organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1280-o1281

3-Methyl-1-phenyl-4-[(phen­yl)(2-phenyl­hydrazin-1-yl)meth­yl­idene]-1H-pyrazol-5(4H)-one

aUniversity of Fort Hare, Department of Chemistry, Private Bag X1314, Alice 5700, South Africa, and bNelson Mandela Metropolitan University, Department of Chemistry, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: idemudiaog@yahoo.com

(Received 15 March 2012; accepted 28 March 2012; online 4 April 2012)

The title compound, C23H20N4O, is a heterocyclic phenyl­hydrazone Schiff base with a pyrazole moiety. In the crystal, a variety of inter­actions occur, including N—H⋯π and ππ stacking between the phenyl ring of the phenyl­hydrazinyl group and its symmetry-generated equivalent [centroid–centroid distance = 3.6512 (7) Å].

Related literature

For related structures, see: Zhu et al. (2010[Zhu, H., Wei, Z., Bu, L., Xu, X. & Shi, J. (2010). Acta Cryst. E66, m904.], 2011[Zhu, H., Ban, L., Zhang, P., Zhao, X. & Ren, J. (2011). Acta Cryst. E67, o476-o477.]); Goh et al. (2009[Goh, J. H., Fun, H.-K., Nithinchandra,, Rai, N. S. & Kalluraya, B. (2009). Acta Cryst. E65, o3099-o3100.]). For general background to pyrazolo­nes and their applications, see: Yang et al. (2000[Yang, Z. Y., Yang, R. D., Li, F. S. & Yu, K. B. (2000). Polyhedron, 19, 2599-2604.]); Konstanti­novic et al. (2008[Konstantinovic, S. S., Kapor, A., Radovanovic, B. C. & Deak, A. (2008). CI&CEQ, 14, 27-34.]); Joshi et al. (2011[Joshi, K. T., Pancholi, A. M., Pandya, K. S. & Thakar, A. S. (2011). J. Chem. Pharm. Res. 3, 741-749.]); Turan-Zitouni et al. (2000[Turan-Zitouni, G., Chevallet, P., Kiliç, F. S. & Erol, K. (2000). Eur. J. Med. Chem. 35, 635-641.]). For the biological activities of hydrazone Schiff bases, see: Yadav et al. (2010[Yadav, J., Pandeya, S. N., Nath, G. & Singh, S. P. (2010). J. Chem. Pharm. Res. 2, 558-563.]); Ozdemir et al. (2008[Ozdemir, A., Turan-Zitouni, G., Kaplancikli, Z. A., Demirci, F. & Iscan, G. J. (2008). J. Enzyme Inhib. Med. Chem. 23, 470-475.]); Vicini et al. (2006[Vicini, P., Incerti, M., Doytchinova, I. A., Colla, P. L., Busonera, B. & Loddo, R. E. (2006). Eur. J. Med. Chem. 41, 624-632.]); Jagadeesh et al. (2010[Jagadeesh, P. K., Himajaa, M., Malib, S. V., Ranjithaa, A., Karigarc, A. & Sikarward, M. (2010). J. Pharm. Res. 3, 2460-2462.]); Walcourt et al. (2004[Walcourt, A., Loyevsky, M., Lovejoy, D. B., Gordeuk, V. R. & Richardson, D. R. (2004). Int. J. Biochem. Cell Biol. 36, 401-407.]) and for their catalytic abilities, see: Pouralimardan et al. (2007[Pouralimardan, O., Chamayou, A., Janiak, C. & Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599-1608.]).

[Scheme 1]

Experimental

Crystal data
  • C23H20N4O

  • Mr = 368.43

  • Monoclinic, P 21 /c

  • a = 8.6806 (2) Å

  • b = 20.4319 (4) Å

  • c = 10.6100 (2) Å

  • β = 99.713 (1)°

  • V = 1854.83 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 K

  • 0.59 × 0.40 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2010[Bruker (2010). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.87, Tmax = 0.98

  • 17965 measured reflections

  • 4607 independent reflections

  • 3891 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.04

  • 4607 reflections

  • 262 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯Cg2i 0.887 (18) 2.728 (17) 3.5021 (12) 146.6 (14)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: ORTEP-3 (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Hydrazone Schiff bases, a product of the condensation reaction of hydrazine derivatives and a carbonyl via nucleophilic addition reaction represents an important group of compounds due to their chelating properties and numerous applications. Antimicrobial (Yadav et al., 2010; Ozdemir et al., 2008), antitumour (Vicini et al., 2006), antioxidant (Jagadeesh et al., 2010), antimalarial (Walcourt et al., 2004) and catalytic (Pouralimardan et al., 2007) activities, amidst others. Heterocyclic Schiff bases derived from pyrazolone have been well documented (Yang et al., 2000). A new heterocyclic phenylhydrazone Schiff base with pyrazolyl moeity is prepared and its crystal structure reported herein (Fig.1).

In the crystal structure π stacking occurs between the phenyls of adjacent phenylhydazone groups with a centroid to centroid distance of 3.6512 (7) Å and slippage of 0.922 Å (Fig. 2). The dihedral angles formed by the least square planes between the phenyl of the phenylhydrazone group with the pyrazole and the C21—C26 aromatic ring are 85.29 (6)° and 77.88 (6)° repectively. The phenyl on the pyrazole group is slight twisted out of the pyrazole plane by 12.84 (4)°.

Intra molecular C—H···N, C—H···O and N—H···O interactions occur while inter molecular interactions include C—H···O, phenyl hydrazone pi stacking and N—H···π interactions (Fig. 2 - for clarity the N—H···π interaction is not shown).

The packing of the title compound is shown in Figure 3.

Related literature top

For related structures, see: Zhu et al. (2010, 2011); Goh et al. (2009). For general background to and applications of pyrazolones, see: Yang et al. (2000); Konstantinovic et al. (2008); Joshi et al. (2011); Turan-Zitouni et al. (2000). For the biological activity of hydrazone Schiff bases, see: Yadav et al. (2010); Ozdemir et al. (2008); Vicini et al. (2006); Jagadeesh et al. (2010); Walcourt et al. (2004) and for their catalytic ability, see: Pouralimardan et al. (2007).

Experimental top

A mixture of phenylhydrazine and 4-benzoyl-3-methyl-1-phenyl-2-pyrazoline-5-one (ratio 1:1) in methanol was refluxed for 5 h. The mixture was poured into cold distilled water to precipitate the yellow titled compound (yield: 92%; m.p: 190–192°C), which was isolated by filtration and recrystalized from methanol. Single crystals of the titled compound suitable for X-ray diffraction was obtained from methanol by slow evaporation at room temperature.

Refinement top

The carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms and C—H 0.98 Å for the methyl group) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U~eq~(C). The H atoms of the methyl group were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008), with U(H) set to 1.5 U~eq~(C)). The nitrogen-bound H atoms were located on a difference Fourier map and refined freely with isotropic parameters.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and ShelXle (Hübschle et al., 2011); molecular graphics: ORTEP-3 (Farrugia,1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anistropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Inter and intra molecular contacts as well as the short ring interaction between C31—C36 and C31i—C36i (blue dashed line). Symmetry operators: i -x + 1, -y, -z + 2.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [1 0 0].
3-Methyl-1-phenyl-4-[(phenyl)(2-phenylhydrazin-1-yl)methylidene]-1H- pyrazol-5(4H)-one top
Crystal data top
C23H20N4OF(000) = 776
Mr = 368.43Dx = 1.319 Mg m3
Monoclinic, P21/cMelting point: 464 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.6806 (2) ÅCell parameters from 200 reflections
b = 20.4319 (4) Åθ = 2.6–26.6°
c = 10.6100 (2) ŵ = 0.08 mm1
β = 99.713 (1)°T = 200 K
V = 1854.83 (7) Å3Block, yellow
Z = 40.59 × 0.40 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
4607 independent reflections
Radiation source: sealed tube3891 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 2.4°
ϕ and ω scansh = 1111
Absorption correction: numerical
(SADABS; Bruker, 2010)
k = 2726
Tmin = 0.87, Tmax = 0.98l = 1414
17965 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.492P]
where P = (Fo2 + 2Fc2)/3
4607 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C23H20N4OV = 1854.83 (7) Å3
Mr = 368.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6806 (2) ŵ = 0.08 mm1
b = 20.4319 (4) ÅT = 200 K
c = 10.6100 (2) Å0.59 × 0.40 × 0.22 mm
β = 99.713 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4607 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2010)
3891 reflections with I > 2σ(I)
Tmin = 0.87, Tmax = 0.98Rint = 0.014
17965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.27 e Å3
4607 reflectionsΔρmin = 0.17 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37112 (10)0.06816 (4)0.56481 (8)0.0415 (2)
N10.19594 (11)0.06784 (5)0.37026 (8)0.0317 (2)
N20.08885 (10)0.02411 (5)0.30147 (9)0.0326 (2)
N30.35993 (12)0.04986 (5)0.68161 (8)0.0351 (2)
H30.3866 (18)0.0073 (8)0.6855 (14)0.049 (4)*
N40.42974 (12)0.09280 (5)0.77706 (8)0.0333 (2)
H40.529 (2)0.0996 (8)0.7705 (16)0.055 (4)*
C10.27317 (13)0.04046 (6)0.48275 (9)0.0314 (2)
C20.21562 (12)0.02578 (5)0.48023 (9)0.0301 (2)
C30.10127 (12)0.03072 (5)0.36586 (10)0.0308 (2)
C40.00114 (14)0.08688 (6)0.31689 (12)0.0410 (3)
H4A0.06120.12050.28290.062*
H4B0.0480.10540.38680.062*
H4C0.0840.07170.24880.062*
C50.27016 (12)0.07110 (5)0.57521 (9)0.0295 (2)
C110.22094 (13)0.12928 (5)0.31617 (10)0.0318 (2)
C120.31193 (16)0.17665 (6)0.38711 (12)0.0422 (3)
H120.3560.16830.47380.051*
C130.33855 (19)0.23605 (7)0.33154 (14)0.0521 (3)
H130.40210.2680.38020.063*
C140.27385 (18)0.24925 (7)0.20636 (14)0.0516 (3)
H140.2910.29030.16920.062*
C150.18389 (16)0.20201 (7)0.13574 (12)0.0477 (3)
H150.13970.21080.04930.057*
C160.15679 (14)0.14194 (6)0.18873 (11)0.0390 (3)
H160.09530.10970.13890.047*
C210.23894 (12)0.14208 (5)0.56126 (10)0.0316 (2)
C220.29871 (15)0.17609 (6)0.46630 (11)0.0410 (3)
H220.35290.15330.40920.049*
C230.27886 (18)0.24303 (7)0.45546 (14)0.0526 (4)
H230.32160.26650.39220.063*
C240.19696 (19)0.27574 (7)0.53651 (15)0.0575 (4)
H240.18340.32180.52890.069*
C250.13434 (18)0.24193 (7)0.62892 (15)0.0534 (4)
H250.07570.26470.6830.064*
C260.15687 (14)0.17513 (6)0.64279 (12)0.0401 (3)
H260.11640.15210.70780.048*
C310.40268 (12)0.07932 (5)0.90166 (9)0.0275 (2)
C320.51420 (13)0.09944 (5)1.00413 (10)0.0314 (2)
H320.60780.11970.9890.038*
C330.48897 (14)0.08995 (6)1.12813 (10)0.0348 (2)
H330.56490.10431.19780.042*
C340.35439 (14)0.05974 (6)1.15146 (10)0.0364 (2)
H340.33840.05251.23680.044*
C350.24276 (13)0.04011 (6)1.04931 (11)0.0359 (2)
H350.14970.01961.06510.043*
C360.26506 (13)0.05003 (5)0.92422 (10)0.0314 (2)
H360.18730.0370.85470.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0531 (5)0.0408 (5)0.0266 (4)0.0052 (4)0.0043 (3)0.0013 (3)
N10.0352 (5)0.0358 (5)0.0233 (4)0.0036 (4)0.0026 (3)0.0006 (3)
N20.0315 (4)0.0386 (5)0.0269 (4)0.0043 (4)0.0028 (3)0.0017 (4)
N30.0482 (6)0.0343 (5)0.0215 (4)0.0007 (4)0.0023 (4)0.0021 (4)
N40.0386 (5)0.0394 (5)0.0217 (4)0.0079 (4)0.0048 (4)0.0014 (4)
C10.0365 (5)0.0374 (6)0.0207 (4)0.0040 (4)0.0056 (4)0.0008 (4)
C20.0332 (5)0.0359 (5)0.0218 (5)0.0031 (4)0.0068 (4)0.0012 (4)
C30.0295 (5)0.0375 (6)0.0261 (5)0.0053 (4)0.0069 (4)0.0019 (4)
C40.0387 (6)0.0424 (6)0.0394 (6)0.0009 (5)0.0008 (5)0.0016 (5)
C50.0316 (5)0.0359 (5)0.0224 (4)0.0033 (4)0.0089 (4)0.0011 (4)
C110.0338 (5)0.0360 (5)0.0268 (5)0.0089 (4)0.0091 (4)0.0031 (4)
C120.0570 (7)0.0376 (6)0.0313 (6)0.0038 (5)0.0048 (5)0.0010 (5)
C130.0703 (9)0.0385 (7)0.0465 (7)0.0016 (6)0.0069 (7)0.0017 (6)
C140.0616 (8)0.0440 (7)0.0502 (8)0.0049 (6)0.0126 (6)0.0145 (6)
C150.0476 (7)0.0586 (8)0.0366 (6)0.0082 (6)0.0065 (5)0.0175 (6)
C160.0371 (6)0.0493 (7)0.0304 (5)0.0048 (5)0.0051 (4)0.0060 (5)
C210.0338 (5)0.0342 (5)0.0258 (5)0.0055 (4)0.0022 (4)0.0003 (4)
C220.0480 (7)0.0428 (7)0.0318 (6)0.0101 (5)0.0057 (5)0.0034 (5)
C230.0622 (9)0.0438 (7)0.0465 (7)0.0173 (6)0.0060 (6)0.0118 (6)
C240.0667 (9)0.0340 (6)0.0615 (9)0.0028 (6)0.0189 (7)0.0021 (6)
C250.0573 (8)0.0465 (7)0.0519 (8)0.0131 (6)0.0036 (6)0.0093 (6)
C260.0403 (6)0.0444 (7)0.0355 (6)0.0027 (5)0.0060 (5)0.0009 (5)
C310.0333 (5)0.0267 (5)0.0226 (4)0.0014 (4)0.0050 (4)0.0004 (4)
C320.0326 (5)0.0336 (5)0.0276 (5)0.0032 (4)0.0040 (4)0.0001 (4)
C330.0404 (6)0.0378 (6)0.0246 (5)0.0008 (4)0.0006 (4)0.0015 (4)
C340.0463 (6)0.0387 (6)0.0258 (5)0.0029 (5)0.0110 (4)0.0029 (4)
C350.0374 (6)0.0359 (6)0.0367 (6)0.0030 (4)0.0132 (4)0.0021 (4)
C360.0334 (5)0.0309 (5)0.0293 (5)0.0029 (4)0.0030 (4)0.0019 (4)
Geometric parameters (Å, º) top
O1—C11.2456 (13)C15—C161.3865 (18)
N1—C11.3844 (13)C15—H150.95
N1—N21.4021 (13)C16—H160.95
N1—C111.4123 (14)C21—C261.3856 (16)
N2—C31.3072 (14)C21—C221.3941 (15)
N3—C51.3316 (14)C22—C231.381 (2)
N3—N41.3983 (13)C22—H220.95
N3—H30.899 (16)C23—C241.378 (2)
N4—C311.4084 (13)C23—H230.95
N4—H40.887 (17)C24—C251.383 (2)
C1—C21.4414 (16)C24—H240.95
C2—C51.3915 (15)C25—C261.3832 (19)
C2—C31.4358 (14)C25—H250.95
C3—C41.4903 (16)C26—H260.95
C4—H4A0.98C31—C321.3903 (14)
C4—H4B0.98C31—C361.3925 (15)
C4—H4C0.98C32—C331.3834 (15)
C5—C211.4782 (15)C32—H320.95
C11—C121.3880 (17)C33—C341.3801 (17)
C11—C161.3968 (15)C33—H330.95
C12—C131.3856 (19)C34—C351.3858 (16)
C12—H120.95C34—H340.95
C13—C141.379 (2)C35—C361.3881 (15)
C13—H130.95C35—H350.95
C14—C151.380 (2)C36—H360.95
C14—H140.95
C1—N1—N2111.93 (9)C14—C15—H15119.4
C1—N1—C11128.62 (9)C16—C15—H15119.4
N2—N1—C11119.25 (9)C15—C16—C11119.29 (12)
C3—N2—N1106.56 (9)C15—C16—H16120.4
C5—N3—N4121.98 (10)C11—C16—H16120.4
C5—N3—H3117.6 (10)C26—C21—C22120.10 (11)
N4—N3—H3119.8 (10)C26—C21—C5121.36 (10)
N3—N4—C31115.89 (9)C22—C21—C5118.50 (10)
N3—N4—H4110.4 (11)C23—C22—C21119.83 (13)
C31—N4—H4115.0 (11)C23—C22—H22120.1
O1—C1—N1126.39 (11)C21—C22—H22120.1
O1—C1—C2129.28 (10)C24—C23—C22119.92 (13)
N1—C1—C2104.33 (9)C24—C23—H23120.0
C5—C2—C3131.87 (10)C22—C23—H23120.0
C5—C2—C1122.48 (10)C23—C24—C25120.39 (13)
C3—C2—C1105.65 (9)C23—C24—H24119.8
N2—C3—C2111.45 (10)C25—C24—H24119.8
N2—C3—C4119.07 (10)C26—C25—C24120.19 (14)
C2—C3—C4129.46 (10)C26—C25—H25119.9
C3—C4—H4A109.5C24—C25—H25119.9
C3—C4—H4B109.5C25—C26—C21119.52 (13)
H4A—C4—H4B109.5C25—C26—H26120.2
C3—C4—H4C109.5C21—C26—H26120.2
H4A—C4—H4C109.5C32—C31—C36119.81 (9)
H4B—C4—H4C109.5C32—C31—N4118.15 (9)
N3—C5—C2118.43 (10)C36—C31—N4121.94 (9)
N3—C5—C21118.41 (9)C33—C32—C31120.08 (10)
C2—C5—C21123.10 (9)C33—C32—H32120.0
C12—C11—C16119.55 (11)C31—C32—H32120.0
C12—C11—N1120.79 (10)C34—C33—C32120.52 (10)
C16—C11—N1119.64 (10)C34—C33—H33119.7
C13—C12—C11120.03 (12)C32—C33—H33119.7
C13—C12—H12120.0C33—C34—C35119.38 (10)
C11—C12—H12120.0C33—C34—H34120.3
C14—C13—C12120.75 (14)C35—C34—H34120.3
C14—C13—H13119.6C34—C35—C36120.91 (10)
C12—C13—H13119.6C34—C35—H35119.5
C13—C14—C15119.17 (13)C36—C35—H35119.5
C13—C14—H14120.4C35—C36—C31119.28 (10)
C15—C14—H14120.4C35—C36—H36120.4
C14—C15—C16121.20 (12)C31—C36—H36120.4
C1—N1—N2—C32.24 (12)C11—C12—C13—C140.9 (2)
C11—N1—N2—C3173.08 (9)C12—C13—C14—C151.1 (2)
C5—N3—N4—C31127.25 (11)C13—C14—C15—C160.5 (2)
N2—N1—C1—O1177.77 (10)C14—C15—C16—C110.44 (19)
C11—N1—C1—O17.46 (18)C12—C11—C16—C150.69 (17)
N2—N1—C1—C22.98 (11)N1—C11—C16—C15179.00 (10)
C11—N1—C1—C2171.79 (10)N3—C5—C21—C2664.01 (14)
O1—C1—C2—C52.00 (18)C2—C5—C21—C26118.77 (12)
N1—C1—C2—C5177.23 (9)N3—C5—C21—C22113.82 (12)
O1—C1—C2—C3178.25 (11)C2—C5—C21—C2263.40 (14)
N1—C1—C2—C32.53 (11)C26—C21—C22—C231.41 (18)
N1—N2—C3—C20.47 (11)C5—C21—C22—C23176.45 (11)
N1—N2—C3—C4179.01 (9)C21—C22—C23—C241.53 (19)
C5—C2—C3—N2178.40 (10)C22—C23—C24—C250.0 (2)
C1—C2—C3—N21.33 (11)C23—C24—C25—C261.6 (2)
C5—C2—C3—C43.25 (19)C24—C25—C26—C211.7 (2)
C1—C2—C3—C4177.03 (11)C22—C21—C26—C250.22 (18)
N4—N3—C5—C2174.74 (10)C5—C21—C26—C25178.02 (11)
N4—N3—C5—C212.61 (15)N3—N4—C31—C32152.77 (10)
C3—C2—C5—N3169.52 (11)N3—N4—C31—C3630.79 (15)
C1—C2—C5—N310.79 (15)C36—C31—C32—C330.46 (16)
C3—C2—C5—C2113.26 (17)N4—C31—C32—C33176.98 (10)
C1—C2—C5—C21166.43 (10)C31—C32—C33—C340.88 (17)
C1—N1—C11—C1213.08 (17)C32—C33—C34—C351.32 (18)
N2—N1—C11—C12172.48 (10)C33—C34—C35—C360.44 (18)
C1—N1—C11—C16165.22 (11)C34—C35—C36—C310.89 (17)
N2—N1—C11—C169.22 (15)C32—C31—C36—C351.33 (16)
C16—C11—C12—C130.05 (19)N4—C31—C36—C35177.71 (10)
N1—C11—C12—C13178.35 (12)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.899 (16)1.994 (16)2.7204 (13)136.9 (13)
C12—H12···O10.952.262.8993 (15)124
C16—H16···N20.952.462.7950 (16)100
C33—H33···O1i0.952.593.3094 (13)132
N4—H4···Cg2ii0.887 (18)2.728 (17)3.5021 (12)146.6 (14)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC23H20N4O
Mr368.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)8.6806 (2), 20.4319 (4), 10.6100 (2)
β (°) 99.713 (1)
V3)1854.83 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.59 × 0.40 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionNumerical
(SADABS; Bruker, 2010)
Tmin, Tmax0.87, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
17965, 4607, 3891
Rint0.014
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.04
No. of reflections4607
No. of parameters262
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.17

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and ShelXle (Hübschle et al., 2011), ORTEP-3 (Farrugia,1997) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4···Cg2i0.887 (18)2.728 (17)3.5021 (12)146.6 (14)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors would like to thank the Department of Chemistry and the Govan Mbeki Research and Development Centre (GMRDC), both of the University of Fort Hare, for their support.

References

First citationBruker (2010). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra,, Rai, N. S. & Kalluraya, B. (2009). Acta Cryst. E65, o3099–o3100.  Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJagadeesh, P. K., Himajaa, M., Malib, S. V., Ranjithaa, A., Karigarc, A. & Sikarward, M. (2010). J. Pharm. Res. 3, 2460–2462.  Google Scholar
First citationJoshi, K. T., Pancholi, A. M., Pandya, K. S. & Thakar, A. S. (2011). J. Chem. Pharm. Res. 3, 741–749.  CAS Google Scholar
First citationKonstantinovic, S. S., Kapor, A., Radovanovic, B. C. & Deak, A. (2008). CI&CEQ, 14, 27–34.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOzdemir, A., Turan-Zitouni, G., Kaplancikli, Z. A., Demirci, F. & Iscan, G. J. (2008). J. Enzyme Inhib. Med. Chem. 23, 470–475.  Web of Science PubMed CAS Google Scholar
First citationPouralimardan, O., Chamayou, A., Janiak, C. & Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599–1608.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTuran-Zitouni, G., Chevallet, P., Kiliç, F. S. & Erol, K. (2000). Eur. J. Med. Chem. 35, 635–641.  Web of Science PubMed CAS Google Scholar
First citationVicini, P., Incerti, M., Doytchinova, I. A., Colla, P. L., Busonera, B. & Loddo, R. E. (2006). Eur. J. Med. Chem. 41, 624–632.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWalcourt, A., Loyevsky, M., Lovejoy, D. B., Gordeuk, V. R. & Richardson, D. R. (2004). Int. J. Biochem. Cell Biol. 36, 401–407.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, J., Pandeya, S. N., Nath, G. & Singh, S. P. (2010). J. Chem. Pharm. Res. 2, 558–563.  CAS Google Scholar
First citationYang, Z. Y., Yang, R. D., Li, F. S. & Yu, K. B. (2000). Polyhedron, 19, 2599–2604.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, H., Ban, L., Zhang, P., Zhao, X. & Ren, J. (2011). Acta Cryst. E67, o476–o477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H., Wei, Z., Bu, L., Xu, X. & Shi, J. (2010). Acta Cryst. E66, m904.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1280-o1281
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds