organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1427

(E)-2,4,6-Tri­methyl-N-(pyridin-2-yl­methyl­­idene)aniline

aDepartment of Chemistry, Harbin Institute of Technology, Harbin 150001, People's Republic of China
*Correspondence e-mail: fanruiqing@hit.edu.cn

(Received 14 March 2012; accepted 12 April 2012; online 18 April 2012)

In the title compound, C15H16N2, has an E conformation about the central N=C bond. The benzene and pyridine rings are almost normal to one another with a dihedral angle of 87.47(8)°. In the crystal, there are no classical hydrogen bonds.

Related literature

For C—N bond forming reactions, see: Alonso-Moreno et al. (2009[Alonso-Moreno, C., Carrillo-Hermosilla, F., Romero-Fernández, J., Rodríguez, A. M., Otero, A. & Antiñolo, A. (2009). Adv. Synth. Catal. 351, 881-890.]); Qiu et al. (2009[Qiu, C. J., Zhang, Y. C., Gao, Y. & Zhao, J. Q. (2009). J. Organomet. Chem. 694, 3418-3424.]). For imino C=N bonds in a related structure, see: Nienkemper et al. (2006[Nienkemper, K., Kotov, V. V., Kehr, G., Erker, G. & Fröhlich, R. (2006). Eur. J. Inorg. Chem. pp. 366-379.]). For the preparation of related compounds, see: Bianchini et al. (2001[Bianchini, C., Lee, H. M., Mantovani, G., Meli, A. & Oberhauser, W. (2001). New J. Chem. 26, 387-397.]); Fan et al. (2009[Fan, R. Q., Yang, Y. L., Yin, Y. B., Hasi, W. L. J. & Mu, Y. (2009). Inorg. Chem. 48, 6034-6043.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N2

  • Mr = 224.30

  • Monoclinic, P 21 /c

  • a = 8.2490 (16) Å

  • b = 16.136 (3) Å

  • c = 10.150 (2) Å

  • β = 104.76 (3)°

  • V = 1306.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.36 × 0.34 × 0.29 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.981

  • 12591 measured reflections

  • 2982 independent reflections

  • 1952 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.200

  • S = 1.03

  • 2982 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXP97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

C—N bond forming reactions are of considerable interest in both synthetic organic due to the importance of amines and their derivatives in almost all areas of chemistry (Alonso-Moreno et al., 2009, Qiu et al., 2009). It is still challenging to design and rationally synthesize ligand with unique structures and functions. For this regard, we reported the crystal structure of compound (I). The molecular structure of (I) is shown in Fig. 1 and selected bond distances are given in Table 1. The imino C==N bonds have typical double-bond characteristic with bond lengths of 1.240 (2), which are similar to that in (2,6-diisopropylphenyl)[1-(pyridin-2-yl)ethylidene]amine, 1.280 (2) Å (Nienkemper et al., 2006). The compound (I) possesses a structure with approximate P21/c symmetry. The dihedral angles between 2,4,6- trimethyl-substituted phenyl rings and the pyridine ring are 87.5° respectively.

Related literature top

For C—N bond forming reactions, see: Alonso-Moreno et al. (2009); Qiu et al. (2009). For imino CN bonds in a related structure, see: Nienkemper et al. (2006). For the preparation of related compounds, see: Bianchini et al. (2001); Fan et al. (2009).

Experimental top

The Schiff base was prepared according to the literature methods for analogous compounds (Fan et al., 2009, Bianchini et al., 2002). Pyridine-2-carboxaldehyde (1.69 g, 15.8 mmol) and 2,4,6-trimethyaniline (2.13 g, 15.7 mmol) were dissolved in 20 ml of methanol containing a few drops of formic acid and the resulting mixture was heated at reflux temperature for 4 h. Partial evaporation of solvent under reduced pressure gave yellow soild.Yellow block crystals suitable for X-ray diffraction analysis were obtained by recrystallization from n-hexane,and the specific method was that a solution of yellow soild in 15 ml of n-hexane was heated at 338 K and then allowed to cool down to room temperature.Yield:76% (2.68 g).

Refinement top

The C-bound H atoms were positioned geometrically with C—H = 0.93–0.96 Å, and allowed to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C) for CH2 groups, and 1.5 Ueq(C) for CH3 groups.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXP97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of (I) along c axis direction.
(E)-2,4,6-Trimethyl-N-(pyridin-2-ylmethylidene)aniline top
Crystal data top
C15H16N2F(000) = 480
Mr = 224.30Dx = 1.140 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12591 reflections
a = 8.2490 (16) Åθ = 3.1–27.5°
b = 16.136 (3) ŵ = 0.07 mm1
c = 10.150 (2) ÅT = 293 K
β = 104.76 (3)°Block, colorless
V = 1306.4 (4) Å30.36 × 0.34 × 0.29 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2982 independent reflections
Radiation source: fine-focus sealed tube1952 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
phi and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.976, Tmax = 0.981k = 2020
12591 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.200H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1315P)2]
where P = (Fo2 + 2Fc2)/3
2982 reflections(Δ/σ)max = 0.017
154 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H16N2V = 1306.4 (4) Å3
Mr = 224.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2490 (16) ŵ = 0.07 mm1
b = 16.136 (3) ÅT = 293 K
c = 10.150 (2) Å0.36 × 0.34 × 0.29 mm
β = 104.76 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2982 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1952 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.981Rint = 0.044
12591 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.200H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
2982 reflectionsΔρmin = 0.22 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.08242 (19)0.04738 (10)0.77519 (15)0.0748 (5)
N20.20612 (16)0.11712 (9)0.82639 (12)0.0612 (4)
C10.02245 (18)0.02378 (10)0.74182 (15)0.0559 (4)
C20.0893 (2)0.06280 (13)0.61937 (16)0.0714 (5)
H2A0.04600.11310.59930.086*
C30.2097 (2)0.08143 (14)0.6828 (2)0.0830 (6)
H3A0.25150.13180.70420.100*
C40.2827 (2)0.04703 (15)0.55889 (18)0.0816 (6)
H4A0.37180.07310.49830.098*
C50.2218 (3)0.02585 (16)0.52670 (19)0.0854 (6)
H5A0.26860.05090.44310.102*
C60.12079 (18)0.05750 (10)0.84678 (15)0.0572 (4)
H6A0.14830.03280.93240.069*
C70.34417 (17)0.14354 (9)0.93500 (15)0.0529 (4)
C80.50580 (18)0.11695 (10)0.93612 (15)0.0561 (4)
C90.63854 (18)0.14503 (10)1.04089 (16)0.0598 (4)
H9A0.74650.12741.04300.072*
C100.61645 (18)0.19772 (10)1.14131 (17)0.0600 (4)
C110.45476 (19)0.22368 (11)1.13626 (16)0.0611 (4)
H11A0.43790.25951.20330.073*
C120.31661 (18)0.19793 (10)1.03427 (15)0.0556 (4)
C130.5355 (2)0.05931 (13)0.82917 (18)0.0760 (5)
H13A0.65320.04790.84620.114*
H13B0.49640.08460.74110.114*
H13C0.47580.00850.83160.114*
C140.7641 (2)0.22552 (14)1.2553 (2)0.0844 (6)
H14A0.86540.20171.24220.127*
H14B0.74790.20761.34130.127*
H14C0.77230.28491.25460.127*
C150.1431 (2)0.22807 (13)1.0332 (2)0.0755 (6)
H15A0.14940.26421.10940.113*
H15B0.07300.18151.03930.113*
H15C0.09650.25770.95010.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0668 (9)0.0740 (10)0.0716 (9)0.0142 (7)0.0044 (7)0.0011 (7)
N20.0550 (7)0.0706 (9)0.0494 (7)0.0078 (6)0.0024 (6)0.0029 (6)
C10.0461 (7)0.0634 (9)0.0540 (8)0.0000 (6)0.0050 (6)0.0066 (7)
C20.0625 (9)0.0853 (13)0.0584 (9)0.0121 (8)0.0006 (8)0.0021 (8)
C30.0724 (11)0.0809 (13)0.0839 (13)0.0218 (9)0.0016 (10)0.0076 (10)
C40.0599 (10)0.1080 (16)0.0677 (11)0.0180 (10)0.0007 (9)0.0236 (11)
C50.0723 (12)0.1173 (17)0.0541 (9)0.0139 (11)0.0067 (8)0.0006 (10)
C60.0515 (8)0.0627 (9)0.0499 (7)0.0020 (7)0.0008 (6)0.0013 (7)
C70.0489 (7)0.0565 (9)0.0470 (7)0.0056 (6)0.0006 (6)0.0057 (6)
C80.0537 (8)0.0609 (9)0.0506 (8)0.0007 (7)0.0077 (6)0.0032 (6)
C90.0429 (7)0.0695 (10)0.0631 (9)0.0015 (6)0.0062 (7)0.0033 (7)
C100.0473 (8)0.0654 (10)0.0600 (9)0.0091 (7)0.0001 (7)0.0011 (7)
C110.0556 (8)0.0634 (10)0.0593 (8)0.0052 (7)0.0055 (7)0.0090 (7)
C120.0463 (7)0.0590 (9)0.0564 (8)0.0009 (6)0.0038 (6)0.0015 (7)
C130.0742 (11)0.0847 (13)0.0654 (10)0.0051 (9)0.0113 (9)0.0099 (9)
C140.0577 (10)0.0992 (15)0.0829 (12)0.0133 (9)0.0066 (9)0.0186 (11)
C150.0522 (9)0.0831 (12)0.0836 (12)0.0113 (8)0.0035 (8)0.0091 (10)
Geometric parameters (Å, º) top
N1—C11.328 (2)C8—C131.496 (2)
N1—C31.335 (2)C9—C101.375 (2)
N2—C61.240 (2)C9—H9A0.9300
N2—C71.4333 (18)C10—C111.386 (2)
C1—C21.377 (2)C10—C141.518 (2)
C1—C61.478 (2)C11—C121.393 (2)
C2—C51.383 (2)C11—H11A0.9300
C2—H2A0.9300C12—C151.509 (2)
C3—C41.366 (3)C13—H13A0.9600
C3—H3A0.9300C13—H13B0.9600
C4—C51.351 (3)C13—H13C0.9600
C4—H4A0.9300C14—H14A0.9600
C5—H5A0.9300C14—H14B0.9600
C6—H6A0.9300C14—H14C0.9600
C7—C121.398 (2)C15—H15A0.9600
C7—C81.398 (2)C15—H15B0.9600
C8—C91.394 (2)C15—H15C0.9600
C1—N1—C3117.01 (15)C8—C9—H9A118.7
C6—N2—C7118.42 (13)C9—C10—C11117.87 (14)
N1—C1—C2122.42 (15)C9—C10—C14121.05 (15)
N1—C1—C6114.57 (13)C11—C10—C14121.08 (17)
C2—C1—C6123.01 (16)C10—C11—C12122.30 (16)
C1—C2—C5118.83 (19)C10—C11—H11A118.8
C1—C2—H2A120.6C12—C11—H11A118.8
C5—C2—H2A120.6C11—C12—C7118.05 (14)
N1—C3—C4124.2 (2)C11—C12—C15120.26 (16)
N1—C3—H3A117.9C7—C12—C15121.68 (14)
C4—C3—H3A117.9C8—C13—H13A109.5
C5—C4—C3118.21 (16)C8—C13—H13B109.5
C5—C4—H4A120.9H13A—C13—H13B109.5
C3—C4—H4A120.9C8—C13—H13C109.5
C4—C5—C2119.27 (17)H13A—C13—H13C109.5
C4—C5—H5A120.4H13B—C13—H13C109.5
C2—C5—H5A120.4C10—C14—H14A109.5
N2—C6—C1123.27 (14)C10—C14—H14B109.5
N2—C6—H6A118.4H14A—C14—H14B109.5
C1—C6—H6A118.4C10—C14—H14C109.5
C12—C7—C8121.12 (13)H14A—C14—H14C109.5
C12—C7—N2119.87 (13)H14B—C14—H14C109.5
C8—C7—N2118.96 (14)C12—C15—H15A109.5
C9—C8—C7117.96 (15)C12—C15—H15B109.5
C9—C8—C13120.92 (14)H15A—C15—H15B109.5
C7—C8—C13121.12 (14)C12—C15—H15C109.5
C10—C9—C8122.69 (14)H15A—C15—H15C109.5
C10—C9—H9A118.7H15B—C15—H15C109.5

Experimental details

Crystal data
Chemical formulaC15H16N2
Mr224.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.2490 (16), 16.136 (3), 10.150 (2)
β (°) 104.76 (3)
V3)1306.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.36 × 0.34 × 0.29
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.976, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
12591, 2982, 1952
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.200, 1.03
No. of reflections2982
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXP97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant Nos. 20971031, 21071035 and 21171044), the China Postdoctoral Science Foundation Funded Project (No. 65204) and the Key Natural Science Foundation of the Heilongjiang Province, China (No. ZD201009).

References

First citationAlonso-Moreno, C., Carrillo-Hermosilla, F., Romero-Fernández, J., Rodríguez, A. M., Otero, A. & Antiñolo, A. (2009). Adv. Synth. Catal. 351, 881–890.  CAS Google Scholar
First citationBianchini, C., Lee, H. M., Mantovani, G., Meli, A. & Oberhauser, W. (2001). New J. Chem. 26, 387–397.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, R. Q., Yang, Y. L., Yin, Y. B., Hasi, W. L. J. & Mu, Y. (2009). Inorg. Chem. 48, 6034–6043.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNienkemper, K., Kotov, V. V., Kehr, G., Erker, G. & Fröhlich, R. (2006). Eur. J. Inorg. Chem. pp. 366–379.  Web of Science CSD CrossRef Google Scholar
First citationQiu, C. J., Zhang, Y. C., Gao, Y. & Zhao, J. Q. (2009). J. Organomet. Chem. 694, 3418–3424.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1427
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds