.06 (15)° between the terminal benzene rings. The dihedral angle between the 2,5-bis­(thio­phen-2-yl)oxadiazole unit and the attached benzene ring is 15.35 (11)°. In the crystal, mol­ecules form stacks along the b-axis direction; neighboring mol­ecules within the stack are related by inversion centers, with shortest inter­centroid separations of 3.741 (2) and 3.767 (2) Å.

Related literature

For electro-optical properties of phenothia­zine derivatives, see: Lai et al. (2001[Lai, R. Y., Fabrizio, E. F., Lu, L. D., Jenekhe, S. A. & Bard, A. J. (2001). J. Am. Chem. Soc. 123, 9112-9118.], 2003[Lai, R. Y., Kong, X. X., Jenekhe, S. A. & Bard, A. J. (2003). J. Am. Chem. Soc. 125, 12631-12639.]); Han et al. (2008[Han, F., Chi, L.-N., Wu, W.-T., Liang, X.-F., Fu, M.-Y. & Zhao, J.-Z. (2008). J. Photochem. Photobiol. A, 196, 10-23.]); Meng et al. (2010[Meng, K., Liu, Y. L., Feng, W. K., Zheng, Q., Zhao, X. J., Wang, S. F. & Gong, Q. H. (2010). J. Photochem. Photobiol. A, 210, 44-47.]); Zhang et al. (2005[Zhang, X.-H., Choi, S. H., Choi, D. H. & Ahn, K. H. (2005). Tetrahedron Lett. 46, 5273-5276.]); Park et al. (2011[Park, Y., Kim, B., Lee, C., Hyun, A., Jang, S., Lee, J. H., Gal, Y. S., Kim, T. H., Kim, K. S. & Park, J. (2011). J. Phys. Chem. C, 115, 4843-4850.]); Kim et al. (2011[Kim, S. H., Kim, H. W., Sakong, C., Namgoong, J., Park, S. W., Ko, M. J., Lee, C. H., Lee, W. I. & Kim, J. P. (2011). Org. Lett. 13, 5784-5787.]); Hagfeldt et al. (2010[Hagfeldt, A., Boschloo, G., Sun, L.-C., Kloo, L. & Pettersson, H. (2010). Chem. Rev. 110, 6595-6663.]); Wu et al. (2010[Wu, T. Y., Tsao, M. H., Chen, F. L., Su, S. G., Chang, C. W., Wang, H. P., Lin, Y. C., Ou-Yang, W. C. & Sun, I. W. (2010). Int. J. Mol. Sci. 11, 329-353.]). For related structures, see: Chu & Van der Helm (1975[Chu, S. S. C. & Van der Helm, D. (1975). Acta Cryst. B31, 1179-1183.]); Hdii et al. (1998[Hdii, F., Reboul, J.-P., Barbe, J., Siri, D. & Pèpe, G. (1998). Acta Cryst. C54, 1151-1152.]); Li et al. (2009a[Li, D. M., Hu, R. T., Zhou, W., Sun, P. P., Kan, Y. H., Tian, Y. P., Zhou, H. P., Wu, J. Y., Tao, X. T. & Jiang, M. H. (2009a). Eur. J. Inorg. Chem. pp. 2664-2672.],b[Li, D.-M., Lv, L.-F., Sun, P.-P., Zhou, W., Wang, P., Wu, J.-Y., Kan, Y.-H., Zhou, H.-P. & Tian, Y.-P. (2009b). Dyes Pigm. 83, 180-186.]); Yu et al. (2011[Yu, D.-H., Wang, J.-Q., Kong, L. & Liu, Z. (2011). Acta Cryst. E67, o3344.]); Pan et al. (2012[Pan, Y.-Z., Wang, Y.-G., Liu, J.-H. & Sun, L.-C. (2012). Acta Cryst. E68, o649.]).

[Scheme 1]

Experimental

Crystal data
  • C24H16BrN3OS3

  • Mr = 538.49

  • Triclinic, [P \overline 1]

  • a = 7.4300 (5) Å

  • b = 7.6019 (5) Å

  • c = 22.1933 (14) Å

  • α = 89.315 (4)°

  • β = 89.170 (4)°

  • γ = 64.891 (4)°

  • V = 1134.93 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.11 mm−1

  • T = 296 K

  • 0.10 × 0.08 × 0.07 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.812, Tmax = 0.860

  • 11444 measured reflections

  • 3972 independent reflections

  • 3138 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.136

  • S = 1.06

  • 3972 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

The derivatives of phenothiazine have attracted much interest since they can serve as photoactive and electroactive materials in many fields, such as electrogenerated chemiluminescence (Lai et al., 2001, 2003), environment sensitive fluorophores (Han et al., 2008; Meng et al., 2010), organic light-emitting diodes (Zhang et al., 2005; Park et al., 2011) and solar cells (Hagfeldt et al., 2010; Kim et al., 2011; Wu et al., 2010). As part of our studies on these materials, here we report the crystal structure of the title compound, C24H16BrN3OS3.

In the molecule of the title compound (Fig. 1), two benzene rings of the phenothiazine group display a noncoplanar butterfly conformation with a dihedral angle of 38.06 (15)°. Both thiophene rings, oxadiazole group and benzene ring with C9 atom of phenthiazine lie almost in the same plane. In the crystal, there are C—H···N contacts and π-π interactions between neighbouring molecules.

Related literature top

For electro-optical properties of phenothiazine derivatives, see: Lai et al. (2001, 2003); Han et al. (2008); Meng et al. (2010); Zhang et al. (2005); Park et al. (2011); Kim et al. (2011); Hagfeldt et al. (2010); Wu et al. (2010). For related structures, see: Chu & Van der Helm (1975); Hdii et al. (1998); Li et al. (2009a,b); Yu et al. (2011); Pan et al. (2012).

Experimental top

3-dihydroxyboryl-10-ethylphenothiazine (320 mg, 1.2 mmol), 2,5-bis(5-bromo-2-thiophen-2-yl)-1,3,4-oxadiazole (350 mg, 0.9 mmol) and Pd(PPh3)4 (21 mg, 0.02 mmol) were dissolved in 20 ml THF under nitrogen atmosphere, then aqueous solution of Na2CO3 (2.0 M, 6 mL) was added to reaction mixture. The mixture was stirred at 80°C for 24 hrs, then it was poured into water and extracted with dichloromethane. The organic layer was dried with anhydrous sodium sulfate. After removal of the solvent, the crude product was purified by chromatography on a silica gel column using dichloromethane-ethyl acetate (v/v = 150:1) as eluent and isolated as a yellow powder. Yield: 145 mg (30%). The yellow single crystals suitable for X-ray analysis were obtained after several days by slow evaporation of a mixture solution in dichloromethane and petroleum ether.

Refinement top

H atoms were placed in calculated positions and treated as riding atoms with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Structure of the title compound with atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level.
2-(5-Bromothiophen-2-yl)-5-[5-(10-ethylphenothiazin-3-yl)thiophen-2-yl]- 1,3,4-oxadiazole top
Crystal data top
C24H16BrN3OS3Z = 2
Mr = 538.49F(000) = 544
Triclinic, P1Dx = 1.576 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4300 (5) ÅCell parameters from 4410 reflections
b = 7.6019 (5) Åθ = 2.8–25.6°
c = 22.1933 (14) ŵ = 2.11 mm1
α = 89.315 (4)°T = 296 K
β = 89.170 (4)°Block, yellow
γ = 64.891 (4)°0.10 × 0.08 × 0.07 mm
V = 1134.93 (13) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3972 independent reflections
Radiation source: fine-focus sealed tube3138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
phi and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.812, Tmax = 0.860k = 89
11444 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0813P)2 + 0.0555P]
where P = (Fo2 + 2Fc2)/3
3972 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C24H16BrN3OS3γ = 64.891 (4)°
Mr = 538.49V = 1134.93 (13) Å3
Triclinic, P1Z = 2
a = 7.4300 (5) ÅMo Kα radiation
b = 7.6019 (5) ŵ = 2.11 mm1
c = 22.1933 (14) ÅT = 296 K
α = 89.315 (4)°0.10 × 0.08 × 0.07 mm
β = 89.170 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3972 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3138 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 0.860Rint = 0.052
11444 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.06Δρmax = 0.47 e Å3
3972 reflectionsΔρmin = 0.62 e Å3
290 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.64760 (7)0.55973 (6)0.18906 (2)0.0835 (2)
C10.3622 (6)0.2273 (5)0.96143 (15)0.0594 (9)
H10.22810.27620.97180.071*
C20.4887 (7)0.2710 (5)0.99607 (17)0.0673 (10)
H20.44160.34631.03040.081*
C30.6867 (7)0.2023 (5)0.97957 (17)0.0682 (11)
H30.77310.23131.00310.082*
C40.7577 (5)0.0905 (5)0.92832 (16)0.0587 (9)
H40.89040.04890.91700.070*
C50.6325 (5)0.0397 (4)0.89353 (14)0.0456 (7)
C60.4320 (5)0.1113 (4)0.91116 (13)0.0465 (7)
C70.9127 (5)0.2003 (6)0.83409 (18)0.0666 (10)
H7A0.98220.11740.83200.080*
H7B0.93410.26830.79610.080*
C80.9994 (6)0.3473 (6)0.8843 (2)0.0839 (13)
H8A0.98280.28080.92190.126*
H8B1.13830.42380.87650.126*
H8C0.93200.43070.88630.126*
C90.5786 (5)0.0232 (4)0.79035 (14)0.0437 (7)
C100.6538 (5)0.0294 (5)0.73245 (15)0.0522 (8)
H100.78880.06380.72690.063*
C110.5316 (5)0.0147 (4)0.68302 (15)0.0501 (8)
H110.58700.00380.64460.060*
C120.3283 (5)0.0748 (4)0.68915 (13)0.0450 (7)
C130.2503 (5)0.0895 (4)0.74764 (14)0.0465 (7)
H130.11380.13350.75320.056*
C140.3721 (5)0.0401 (4)0.79706 (14)0.0452 (7)
C150.1960 (5)0.1204 (4)0.63696 (14)0.0468 (7)
C160.0059 (5)0.1390 (4)0.63392 (15)0.0508 (8)
H160.06200.11990.66710.061*
C170.0786 (5)0.1891 (4)0.57703 (14)0.0516 (8)
H170.20750.20720.56850.062*
C180.0480 (5)0.2087 (4)0.53520 (15)0.0488 (7)
C190.0111 (5)0.2606 (4)0.47247 (14)0.0469 (7)
C200.1542 (5)0.3449 (4)0.39177 (14)0.0448 (7)
C210.3225 (5)0.3959 (4)0.35297 (14)0.0449 (7)
C220.5041 (5)0.4019 (4)0.36531 (16)0.0546 (8)
H220.54200.37530.40320.065*
C230.6299 (5)0.4525 (4)0.31502 (17)0.0570 (8)
H230.75890.46200.31570.068*
C240.5401 (5)0.4854 (4)0.26594 (14)0.0515 (8)
N10.6991 (4)0.0788 (4)0.84232 (12)0.0492 (6)
N20.1313 (4)0.2746 (4)0.43185 (12)0.0563 (7)
N30.0218 (4)0.3301 (4)0.37835 (12)0.0554 (7)
O10.1732 (3)0.3035 (3)0.45107 (9)0.0466 (5)
S10.27273 (13)0.04182 (14)0.86988 (4)0.0583 (3)
S20.27462 (13)0.16405 (12)0.56662 (4)0.0537 (2)
S30.30112 (13)0.45375 (12)0.27857 (4)0.0536 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1064 (4)0.0847 (3)0.0675 (3)0.0479 (3)0.0321 (3)0.0175 (2)
C10.070 (2)0.0534 (17)0.0436 (19)0.0159 (16)0.0046 (17)0.0046 (15)
C20.101 (3)0.0543 (18)0.046 (2)0.032 (2)0.005 (2)0.0026 (15)
C30.102 (3)0.066 (2)0.052 (2)0.051 (2)0.014 (2)0.0023 (17)
C40.065 (2)0.0672 (19)0.056 (2)0.0394 (17)0.0077 (17)0.0088 (17)
C50.0504 (18)0.0507 (15)0.0412 (17)0.0270 (14)0.0026 (14)0.0072 (13)
C60.0567 (19)0.0486 (15)0.0362 (17)0.0243 (14)0.0032 (14)0.0072 (13)
C70.047 (2)0.078 (2)0.068 (3)0.0199 (17)0.0001 (18)0.0067 (19)
C80.071 (3)0.077 (2)0.083 (3)0.011 (2)0.022 (2)0.000 (2)
C90.0466 (17)0.0477 (15)0.0412 (17)0.0242 (13)0.0027 (14)0.0011 (13)
C100.0461 (18)0.0637 (18)0.050 (2)0.0267 (15)0.0068 (15)0.0067 (15)
C110.054 (2)0.0569 (17)0.0405 (18)0.0245 (15)0.0095 (15)0.0066 (14)
C120.0524 (19)0.0425 (14)0.0420 (18)0.0219 (13)0.0056 (14)0.0029 (13)
C130.0435 (17)0.0532 (16)0.0441 (18)0.0219 (13)0.0037 (14)0.0011 (13)
C140.0495 (18)0.0504 (15)0.0415 (17)0.0267 (14)0.0020 (14)0.0004 (13)
C150.059 (2)0.0415 (14)0.0412 (17)0.0224 (14)0.0048 (15)0.0023 (12)
C160.056 (2)0.0576 (17)0.0407 (18)0.0262 (15)0.0045 (15)0.0028 (14)
C170.0516 (19)0.0571 (17)0.0462 (19)0.0231 (15)0.0030 (15)0.0027 (14)
C180.0534 (19)0.0445 (14)0.0458 (18)0.0184 (13)0.0029 (15)0.0016 (13)
C190.0511 (19)0.0452 (15)0.0428 (18)0.0189 (13)0.0016 (15)0.0026 (13)
C200.0490 (18)0.0435 (14)0.0403 (17)0.0183 (13)0.0085 (14)0.0030 (12)
C210.0519 (18)0.0408 (14)0.0429 (17)0.0208 (13)0.0075 (14)0.0007 (12)
C220.057 (2)0.0539 (17)0.052 (2)0.0230 (15)0.0095 (17)0.0028 (15)
C230.0512 (19)0.0544 (17)0.066 (2)0.0227 (15)0.0007 (17)0.0030 (16)
C240.063 (2)0.0463 (15)0.0466 (19)0.0247 (15)0.0021 (16)0.0022 (14)
N10.0415 (14)0.0610 (14)0.0447 (16)0.0214 (12)0.0002 (12)0.0031 (12)
N20.0556 (17)0.0717 (16)0.0431 (16)0.0287 (14)0.0030 (13)0.0036 (13)
N30.0538 (17)0.0719 (16)0.0417 (16)0.0282 (13)0.0047 (13)0.0035 (13)
O10.0484 (13)0.0497 (11)0.0405 (12)0.0197 (9)0.0060 (10)0.0007 (9)
S10.0539 (5)0.0906 (6)0.0417 (5)0.0418 (4)0.0041 (4)0.0022 (4)
S20.0562 (5)0.0677 (5)0.0411 (5)0.0300 (4)0.0038 (4)0.0003 (4)
S30.0612 (5)0.0636 (5)0.0419 (5)0.0326 (4)0.0042 (4)0.0040 (4)
Geometric parameters (Å, º) top
Br1—C241.871 (3)C12—C131.400 (4)
C1—C21.370 (5)C12—C151.471 (4)
C1—C61.382 (4)C13—C141.376 (4)
C1—H10.9300C13—H130.9300
C2—C31.381 (6)C14—S11.765 (3)
C2—H20.9300C15—C161.361 (5)
C3—C41.385 (5)C15—S21.736 (3)
C3—H30.9300C16—C171.394 (5)
C4—C51.394 (4)C16—H160.9300
C4—H40.9300C17—C181.363 (4)
C5—C61.403 (4)C17—H170.9300
C5—N11.406 (4)C18—C191.441 (4)
C6—S11.758 (3)C18—S21.726 (3)
C7—N11.469 (4)C19—N21.295 (4)
C7—C81.511 (6)C19—O11.358 (4)
C7—H7A0.9700C20—N31.295 (4)
C7—H7B0.9700C20—O11.369 (4)
C8—H8A0.9600C20—C211.438 (5)
C8—H8B0.9600C21—C221.355 (5)
C8—H8C0.9600C21—S31.726 (3)
C9—C101.387 (4)C22—C231.407 (5)
C9—C141.406 (4)C22—H220.9300
C9—N11.417 (4)C23—C241.344 (5)
C10—C111.379 (5)C23—H230.9300
C10—H100.9300C24—S31.715 (4)
C11—C121.385 (4)N2—N31.405 (4)
C11—H110.9300
C2—C1—C6120.6 (4)C12—C13—H13119.4
C2—C1—H1119.7C13—C14—C9120.9 (3)
C6—C1—H1119.7C13—C14—S1120.3 (2)
C1—C2—C3119.5 (3)C9—C14—S1118.7 (2)
C1—C2—H2120.2C16—C15—C12129.4 (3)
C3—C2—H2120.2C16—C15—S2110.0 (2)
C2—C3—C4120.6 (4)C12—C15—S2120.6 (2)
C2—C3—H3119.7C15—C16—C17114.4 (3)
C4—C3—H3119.7C15—C16—H16122.8
C3—C4—C5120.7 (3)C17—C16—H16122.8
C3—C4—H4119.6C18—C17—C16112.8 (3)
C5—C4—H4119.6C18—C17—H17123.6
C4—C5—C6117.6 (3)C16—C17—H17123.6
C4—C5—N1122.9 (3)C17—C18—C19128.1 (3)
C6—C5—N1119.5 (3)C17—C18—S2111.1 (3)
C1—C6—C5120.9 (3)C19—C18—S2120.8 (2)
C1—C6—S1120.4 (3)N2—C19—O1113.1 (3)
C5—C6—S1118.6 (2)N2—C19—C18128.8 (3)
N1—C7—C8112.8 (3)O1—C19—C18118.0 (3)
N1—C7—H7A109.0N3—C20—O1112.7 (3)
C8—C7—H7A109.0N3—C20—C21128.5 (3)
N1—C7—H7B109.0O1—C20—C21118.8 (3)
C8—C7—H7B109.0C22—C21—C20129.4 (3)
H7A—C7—H7B107.8C22—C21—S3111.6 (3)
C7—C8—H8A109.5C20—C21—S3119.0 (2)
C7—C8—H8B109.5C21—C22—C23113.3 (3)
H8A—C8—H8B109.5C21—C22—H22123.4
C7—C8—H8C109.5C23—C22—H22123.4
H8A—C8—H8C109.5C24—C23—C22111.5 (3)
H8B—C8—H8C109.5C24—C23—H23124.2
C10—C9—C14117.6 (3)C22—C23—H23124.2
C10—C9—N1123.4 (3)C23—C24—S3113.5 (3)
C14—C9—N1119.0 (3)C23—C24—Br1127.3 (3)
C11—C10—C9121.1 (3)S3—C24—Br1119.19 (18)
C11—C10—H10119.4C5—N1—C9117.9 (2)
C9—C10—H10119.4C5—N1—C7119.3 (3)
C10—C11—C12121.6 (3)C9—N1—C7118.0 (3)
C10—C11—H11119.2C19—N2—N3106.0 (3)
C12—C11—H11119.2C20—N3—N2106.1 (3)
C11—C12—C13117.6 (3)C19—O1—C20102.1 (2)
C11—C12—C15122.4 (3)C6—S1—C1498.95 (15)
C13—C12—C15120.1 (3)C18—S2—C1591.68 (16)
C14—C13—C12121.1 (3)C24—S3—C2190.13 (16)
C14—C13—H13119.4

Experimental details

Crystal data
Chemical formulaC24H16BrN3OS3
Mr538.49
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.4300 (5), 7.6019 (5), 22.1933 (14)
α, β, γ (°)89.315 (4), 89.170 (4), 64.891 (4)
V3)1134.93 (13)
Z2
Radiation typeMo Kα
µ (mm1)2.11
Crystal size (mm)0.10 × 0.08 × 0.07
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.812, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
11444, 3972, 3138
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.136, 1.06
No. of reflections3972
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.62

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), DIAMOND (Brandenburg, 2004) and SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.

 

Acknowledgements

The authors thank the China Natural Science Foundation (21120102036) and the National Basic Research Program of China (2009CB220009) for financial support.

References

First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChu, S. S. C. & Van der Helm, D. (1975). Acta Cryst. B31, 1179–1183.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHagfeldt, A., Boschloo, G., Sun, L.-C., Kloo, L. & Pettersson, H. (2010). Chem. Rev. 110, 6595–6663.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHan, F., Chi, L.-N., Wu, W.-T., Liang, X.-F., Fu, M.-Y. & Zhao, J.-Z. (2008). J. Photochem. Photobiol. A, 196, 10–23.  Web of Science CrossRef CAS Google Scholar
First citationHdii, F., Reboul, J.-P., Barbe, J., Siri, D. & Pèpe, G. (1998). Acta Cryst. C54, 1151–1152.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKim, S. H., Kim, H. W., Sakong, C., Namgoong, J., Park, S. W., Ko, M. J., Lee, C. H., Lee, W. I. & Kim, J. P. (2011). Org. Lett. 13, 5784–5787.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLai, R. Y., Fabrizio, E. F., Lu, L. D., Jenekhe, S. A. & Bard, A. J. (2001). J. Am. Chem. Soc. 123, 9112–9118.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLai, R. Y., Kong, X. X., Jenekhe, S. A. & Bard, A. J. (2003). J. Am. Chem. Soc. 125, 12631–12639.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, D. M., Hu, R. T., Zhou, W., Sun, P. P., Kan, Y. H., Tian, Y. P., Zhou, H. P., Wu, J. Y., Tao, X. T. & Jiang, M. H. (2009a). Eur. J. Inorg. Chem. pp. 2664–2672.  Web of Science CSD CrossRef Google Scholar
First citationLi, D.-M., Lv, L.-F., Sun, P.-P., Zhou, W., Wang, P., Wu, J.-Y., Kan, Y.-H., Zhou, H.-P. & Tian, Y.-P. (2009b). Dyes Pigm. 83, 180–186.  Web of Science CrossRef CAS Google Scholar
First citationMeng, K., Liu, Y. L., Feng, W. K., Zheng, Q., Zhao, X. J., Wang, S. F. & Gong, Q. H. (2010). J. Photochem. Photobiol. A, 210, 44–47.  Web of Science CrossRef CAS Google Scholar
First citationPan, Y.-Z., Wang, Y.-G., Liu, J.-H. & Sun, L.-C. (2012). Acta Cryst. E68, o649.  CSD CrossRef IUCr Journals Google Scholar
First citationPark, Y., Kim, B., Lee, C., Hyun, A., Jang, S., Lee, J. H., Gal, Y. S., Kim, T. H., Kim, K. S. & Park, J. (2011). J. Phys. Chem. C, 115, 4843–4850.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, T. Y., Tsao, M. H., Chen, F. L., Su, S. G., Chang, C. W., Wang, H. P., Lin, Y. C., Ou-Yang, W. C. & Sun, I. W. (2010). Int. J. Mol. Sci. 11, 329–353.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYu, D.-H., Wang, J.-Q., Kong, L. & Liu, Z. (2011). Acta Cryst. E67, o3344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X.-H., Choi, S. H., Choi, D. H. & Ahn, K. H. (2005). Tetrahedron Lett. 46, 5273–5276.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1383-o1384
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds