metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m543-m544

catena-Poly[[[aqua­[3-(3-hy­dr­oxy­phen­yl)prop-2-enoato]samarium(III)]-bis­­[μ2-3-(3-hy­dr­oxy­phen­yl)prop-2-enoato]] monohydrate]

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: wyh@zjnu.edu.cn

(Received 29 December 2011; accepted 29 March 2012; online 4 April 2012)

The title SmIII compound, {[Sm(C9H7O3)3(H2O)]·H2O}n, was obtained under hydrothermal conditions. Its structure is isotypic with the analogous Eu complex. The latter was reported incorrectly in space group P1 by Yan et al. [J. Mol. Struct. (2008), 891, 298–304]. This was corrected by Marsh [Acta Cryst. B65, 782–783] to P-1. The SmIII ion is nine-coordinated by O atoms from one coordinating water molecule and the remaining ones from the 3-(3-hy­droxy­phen­yl)prop-2-enoatate anions (one bidentate, two bidentate and bridging, two monodentate bridging), leading to a distorted tricapped trigonal–prismatic coordination polyhedron surrounded by solvent water mol­ecules. In the crystal, extensive intermolecular O—H⋯O hydrogen-bonding inter­actions and ππ inter­actions [centroid–centroid separation = 3.9393 (1) Å] lead to the formation of a three-dimensional supra­molecular network.

Related literature

For the isotypic Eu structure, see: Yan et al. (2008[Yan, J., Guo, Y. M., Li, H., Sun, X. P. & Wang, Z. (2008). J. Mol. Struct. 891, 298-304.]) and for the corrected space-group assignment, see: Marsh (2009[Marsh, R. E. (2009). Acta Cryst. B65, 782-783.]). For related structures, see: Niu et al. (2008[Niu, C. Y., Wu, B. L., Zheng, X. F., Zhang, H. Y., Hou, H. W., Niu, Y. Y. & Li, Z. J. (2008). Cryst. Growth Des. 8, 1566-1574.]); Tang et al. (2009[Tang, Z.-W., Fu, J.-D., Jiang, L.-P. & Wen, Y.-H. (2009). Acta Cryst. E65, m979.]); Wang & Feng (2010[Wang, X.-J. & Feng, Y.-L. (2010). Acta Cryst. E66, o1298.]); Xue et al. (2007[Xue, D. X., Lin, Y. Y., Cheng, X. N. & Cheng, X. M. (2007). Cryst. Growth Des. 7, 1332-1336.]); Ye et al. (2005[Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545-565.]).

[Scheme 1]

Experimental

Crystal data
  • [Sm(C9H7O3)3(H2O)]·H2O

  • Mr = 675.82

  • Triclinic, [P \overline 1]

  • a = 7.9411 (1) Å

  • b = 13.0312 (2) Å

  • c = 13.6564 (2) Å

  • α = 97.356 (1)°

  • β = 97.120 (1)°

  • γ = 103.739 (1)°

  • V = 1343.87 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.25 mm−1

  • T = 296 K

  • 0.52 × 0.24 × 0.15 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.53, Tmax = 0.71

  • 17958 measured reflections

  • 4722 independent reflections

  • 4590 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.014

  • wR(F2) = 0.037

  • S = 1.04

  • 4722 reflections

  • 373 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O5i 0.82 (2) 2.02 (2) 2.8183 (18) 163 (2)
O3—H3⋯O8ii 0.91 (2) 1.76 (2) 2.6692 (19) 176 (3)
O6—H6⋯O7iii 0.92 (2) 1.78 (2) 2.7005 (19) 174 (3)
O2W—H2WA⋯O9iv 0.84 (2) 2.15 (2) 2.947 (4) 158 (3)
O1W—H1WB⋯O2Wv 0.83 (2) 1.86 (2) 2.688 (2) 175 (2)
O2W—H2WB⋯O3vi 0.81 (2) 1.98 (2) 2.790 (3) 173 (4)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y, z+1; (iii) x+1, y+1, z; (iv) -x+1, -y+1, -z; (v) -x+1, -y+1, -z+1; (vi) x, y, z-1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

It is well known that metal and appropriate ligand are the keys for construction of metal-organic frameworks. Here we choose 3-hydroxycinnamic acid as a ligand due to its unique ability to form stable chelates in diverse coordination modes. Reserches on the compounds containing metal ions and 3-hydroxycinnamic acid have been reported (Niu et al. (2008); Xue et al.(2007); Ye et al.(2005)). Hererin we report a SmIII compound, Sm(C9H7O3)3(H2O).(H2O), derived from 3-hydroxycinnamic acid (H2L),which is not the first rare-earth complex of this ligand. It is isostructural to the Eu complex, Firstly wrongly in P1 by Yan et al., in 2008, this was then corrected by Marsh to P-1 in 2009.

As is shown in Fig. 1, the structrue contains only one nine-coordinated Sm(III) ions which is coordinated by eight oxygen atoms from carboxylate groups in four 3-hydroxyphenyl anions and one oxygen atom from the water molecule, leading to a distored tricapped trigonal prism structure surrounded by solvent H2O molecule.

In the structure,the 3-hydroxycinnamic acids coordinate via three chelating carboxylate groups and two oxygen atoms of another two carboxylate groups bridging two Sm(III) ions [Sm—O distances in the range of 2.3695 (11) and 2.5861 (11) Å], to form a one-dimensional chain with Sm···Sm 4.0887 (1) Å. Furthermore,the oxygen atom in the coordinated water molecule [Sm—O distance 2.4517 (13) Å] completes the nine-coordinated configuration of Sm. In addition,there are one lattice H2O molecule in the crystal structure. Intermolecular O—H···O and C—H···O hydrogen bonds connect the molecules to form a three-dimensional supramolecular skeleton (Fig. 2).

Related literature top

For the isotypic Eu compound, see: Yan et al. (2008) and for the corrected space-group assignment, see: Marsh (2009). For related structures, see: Niu et al. (2008); Tang et al. (2009); Wang & Feng (2010); Xue et al. (2007); Ye et al. (2005). AUTHOR: scheme cropped at top. Please resend

Experimental top

A mixture of Sm(NO3)3(0.1682 g, 0.5 mmol),3-hydroxycinnamic acid (0.2462 g, 1.5 mmol) and 4,4-bipyridine (0.2343 g, 1.5 mmol) was dissolved in a 16 mL EtOH/H2O(v/v,1:15) and then sealed in a 25 ml stainless steel reactor with a telflon liner and heated at 413 K for 72 h, and then cooled to room temperature over 3 days. Then, the reactor was cooled to room temperature at a speed of 5 degrees per hour. Yellow single crystals of title compound were obtained by slow evaporation of the filtrate over a few days.

Refinement top

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [C—H 0.93 Å Uiso(H) = 1.2Ueq(C)]. Water H atoms were located in different maps and refined with distance restraints of O—H = 0.85 (2) Å and H—H = 1.35 Å, with displacement parameters set at 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x,-y + 1,-z + 1; (ii) -x + 1,-y + 1,-z + 1.]
[Figure 2] Fig. 2. View of the supramolecular network conneted by hydrogen bonds.
catena-Poly[[[aqua[3-(3-hydroxyphenyl)prop-2-enoato]samarium(III)]- bis[µ2-3-(3-hydroxyphenyl)prop-2-enoato]] monohydrate] top
Crystal data top
[Sm(C9H7O3)3(H2O)]·H2OZ = 2
Mr = 675.82F(000) = 674
Triclinic, P1Dx = 1.670 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9411 (1) ÅCell parameters from 9871 reflections
b = 13.0312 (2) Åθ = 1.6–25.0°
c = 13.6564 (2) ŵ = 2.25 mm1
α = 97.356 (1)°T = 296 K
β = 97.120 (1)°Block, yellow
γ = 103.739 (1)°0.52 × 0.24 × 0.15 mm
V = 1343.87 (3) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
4722 independent reflections
Radiation source: fine-focus sealed tube4590 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.53, Tmax = 0.71k = 1515
17958 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.037H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0243P)2 + 0.3656P]
where P = (Fo2 + 2Fc2)/3
4722 reflections(Δ/σ)max = 0.002
373 parametersΔρmax = 0.40 e Å3
10 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Sm(C9H7O3)3(H2O)]·H2Oγ = 103.739 (1)°
Mr = 675.82V = 1343.87 (3) Å3
Triclinic, P1Z = 2
a = 7.9411 (1) ÅMo Kα radiation
b = 13.0312 (2) ŵ = 2.25 mm1
c = 13.6564 (2) ÅT = 296 K
α = 97.356 (1)°0.52 × 0.24 × 0.15 mm
β = 97.120 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
4722 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4590 reflections with I > 2σ(I)
Tmin = 0.53, Tmax = 0.71Rint = 0.016
17958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01410 restraints
wR(F2) = 0.037H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.40 e Å3
4722 reflectionsΔρmin = 0.47 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.231707 (9)0.462033 (5)0.480253 (5)0.01695 (4)
O10.06012 (15)0.55519 (9)0.59671 (8)0.0240 (2)
O1W0.07151 (18)0.32289 (11)0.56401 (11)0.0324 (3)
H1WA0.034 (2)0.318 (2)0.5643 (17)0.049*
H1WB0.109 (3)0.312 (2)0.6205 (14)0.049*
O20.32583 (16)0.54888 (12)0.65526 (9)0.0349 (3)
O2W0.7925 (2)0.70266 (18)0.25319 (14)0.0629 (5)
H2WA0.786 (4)0.7600 (17)0.232 (3)0.094*
H2WB0.697 (3)0.661 (2)0.232 (3)0.094*
O30.4554 (2)0.56809 (15)1.19165 (12)0.0515 (4)
H30.401 (3)0.5246 (19)1.2314 (18)0.062*
O40.51185 (15)0.59885 (9)0.47391 (9)0.0240 (3)
O50.26831 (15)0.64608 (9)0.43899 (10)0.0278 (3)
O61.0331 (2)1.09500 (12)0.39523 (14)0.0506 (4)
H61.080 (3)1.1627 (15)0.382 (2)0.061*
O70.19076 (17)0.29241 (9)0.36232 (9)0.0306 (3)
O80.28389 (16)0.44152 (9)0.30584 (9)0.0259 (3)
O90.3333 (5)0.1288 (2)0.16532 (17)0.1181 (11)
H90.351 (6)0.077 (3)0.215 (3)0.142*
C10.3318 (3)0.59470 (16)1.12695 (14)0.0358 (4)
C20.1850 (3)0.62021 (18)1.15591 (15)0.0437 (5)
H2A0.16720.62181.22210.052*
C30.0638 (3)0.6435 (2)1.08592 (16)0.0479 (6)
H3A0.03460.66181.10560.057*
C40.0877 (3)0.63986 (18)0.98720 (15)0.0401 (5)
H4A0.00390.65410.94060.048*
C50.2359 (3)0.61510 (15)0.95721 (14)0.0313 (4)
C60.3595 (3)0.59493 (16)1.02878 (14)0.0349 (4)
H6A0.46210.58141.01040.042*
C70.2629 (2)0.60020 (16)0.85277 (14)0.0320 (4)
H7A0.37260.59220.84170.038*
C80.1498 (2)0.59684 (16)0.77289 (13)0.0306 (4)
H8A0.04470.61400.78110.037*
C90.1830 (2)0.56691 (14)0.67091 (13)0.0237 (4)
C100.8553 (3)1.07639 (15)0.38269 (15)0.0351 (4)
C110.7683 (3)1.14997 (15)0.35253 (16)0.0406 (5)
H11A0.83151.21600.34110.049*
C120.5879 (3)1.12497 (16)0.33946 (18)0.0457 (5)
H12A0.52991.17490.31960.055*
C130.4906 (3)1.02652 (16)0.35534 (17)0.0395 (5)
H13A0.36861.01040.34540.047*
C140.5770 (3)0.95222 (14)0.38628 (14)0.0305 (4)
C150.7603 (3)0.97840 (14)0.40027 (15)0.0329 (4)
H15A0.81940.92960.42160.040*
C160.4745 (3)0.84864 (14)0.40343 (14)0.0306 (4)
H16A0.35290.83590.39200.037*
C170.5399 (2)0.77163 (14)0.43369 (14)0.0291 (4)
H17A0.66140.78360.44580.035*
C180.4330 (2)0.66875 (13)0.44924 (12)0.0214 (3)
C190.2960 (5)0.0830 (2)0.0827 (2)0.0676 (8)
C200.2780 (5)0.0240 (2)0.0819 (2)0.0729 (9)
H20A0.29050.06810.13830.087*
C210.2415 (5)0.0653 (2)0.0023 (3)0.0786 (10)
H21A0.23080.13770.00360.094*
C220.2202 (4)0.0002 (2)0.0858 (2)0.0643 (8)
H22A0.19260.02940.14220.077*
C230.2398 (3)0.10820 (18)0.08566 (17)0.0436 (5)
C240.2779 (4)0.1496 (2)0.00018 (18)0.0572 (7)
H24A0.29120.22220.00140.069*
C250.2225 (3)0.17526 (16)0.17687 (15)0.0390 (5)
H25A0.17760.13910.22620.047*
C260.2632 (3)0.28090 (15)0.19707 (14)0.0319 (4)
H26A0.30520.31960.14860.038*
C270.2452 (2)0.34016 (14)0.29289 (13)0.0241 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.01437 (6)0.01882 (5)0.01808 (6)0.00429 (3)0.00325 (3)0.00391 (3)
O10.0194 (6)0.0320 (6)0.0198 (6)0.0078 (5)0.0009 (5)0.0018 (5)
O1W0.0274 (7)0.0365 (7)0.0393 (8)0.0103 (6)0.0122 (6)0.0173 (6)
O20.0209 (6)0.0605 (9)0.0234 (6)0.0171 (6)0.0007 (5)0.0023 (6)
O2W0.0519 (11)0.0872 (14)0.0500 (11)0.0134 (10)0.0081 (8)0.0216 (10)
O30.0422 (9)0.0771 (11)0.0373 (8)0.0086 (8)0.0032 (7)0.0328 (8)
O40.0185 (6)0.0208 (6)0.0340 (7)0.0063 (5)0.0027 (5)0.0084 (5)
O50.0190 (6)0.0254 (6)0.0420 (7)0.0076 (5)0.0066 (5)0.0109 (5)
O60.0413 (9)0.0343 (8)0.0739 (12)0.0010 (7)0.0068 (8)0.0225 (8)
O70.0377 (7)0.0244 (6)0.0275 (7)0.0027 (5)0.0086 (6)0.0033 (5)
O80.0275 (6)0.0257 (6)0.0250 (6)0.0059 (5)0.0077 (5)0.0046 (5)
O90.224 (3)0.0984 (18)0.0477 (12)0.057 (2)0.0579 (17)0.0054 (12)
C10.0355 (11)0.0413 (11)0.0270 (10)0.0019 (8)0.0010 (8)0.0113 (8)
C20.0549 (14)0.0517 (13)0.0255 (10)0.0117 (10)0.0127 (10)0.0080 (9)
C30.0507 (14)0.0636 (15)0.0366 (12)0.0248 (11)0.0167 (10)0.0062 (10)
C40.0420 (12)0.0539 (12)0.0298 (10)0.0225 (10)0.0066 (9)0.0067 (9)
C50.0336 (10)0.0350 (10)0.0244 (9)0.0083 (8)0.0038 (8)0.0033 (7)
C60.0297 (10)0.0445 (11)0.0302 (10)0.0073 (8)0.0038 (8)0.0095 (8)
C70.0271 (9)0.0444 (11)0.0255 (9)0.0113 (8)0.0050 (8)0.0039 (8)
C80.0260 (9)0.0455 (11)0.0231 (9)0.0159 (8)0.0047 (8)0.0022 (8)
C90.0225 (9)0.0256 (8)0.0217 (9)0.0056 (7)0.0024 (7)0.0017 (7)
C100.0425 (12)0.0257 (9)0.0333 (10)0.0021 (8)0.0039 (9)0.0059 (8)
C110.0544 (13)0.0226 (9)0.0425 (12)0.0029 (9)0.0067 (10)0.0115 (8)
C120.0588 (15)0.0289 (10)0.0549 (14)0.0175 (10)0.0061 (11)0.0179 (10)
C130.0418 (12)0.0326 (10)0.0466 (12)0.0125 (9)0.0050 (10)0.0121 (9)
C140.0398 (11)0.0236 (9)0.0287 (9)0.0075 (8)0.0070 (8)0.0061 (7)
C150.0391 (11)0.0235 (9)0.0373 (10)0.0069 (8)0.0053 (9)0.0116 (8)
C160.0304 (10)0.0258 (9)0.0370 (10)0.0069 (7)0.0072 (8)0.0089 (8)
C170.0239 (9)0.0256 (9)0.0389 (10)0.0052 (7)0.0087 (8)0.0086 (8)
C180.0215 (9)0.0216 (8)0.0222 (8)0.0068 (6)0.0047 (7)0.0036 (6)
C190.096 (2)0.0696 (18)0.0382 (14)0.0266 (16)0.0186 (14)0.0042 (12)
C200.095 (2)0.0618 (18)0.0569 (18)0.0250 (16)0.0176 (16)0.0221 (14)
C210.116 (3)0.0413 (14)0.074 (2)0.0186 (15)0.0223 (19)0.0111 (14)
C220.091 (2)0.0405 (13)0.0580 (16)0.0123 (13)0.0192 (15)0.0024 (12)
C230.0502 (13)0.0402 (12)0.0371 (12)0.0117 (10)0.0068 (10)0.0057 (9)
C240.086 (2)0.0462 (13)0.0402 (13)0.0215 (13)0.0153 (13)0.0018 (10)
C250.0472 (12)0.0391 (11)0.0306 (10)0.0121 (9)0.0084 (9)0.0021 (8)
C260.0350 (10)0.0364 (10)0.0251 (9)0.0112 (8)0.0072 (8)0.0019 (8)
C270.0175 (8)0.0307 (9)0.0240 (9)0.0070 (7)0.0024 (7)0.0030 (7)
Geometric parameters (Å, º) top
Sm1—O1i2.3695 (11)C5—C61.392 (3)
Sm1—O4ii2.3973 (11)C5—C71.464 (3)
Sm1—O1W2.4517 (13)C6—H6A0.9300
Sm1—O22.4524 (12)C7—C81.313 (3)
Sm1—O82.4598 (12)C7—H7A0.9300
Sm1—O72.4905 (12)C8—C91.470 (2)
Sm1—O52.4919 (12)C8—H8A0.9300
Sm1—O42.5176 (11)C10—C111.382 (3)
Sm1—O12.5861 (11)C10—C151.387 (3)
Sm1—C272.8616 (17)C11—C121.375 (3)
Sm1—C92.8959 (17)C11—H11A0.9300
Sm1—C182.8991 (16)C12—C131.390 (3)
O1—C91.283 (2)C12—H12A0.9300
O1—Sm1i2.3695 (11)C13—C141.391 (3)
O1W—H1WA0.824 (15)C13—H13A0.9300
O1W—H1WB0.834 (16)C14—C151.397 (3)
O2—C91.249 (2)C14—C161.465 (2)
O2W—H2WA0.844 (17)C15—H15A0.9300
O2W—H2WB0.814 (17)C16—C171.322 (3)
O3—C11.374 (3)C16—H16A0.9300
O3—H30.906 (17)C17—C181.463 (2)
O4—C181.278 (2)C17—H17A0.9300
O4—Sm1ii2.3973 (11)C19—C201.369 (4)
O5—C181.256 (2)C19—C241.379 (3)
O6—C101.360 (3)C20—C211.365 (5)
O6—H60.923 (17)C20—H20A0.9300
O7—C271.264 (2)C21—C221.384 (4)
O8—C271.267 (2)C21—H21A0.9300
O9—C191.374 (4)C22—C231.384 (3)
O9—H90.944 (19)C22—H22A0.9300
C1—C21.375 (3)C23—C241.384 (4)
C1—C61.385 (3)C23—C251.468 (3)
C2—C31.385 (3)C24—H24A0.9300
C2—H2A0.9300C25—C261.321 (3)
C3—C41.381 (3)C25—H25A0.9300
C3—H3A0.9300C26—C271.473 (2)
C4—C51.387 (3)C26—H26A0.9300
C4—H4A0.9300
O1i—Sm1—O4ii155.55 (4)C1—C2—H2A120.2
O1i—Sm1—O1W79.70 (5)C3—C2—H2A120.2
O4ii—Sm1—O1W87.34 (4)C4—C3—C2120.7 (2)
O1i—Sm1—O2119.15 (4)C4—C3—H3A119.7
O4ii—Sm1—O278.18 (4)C2—C3—H3A119.7
O1W—Sm1—O279.90 (5)C3—C4—C5120.3 (2)
O1i—Sm1—O882.67 (4)C3—C4—H4A119.9
O4ii—Sm1—O888.82 (4)C5—C4—H4A119.9
O1W—Sm1—O8126.86 (4)C4—C5—C6118.54 (18)
O2—Sm1—O8150.00 (4)C4—C5—C7123.46 (18)
O1i—Sm1—O781.62 (4)C6—C5—C7117.80 (17)
O4ii—Sm1—O775.09 (4)C1—C6—C5120.92 (19)
O1W—Sm1—O775.65 (4)C1—C6—H6A119.5
O2—Sm1—O7144.28 (5)C5—C6—H6A119.5
O8—Sm1—O752.30 (4)C8—C7—C5127.42 (18)
O1i—Sm1—O581.25 (4)C8—C7—H7A116.3
O4ii—Sm1—O5119.02 (4)C5—C7—H7A116.3
O1W—Sm1—O5147.03 (4)C7—C8—C9122.50 (17)
O2—Sm1—O586.30 (5)C7—C8—H8A118.8
O8—Sm1—O576.50 (4)C9—C8—H8A118.8
O7—Sm1—O5127.52 (4)O2—C9—O1119.34 (15)
O1i—Sm1—O4130.35 (4)O2—C9—C8121.45 (16)
O4ii—Sm1—O467.43 (4)O1—C9—C8119.16 (15)
O1W—Sm1—O4148.72 (4)O2—C9—Sm157.08 (9)
O2—Sm1—O477.13 (4)O1—C9—Sm163.25 (8)
O8—Sm1—O472.92 (4)C8—C9—Sm1167.72 (13)
O7—Sm1—O4112.86 (4)O6—C10—C11122.73 (17)
O5—Sm1—O451.62 (4)O6—C10—C15117.38 (19)
O1i—Sm1—O167.98 (4)C11—C10—C15119.9 (2)
O4ii—Sm1—O1128.01 (4)C12—C11—C10119.62 (18)
O1W—Sm1—O173.82 (4)C12—C11—H11A120.2
O2—Sm1—O151.34 (4)C10—C11—H11A120.2
O8—Sm1—O1140.98 (4)C11—C12—C13121.2 (2)
O7—Sm1—O1139.96 (4)C11—C12—H12A119.4
O5—Sm1—O174.17 (4)C13—C12—H12A119.4
O4—Sm1—O1106.71 (4)C12—C13—C14119.5 (2)
O1i—Sm1—C2782.20 (4)C12—C13—H13A120.2
O4ii—Sm1—C2780.18 (5)C14—C13—H13A120.2
O1W—Sm1—C27101.49 (5)C13—C14—C15118.97 (18)
O2—Sm1—C27158.23 (5)C13—C14—C16119.57 (18)
O8—Sm1—C2726.17 (5)C15—C14—C16121.46 (17)
O7—Sm1—C2726.16 (5)C10—C15—C14120.72 (19)
O5—Sm1—C27102.28 (5)C10—C15—H15A119.6
O4—Sm1—C2792.42 (4)C14—C15—H15A119.6
O1—Sm1—C27150.18 (4)C17—C16—C14125.68 (18)
O1i—Sm1—C993.84 (4)C17—C16—H16A117.2
O4ii—Sm1—C9102.04 (5)C14—C16—H16A117.2
O1W—Sm1—C972.73 (5)C16—C17—C18124.04 (17)
O2—Sm1—C925.32 (5)C16—C17—H17A118.0
O8—Sm1—C9158.51 (5)C18—C17—H17A118.0
O7—Sm1—C9148.35 (4)O5—C18—O4118.84 (15)
O5—Sm1—C982.02 (5)O5—C18—C17123.16 (16)
O4—Sm1—C994.00 (4)O4—C18—C17118.00 (15)
O1—Sm1—C926.30 (4)O5—C18—Sm158.79 (8)
C27—Sm1—C9173.57 (5)O4—C18—Sm160.05 (8)
O1i—Sm1—C18105.70 (4)C17—C18—Sm1178.01 (12)
O4ii—Sm1—C1893.51 (4)C20—C19—O9121.7 (2)
O1W—Sm1—C18160.17 (5)C20—C19—C24121.1 (3)
O2—Sm1—C1880.89 (5)O9—C19—C24117.2 (3)
O8—Sm1—C1872.97 (4)C21—C20—C19119.3 (2)
O7—Sm1—C18123.71 (4)C21—C20—H20A120.3
O5—Sm1—C1825.53 (4)C19—C20—H20A120.3
O4—Sm1—C1826.09 (4)C20—C21—C22120.5 (3)
O1—Sm1—C1890.30 (4)C20—C21—H21A119.7
C27—Sm1—C1898.18 (5)C22—C21—H21A119.7
C9—Sm1—C1887.75 (5)C23—C22—C21120.3 (3)
C9—O1—Sm1i155.04 (11)C23—C22—H22A119.9
C9—O1—Sm190.44 (9)C21—C22—H22A119.9
Sm1i—O1—Sm1112.02 (4)C22—C23—C24118.8 (2)
Sm1—O1W—H1WA117.4 (17)C22—C23—C25118.7 (2)
Sm1—O1W—H1WB123.4 (17)C24—C23—C25122.5 (2)
H1WA—O1W—H1WB104.8 (19)C19—C24—C23119.9 (3)
C9—O2—Sm197.61 (10)C19—C24—H24A120.0
H2WA—O2W—H2WB105 (2)C23—C24—H24A120.0
C1—O3—H3109.8 (18)C26—C25—C23127.6 (2)
C18—O4—Sm1ii153.49 (10)C26—C25—H25A116.2
C18—O4—Sm193.86 (9)C23—C25—H25A116.2
Sm1ii—O4—Sm1112.57 (4)C25—C26—C27123.00 (19)
C18—O5—Sm195.67 (10)C25—C26—H26A118.5
C10—O6—H6108.7 (17)C27—C26—H26A118.5
C27—O7—Sm193.54 (10)O7—C27—O8119.10 (15)
C27—O8—Sm194.92 (10)O7—C27—C26121.68 (16)
C19—O9—H9109 (3)O8—C27—C26119.22 (16)
O3—C1—C2122.80 (18)O7—C27—Sm160.30 (9)
O3—C1—C6117.30 (19)O8—C27—Sm158.92 (8)
C2—C1—C6119.90 (19)C26—C27—Sm1176.60 (13)
C1—C2—C3119.56 (19)
O1i—Sm1—O1—C9168.85 (12)O1i—Sm1—C9—O2178.87 (11)
O4ii—Sm1—O1—C910.38 (11)O4ii—Sm1—C9—O219.83 (12)
O1W—Sm1—O1—C983.64 (10)O1W—Sm1—C9—O2103.17 (12)
O2—Sm1—O1—C96.26 (10)O8—Sm1—C9—O299.16 (16)
O8—Sm1—O1—C9147.01 (10)O7—Sm1—C9—O2100.89 (13)
O7—Sm1—O1—C9125.36 (10)O5—Sm1—C9—O298.27 (11)
O5—Sm1—O1—C9104.36 (10)O4—Sm1—C9—O247.93 (12)
O4—Sm1—O1—C963.72 (10)O1—Sm1—C9—O2168.52 (18)
C27—Sm1—O1—C9168.52 (10)C18—Sm1—C9—O273.28 (12)
C18—Sm1—O1—C984.31 (10)O1i—Sm1—C9—O110.35 (11)
O1i—Sm1—O1—Sm1i0.0O4ii—Sm1—C9—O1171.66 (9)
O4ii—Sm1—O1—Sm1i158.47 (4)O1W—Sm1—C9—O188.32 (10)
O1W—Sm1—O1—Sm1i85.21 (6)O2—Sm1—C9—O1168.52 (17)
O2—Sm1—O1—Sm1i175.11 (8)O8—Sm1—C9—O169.36 (16)
O8—Sm1—O1—Sm1i44.14 (8)O7—Sm1—C9—O190.60 (13)
O7—Sm1—O1—Sm1i43.49 (8)O5—Sm1—C9—O170.24 (9)
O5—Sm1—O1—Sm1i86.80 (5)O4—Sm1—C9—O1120.58 (9)
O4—Sm1—O1—Sm1i127.43 (5)C18—Sm1—C9—O195.23 (10)
C27—Sm1—O1—Sm1i0.32 (11)O1i—Sm1—C9—C894.1 (6)
C9—Sm1—O1—Sm1i168.85 (12)O4ii—Sm1—C9—C867.2 (6)
C18—Sm1—O1—Sm1i106.84 (5)O1W—Sm1—C9—C816.2 (6)
O1i—Sm1—O2—C91.29 (13)O2—Sm1—C9—C887.0 (6)
O4ii—Sm1—O2—C9160.19 (12)O8—Sm1—C9—C8173.9 (5)
O1W—Sm1—O2—C970.81 (11)O7—Sm1—C9—C813.9 (6)
O8—Sm1—O2—C9133.68 (11)O5—Sm1—C9—C8174.7 (6)
O7—Sm1—O2—C9118.04 (12)O4—Sm1—C9—C8134.9 (6)
O5—Sm1—O2—C979.13 (11)O1—Sm1—C9—C8104.5 (6)
O4—Sm1—O2—C9130.57 (12)C18—Sm1—C9—C8160.3 (6)
O1—Sm1—O2—C96.49 (10)O6—C10—C11—C12178.7 (2)
C27—Sm1—O2—C9166.51 (12)C15—C10—C11—C120.5 (3)
C18—Sm1—O2—C9104.25 (12)C10—C11—C12—C130.5 (3)
O1i—Sm1—O4—C1821.91 (11)C11—C12—C13—C140.8 (3)
O4ii—Sm1—O4—C18177.95 (12)C12—C13—C14—C150.3 (3)
O1W—Sm1—O4—C18139.30 (10)C12—C13—C14—C16179.75 (19)
O2—Sm1—O4—C1895.58 (10)O6—C10—C15—C14178.21 (18)
O8—Sm1—O4—C1886.05 (10)C11—C10—C15—C141.1 (3)
O7—Sm1—O4—C18120.58 (9)C13—C14—C15—C100.7 (3)
O5—Sm1—O4—C180.04 (9)C16—C14—C15—C10179.31 (18)
O1—Sm1—O4—C1853.10 (10)C13—C14—C16—C17179.3 (2)
C27—Sm1—O4—C18103.73 (10)C15—C14—C16—C170.7 (3)
C9—Sm1—O4—C1876.57 (10)C14—C16—C17—C18179.51 (17)
O1i—Sm1—O4—Sm1ii160.13 (4)Sm1—O5—C18—O40.08 (16)
O4ii—Sm1—O4—Sm1ii0.0Sm1—O5—C18—C17179.55 (15)
O1W—Sm1—O4—Sm1ii38.66 (10)Sm1ii—O4—C18—O5175.69 (16)
O2—Sm1—O4—Sm1ii82.38 (5)Sm1—O4—C18—O50.08 (16)
O8—Sm1—O4—Sm1ii96.00 (5)Sm1ii—O4—C18—C174.7 (3)
O7—Sm1—O4—Sm1ii61.47 (6)Sm1—O4—C18—C17179.57 (13)
O5—Sm1—O4—Sm1ii177.91 (7)Sm1ii—O4—C18—Sm1175.8 (3)
O1—Sm1—O4—Sm1ii124.86 (5)C16—C17—C18—O53.0 (3)
C27—Sm1—O4—Sm1ii78.32 (6)C16—C17—C18—O4176.63 (17)
C9—Sm1—O4—Sm1ii101.38 (6)O1i—Sm1—C18—O517.26 (11)
C18—Sm1—O4—Sm1ii177.95 (12)O4ii—Sm1—C18—O5178.03 (10)
O1i—Sm1—O5—C18163.20 (10)O1W—Sm1—C18—O586.14 (17)
O4ii—Sm1—O5—C182.25 (11)O2—Sm1—C18—O5100.60 (10)
O1W—Sm1—O5—C18141.53 (11)O8—Sm1—C18—O594.28 (10)
O2—Sm1—O5—C1876.54 (10)O7—Sm1—C18—O5107.58 (10)
O8—Sm1—O5—C1878.70 (10)O4—Sm1—C18—O5179.92 (16)
O7—Sm1—O5—C1890.91 (11)O1—Sm1—C18—O549.91 (10)
O4—Sm1—O5—C180.04 (9)C27—Sm1—C18—O5101.40 (10)
O1—Sm1—O5—C18127.32 (10)C9—Sm1—C18—O576.10 (10)
C27—Sm1—O5—C1883.23 (10)O1i—Sm1—C18—O4162.82 (9)
C9—Sm1—O5—C18101.64 (10)O4ii—Sm1—C18—O41.89 (11)
O1i—Sm1—O7—C2789.35 (11)O1W—Sm1—C18—O493.79 (16)
O4ii—Sm1—O7—C2798.15 (11)O2—Sm1—C18—O479.32 (9)
O1W—Sm1—O7—C27170.79 (11)O8—Sm1—C18—O485.80 (9)
O2—Sm1—O7—C27140.97 (10)O7—Sm1—C18—O472.50 (10)
O8—Sm1—O7—C272.16 (9)O5—Sm1—C18—O4179.92 (16)
O5—Sm1—O7—C2717.23 (12)O1—Sm1—C18—O4130.01 (9)
O4—Sm1—O7—C2741.05 (11)C27—Sm1—C18—O478.68 (10)
O1—Sm1—O7—C27129.50 (10)C9—Sm1—C18—O4103.82 (10)
C9—Sm1—O7—C27173.03 (10)C24—C19—C20—C210.0 (6)
C18—Sm1—O7—C2713.98 (12)C19—C20—C21—C220.9 (6)
O1i—Sm1—O8—C2787.21 (10)C20—C21—C22—C231.5 (6)
O4ii—Sm1—O8—C2769.81 (10)C21—C22—C23—C241.1 (5)
O1W—Sm1—O8—C2715.98 (12)C21—C22—C23—C25177.8 (3)
O2—Sm1—O8—C27133.36 (11)C20—C19—C24—C230.4 (5)
O7—Sm1—O8—C272.16 (9)O9—C19—C24—C23179.8 (3)
O5—Sm1—O8—C27169.92 (10)C22—C23—C24—C190.2 (5)
O4—Sm1—O8—C27136.53 (10)C25—C23—C24—C19178.7 (3)
O1—Sm1—O8—C27127.82 (10)C22—C23—C25—C26168.4 (3)
C9—Sm1—O8—C27169.02 (11)C24—C23—C25—C2610.5 (4)
C18—Sm1—O8—C27163.84 (11)C23—C25—C26—C27178.1 (2)
O3—C1—C2—C3178.3 (2)Sm1—O7—C27—O83.80 (17)
C6—C1—C2—C31.5 (3)Sm1—O7—C27—C26176.78 (15)
C1—C2—C3—C40.9 (4)Sm1—O8—C27—O73.86 (17)
C2—C3—C4—C51.5 (4)Sm1—O8—C27—C26176.71 (14)
C3—C4—C5—C60.4 (3)C25—C26—C27—O70.8 (3)
C3—C4—C5—C7174.3 (2)C25—C26—C27—O8178.66 (19)
O3—C1—C6—C5176.38 (18)O1i—Sm1—C27—O786.87 (10)
C2—C1—C6—C53.5 (3)O4ii—Sm1—C27—O776.12 (10)
C4—C5—C6—C12.9 (3)O1W—Sm1—C27—O79.11 (11)
C7—C5—C6—C1172.11 (18)O2—Sm1—C27—O782.40 (16)
C4—C5—C7—C87.3 (3)O8—Sm1—C27—O7176.12 (17)
C6—C5—C7—C8167.4 (2)O5—Sm1—C27—O7166.09 (10)
C5—C7—C8—C9171.47 (18)O4—Sm1—C27—O7142.72 (10)
Sm1—O2—C9—O111.77 (18)O1—Sm1—C27—O786.56 (14)
Sm1—O2—C9—C8165.59 (15)C18—Sm1—C27—O7168.29 (10)
Sm1i—O1—C9—O2165.90 (18)O1i—Sm1—C27—O889.25 (10)
Sm1—O1—C9—O211.05 (17)O4ii—Sm1—C27—O8107.76 (10)
Sm1i—O1—C9—C811.5 (4)O1W—Sm1—C27—O8167.01 (10)
Sm1—O1—C9—C8166.37 (15)O2—Sm1—C27—O8101.48 (16)
Sm1i—O1—C9—Sm1154.8 (3)O7—Sm1—C27—O8176.12 (17)
C7—C8—C9—O24.1 (3)O5—Sm1—C27—O810.03 (10)
C7—C8—C9—O1173.30 (18)O4—Sm1—C27—O841.16 (10)
C7—C8—C9—Sm175.2 (6)O1—Sm1—C27—O889.55 (12)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5i0.82 (2)2.02 (2)2.8183 (18)163 (2)
O3—H3···O8iii0.91 (2)1.76 (2)2.6692 (19)176 (3)
O6—H6···O7iv0.92 (2)1.78 (2)2.7005 (19)174 (3)
O2W—H2WA···O9v0.84 (2)2.15 (2)2.947 (4)158 (3)
O1W—H1WB···O2Wii0.83 (2)1.86 (2)2.688 (2)175 (2)
O2W—H2WB···O3vi0.81 (2)1.98 (2)2.790 (3)173 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y+1, z; (v) x+1, y+1, z; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula[Sm(C9H7O3)3(H2O)]·H2O
Mr675.82
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.9411 (1), 13.0312 (2), 13.6564 (2)
α, β, γ (°)97.356 (1), 97.120 (1), 103.739 (1)
V3)1343.87 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.25
Crystal size (mm)0.52 × 0.24 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.53, 0.71
No. of measured, independent and
observed [I > 2σ(I)] reflections
17958, 4722, 4590
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.037, 1.04
No. of reflections4722
No. of parameters373
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.47

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5i0.824 (15)2.022 (16)2.8183 (18)163 (2)
O3—H3···O8ii0.906 (17)1.764 (17)2.6692 (19)176 (3)
O6—H6···O7iii0.923 (17)1.781 (17)2.7005 (19)174 (3)
O2W—H2WA···O9iv0.844 (17)2.15 (2)2.947 (4)158 (3)
O1W—H1WB···O2Wv0.834 (16)1.856 (16)2.688 (2)175 (2)
O2W—H2WB···O3vi0.814 (17)1.980 (18)2.790 (3)173 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z; (iv) x+1, y+1, z; (v) x+1, y+1, z+1; (vi) x, y, z1.
 

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMarsh, R. E. (2009). Acta Cryst. B65, 782–783.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNiu, C. Y., Wu, B. L., Zheng, X. F., Zhang, H. Y., Hou, H. W., Niu, Y. Y. & Li, Z. J. (2008). Cryst. Growth Des. 8, 1566–1574.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Z.-W., Fu, J.-D., Jiang, L.-P. & Wen, Y.-H. (2009). Acta Cryst. E65, m979.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, X.-J. & Feng, Y.-L. (2010). Acta Cryst. E66, o1298.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXue, D. X., Lin, Y. Y., Cheng, X. N. & Cheng, X. M. (2007). Cryst. Growth Des. 7, 1332–1336.  Web of Science CSD CrossRef CAS Google Scholar
First citationYan, J., Guo, Y. M., Li, H., Sun, X. P. & Wang, Z. (2008). J. Mol. Struct. 891, 298–304.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545–565.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m543-m544
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds