organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1392

2,4-Di­methyl-6-nitro­aniline

aBaoji University of Arts and Sciences, Department of Chemistry, Baoji 721013, Shaanxi, People's Republic of China
*Correspondence e-mail: chenhukui@163.com

(Received 19 March 2012; accepted 3 April 2012; online 13 April 2012)

The asymmetric unit of the title compound, C8H10N2O2, contains two independent mol­ecules, which are linked by weak N—H⋯O hydrogen-bonding inter­actions between the amino and nitro groups. The independent molecules are both approximately planar with r.s.d. deviations of 0.0216 and 0.0161 Å.

Related literature

For applications of the title compound and background to the synthesis, see: Qian (2005[Qian, C.-L. (2005). Text. Chem. 3, 68-71.]); Qi et al. (2009[Qi, L., Pang, S.-P. & Sun, C.-H. (2009). Chin. J. Energ. Mater. 17, 4-6.]); Liang (2000[Liang, C. (2000). Jiangsu Chem. Eng. 28, 17-19.]); Hu et al. (2010[Hu, S.-W., Rong, Z.-M. & Liu, Y.-C. (2010). Fine Chem. 27, 170-173.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N2O2

  • Mr = 166.18

  • Monoclinic, P 21 /c

  • a = 6.997 (2) Å

  • b = 14.919 (4) Å

  • c = 15.907 (5) Å

  • β = 101.176 (4)°

  • V = 1629.1 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 163 K

  • 0.37 × 0.35 × 0.24 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • 10540 measured reflections

  • 4325 independent reflections

  • 3104 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.134

  • S = 1.00

  • 4325 reflections

  • 237 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.91 (2) 2.27 (2) 3.166 (2) 167.9 (18)
N3—H3B⋯O4 0.93 (2) 1.92 (2) 2.631 (2) 131.3 (17)
N3—H3A⋯O2i 0.89 (2) 2.30 (2) 3.1667 (19) 165.8 (17)
N1—H1B⋯O2 0.86 (2) 1.972 (18) 2.6233 (19) 131.4 (16)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2008)[Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]; cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The tittle compound,2,4-dimethyl-6-nitroaniline, is a very important aromatic organic intermediate, which can be utilized to synthesize dyes and pigment. It is practical significant to research and develop 2,4-dimethyl-6-nitroaniline because of difficult synthesis process, higher costs and bad yield. To improve the reaction condition and enlarge the needs of it, we report here the crystal structure of the title compound 2,4-dimethyl-6-nitroaniline,(I).

The molecular structure of (I) is shown in Fig.1. The asymmetric unit contains two title molecules of 2,4-dimethyl-6-nitroaniline. The non-hydrogen atoms of these molecules molecule are situated in a fair plane with r.m.s.deviation of 0.0216 Å and 0.0161 Å. The bond lengths and angles are within normal ranges in both molecules. In the crystal structure, the two molecules are not parallel but have a dihedral angle of 2.19 (0.02)°. The intermolecular N—H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For applications of the title compound and background to the synthesis, see: Qian (2005); Qi et al. (2009); Liang (2000); Hu et al. (2010).

Experimental top

A solution of 2,4-dimethylaniline(24.2 g, 0.2 mol), acetic acid(23 ml) and acetic anhydride (19 ml) was refluxed for 1 h and cooled to 35°C. Then, the mixed acid of concentrated sulfuric acid(35 ml) and concentrated nitric acid (17 ml) was slowly dropped into it after concentrated sulfuric acids(40 ml) was added. The mixture was reacted for 1 h and cooled to the room tempreture, and added to the cooled water.The resultant white solid 2,4-dimethylacetanilide was filtered and washed with cooled water. 2,4-dimethylacetanilide was then was added to the solution of 70% sulfuric acids (80 ml) and refluxed for 1 h, and slowly added to the cooled water.Orange-red precipitate began to appear. The precipitate was filtered and washed with water until the pH value of the filtrate is 7. The solid product was collected after dried at 80 °C(yield 82.5%, mp.70–72 °C).The crystals of 2,4-dimethyl-6-nitroaniline suitable for X-ray analysis were obtained by dissolving (I) (0.1 g) in methanol (20 ml) and evaporating the solvent slowly at room temperature for about 10 d.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86–0.93 Å (for NH) and C—H = 0.95 and 0.98 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for methyl and aromatic H.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the packing of the title compound, viewed down the b axis. Dashed lines indicate hydrogen bonds.
2,4-Dimethyl-6-nitroaniline top
Crystal data top
C8H10N2O2F(000) = 704
Mr = 166.18Dx = 1.355 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4298 reflections
a = 6.997 (2) Åθ = 2.6–29.1°
b = 14.919 (4) ŵ = 0.10 mm1
c = 15.907 (5) ÅT = 163 K
β = 101.176 (4)°Block, red
V = 1629.1 (8) Å30.37 × 0.35 × 0.24 mm
Z = 8
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
3104 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.027
Graphite monochromatorθmax = 29.1°, θmin = 2.6°
Detector resolution: 28.5714 pixels mm-1h = 99
phi and ω scansk = 2013
10540 measured reflectionsl = 1921
4325 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0669P)2 + 0.169P]
where P = (Fo2 + 2Fc2)/3
4325 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C8H10N2O2V = 1629.1 (8) Å3
Mr = 166.18Z = 8
Monoclinic, P21/cMo Kα radiation
a = 6.997 (2) ŵ = 0.10 mm1
b = 14.919 (4) ÅT = 163 K
c = 15.907 (5) Å0.37 × 0.35 × 0.24 mm
β = 101.176 (4)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
3104 reflections with I > 2σ(I)
10540 measured reflectionsRint = 0.027
4325 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.32 e Å3
4325 reflectionsΔρmin = 0.21 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45092 (17)0.90397 (8)0.58620 (8)0.0475 (3)
O20.44448 (18)0.76422 (8)0.61993 (7)0.0461 (3)
O30.1904 (2)0.44185 (8)0.46076 (8)0.0515 (3)
O40.28094 (19)0.46393 (7)0.59626 (8)0.0488 (3)
N10.32759 (19)0.64184 (9)0.50283 (9)0.0337 (3)
N20.42024 (17)0.82485 (8)0.56491 (8)0.0331 (3)
N30.29546 (19)0.33074 (9)0.70576 (9)0.0349 (3)
N40.22429 (19)0.41310 (8)0.53454 (9)0.0351 (3)
C10.31439 (18)0.71292 (9)0.44965 (9)0.0253 (3)
C20.25692 (19)0.69862 (9)0.35968 (9)0.0267 (3)
C30.2419 (2)0.77019 (9)0.30489 (10)0.0293 (3)
H30.20370.75910.24520.035*
C40.28002 (19)0.85946 (9)0.33221 (10)0.0294 (3)
C50.33876 (19)0.87389 (9)0.41793 (10)0.0278 (3)
H50.36810.93310.43840.033*
C60.35645 (18)0.80271 (9)0.47637 (9)0.0251 (3)
C70.2177 (2)0.60435 (10)0.32704 (11)0.0385 (4)
H7A0.19680.60430.26430.046*
H7B0.10130.58120.34530.046*
H7C0.32960.56620.35020.046*
C80.2570 (2)0.93525 (10)0.26839 (11)0.0409 (4)
H8A0.12470.95950.26100.049*
H8B0.28000.91290.21330.049*
H8C0.35140.98260.28940.049*
C90.24075 (18)0.28267 (9)0.63273 (9)0.0258 (3)
C100.21597 (19)0.18803 (9)0.63927 (10)0.0281 (3)
C110.15958 (19)0.13826 (9)0.56628 (10)0.0306 (3)
H110.14580.07530.57210.037*
C120.12098 (19)0.17490 (9)0.48338 (10)0.0293 (3)
C130.14163 (19)0.26569 (9)0.47631 (9)0.0283 (3)
H130.11610.29300.42130.034*
C140.20012 (19)0.31878 (9)0.54949 (9)0.0262 (3)
C150.2515 (2)0.14538 (10)0.72614 (11)0.0394 (4)
H15A0.22340.08110.72030.047*
H15B0.16640.17300.76100.047*
H15C0.38790.15410.75400.047*
C160.0600 (2)0.11639 (11)0.40631 (11)0.0405 (4)
H16A0.07910.10270.39930.049*
H16B0.13510.06050.41400.049*
H16C0.08430.14770.35520.049*
H1A0.284 (3)0.5869 (14)0.4823 (13)0.056 (6)*
H3B0.325 (3)0.3907 (14)0.6975 (13)0.066 (6)*
H3A0.350 (3)0.3063 (13)0.7554 (14)0.057 (6)*
H1B0.355 (3)0.6534 (11)0.5569 (13)0.043 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0653 (8)0.0384 (6)0.0380 (7)0.0122 (5)0.0081 (6)0.0142 (5)
O20.0680 (8)0.0467 (7)0.0214 (6)0.0050 (5)0.0030 (5)0.0041 (5)
O30.0844 (9)0.0360 (6)0.0324 (7)0.0024 (6)0.0068 (6)0.0128 (5)
O40.0798 (9)0.0277 (5)0.0375 (7)0.0049 (5)0.0080 (6)0.0050 (5)
N10.0471 (7)0.0276 (6)0.0246 (7)0.0015 (5)0.0023 (6)0.0057 (6)
N20.0349 (7)0.0365 (7)0.0277 (7)0.0036 (5)0.0054 (5)0.0026 (6)
N30.0479 (8)0.0333 (7)0.0230 (7)0.0004 (5)0.0063 (6)0.0028 (6)
N40.0470 (7)0.0285 (6)0.0302 (7)0.0015 (5)0.0083 (5)0.0037 (6)
C10.0249 (6)0.0259 (6)0.0251 (7)0.0004 (5)0.0045 (5)0.0042 (5)
C20.0282 (7)0.0262 (6)0.0246 (8)0.0007 (5)0.0020 (5)0.0003 (6)
C30.0325 (7)0.0324 (7)0.0217 (7)0.0028 (5)0.0019 (5)0.0022 (6)
C40.0314 (7)0.0277 (7)0.0302 (8)0.0013 (5)0.0087 (5)0.0069 (6)
C50.0292 (7)0.0243 (6)0.0308 (8)0.0013 (5)0.0077 (5)0.0005 (6)
C60.0260 (6)0.0279 (7)0.0217 (7)0.0014 (5)0.0052 (5)0.0004 (6)
C70.0528 (9)0.0293 (8)0.0293 (9)0.0007 (6)0.0025 (7)0.0020 (6)
C80.0516 (9)0.0351 (8)0.0360 (10)0.0033 (6)0.0083 (7)0.0126 (7)
C90.0279 (7)0.0286 (7)0.0220 (7)0.0011 (5)0.0075 (5)0.0008 (6)
C100.0295 (7)0.0295 (7)0.0264 (8)0.0010 (5)0.0081 (5)0.0044 (6)
C110.0321 (7)0.0256 (7)0.0348 (9)0.0029 (5)0.0079 (6)0.0019 (6)
C120.0271 (7)0.0318 (7)0.0292 (8)0.0007 (5)0.0058 (5)0.0038 (6)
C130.0295 (7)0.0333 (7)0.0226 (7)0.0016 (5)0.0062 (5)0.0013 (6)
C140.0303 (7)0.0235 (6)0.0256 (7)0.0013 (5)0.0075 (5)0.0012 (6)
C150.0476 (9)0.0382 (8)0.0325 (9)0.0002 (6)0.0082 (7)0.0106 (7)
C160.0447 (9)0.0397 (8)0.0354 (10)0.0047 (6)0.0032 (7)0.0106 (7)
Geometric parameters (Å, º) top
O1—N21.2353 (16)C7—H7A0.9800
O2—N21.2472 (17)C7—H7B0.9800
O3—N41.2288 (17)C7—H7C0.9800
O4—N41.2431 (17)C8—H8A0.9800
N1—C11.3484 (18)C8—H8B0.9800
N1—H1A0.91 (2)C8—H8C0.9800
N1—H1B0.86 (2)C9—C141.407 (2)
N2—C61.4311 (19)C9—C101.4287 (19)
N3—C91.3557 (19)C10—C111.370 (2)
N3—H3B0.93 (2)C10—C151.498 (2)
N3—H3A0.89 (2)C11—C121.405 (2)
N4—C141.4424 (18)C11—H110.9500
C1—C61.4189 (18)C12—C131.369 (2)
C1—C21.426 (2)C12—C161.498 (2)
C2—C31.3693 (19)C13—C141.402 (2)
C2—C71.5058 (19)C13—H130.9500
C3—C41.410 (2)C15—H15A0.9800
C3—H30.9500C15—H15B0.9800
C4—C51.363 (2)C15—H15C0.9800
C4—C81.507 (2)C16—H16A0.9800
C5—C61.4009 (19)C16—H16B0.9800
C5—H50.9500C16—H16C0.9800
C1—N1—H1A120.3 (13)C4—C8—H8A109.5
C1—N1—H1B116.4 (12)C4—C8—H8B109.5
H1A—N1—H1B122.1 (17)H8A—C8—H8B109.5
O1—N2—O2120.51 (13)C4—C8—H8C109.5
O1—N2—C6119.66 (13)H8A—C8—H8C109.5
O2—N2—C6119.83 (12)H8B—C8—H8C109.5
C9—N3—H3B114.8 (13)N3—C9—C14125.17 (13)
C9—N3—H3A123.1 (13)N3—C9—C10118.59 (13)
H3B—N3—H3A116.9 (18)C14—C9—C10116.22 (13)
O3—N4—O4120.95 (13)C11—C10—C9119.53 (13)
O3—N4—C14119.40 (13)C11—C10—C15121.37 (13)
O4—N4—C14119.64 (13)C9—C10—C15119.09 (13)
N1—C1—C6124.71 (14)C10—C11—C12123.78 (13)
N1—C1—C2118.94 (13)C10—C11—H11118.1
C6—C1—C2116.34 (12)C12—C11—H11118.1
C3—C2—C1119.62 (13)C13—C12—C11117.26 (13)
C3—C2—C7121.49 (14)C13—C12—C16121.80 (14)
C1—C2—C7118.88 (13)C11—C12—C16120.93 (13)
C2—C3—C4123.61 (14)C12—C13—C14120.61 (14)
C2—C3—H3118.2C12—C13—H13119.7
C4—C3—H3118.2C14—C13—H13119.7
C5—C4—C3117.38 (13)C13—C14—C9122.58 (13)
C5—C4—C8121.84 (13)C13—C14—N4116.04 (13)
C3—C4—C8120.78 (14)C9—C14—N4121.33 (13)
C4—C5—C6120.99 (13)C10—C15—H15A109.5
C4—C5—H5119.5C10—C15—H15B109.5
C6—C5—H5119.5H15A—C15—H15B109.5
C5—C6—C1122.03 (13)C10—C15—H15C109.5
C5—C6—N2116.66 (12)H15A—C15—H15C109.5
C1—C6—N2121.31 (12)H15B—C15—H15C109.5
C2—C7—H7A109.5C12—C16—H16A109.5
C2—C7—H7B109.5C12—C16—H16B109.5
H7A—C7—H7B109.5H16A—C16—H16B109.5
C2—C7—H7C109.5C12—C16—H16C109.5
H7A—C7—H7C109.5H16A—C16—H16C109.5
H7B—C7—H7C109.5H16B—C16—H16C109.5
N1—C1—C2—C3179.68 (12)N3—C9—C10—C11179.60 (13)
C6—C1—C2—C31.15 (19)C14—C9—C10—C111.34 (19)
N1—C1—C2—C71.48 (19)N3—C9—C10—C150.11 (19)
C6—C1—C2—C7177.69 (12)C14—C9—C10—C15178.37 (12)
C1—C2—C3—C40.2 (2)C9—C10—C11—C120.9 (2)
C7—C2—C3—C4178.98 (14)C15—C10—C11—C12178.82 (13)
C2—C3—C4—C51.4 (2)C10—C11—C12—C130.0 (2)
C2—C3—C4—C8178.87 (13)C10—C11—C12—C16179.93 (13)
C3—C4—C5—C61.3 (2)C11—C12—C13—C140.36 (19)
C8—C4—C5—C6179.02 (13)C16—C12—C13—C14179.57 (13)
C4—C5—C6—C10.1 (2)C12—C13—C14—C90.2 (2)
C4—C5—C6—N2179.65 (12)C12—C13—C14—N4177.77 (12)
N1—C1—C6—C5179.59 (13)N3—C9—C14—C13179.16 (13)
C2—C1—C6—C51.29 (19)C10—C9—C14—C131.03 (19)
N1—C1—C6—N20.7 (2)N3—C9—C14—N43.4 (2)
C2—C1—C6—N2178.42 (12)C10—C9—C14—N4178.49 (12)
O1—N2—C6—C52.09 (19)O3—N4—C14—C131.16 (19)
O2—N2—C6—C5177.89 (12)O4—N4—C14—C13178.08 (13)
O1—N2—C6—C1178.19 (12)O3—N4—C14—C9178.78 (14)
O2—N2—C6—C11.8 (2)O4—N4—C14—C90.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.91 (2)2.27 (2)3.166 (2)167.9 (18)
N3—H3B···O40.93 (2)1.92 (2)2.631 (2)131.3 (17)
N3—H3A···O2i0.89 (2)2.30 (2)3.1667 (19)165.8 (17)
N1—H1B···O20.86 (2)1.972 (18)2.6233 (19)131.4 (16)
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H10N2O2
Mr166.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)163
a, b, c (Å)6.997 (2), 14.919 (4), 15.907 (5)
β (°) 101.176 (4)
V3)1629.1 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.37 × 0.35 × 0.24
Data collection
DiffractometerRigaku AFC10/Saturn724+
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10540, 4325, 3104
Rint0.027
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.134, 1.00
No. of reflections4325
No. of parameters237
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.21

Computer programs: CrystalClear (Rigaku/MSC, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.91 (2)2.27 (2)3.166 (2)167.9 (18)
N3—H3B···O40.93 (2)1.92 (2)2.631 (2)131.3 (17)
N3—H3A···O2i0.89 (2)2.30 (2)3.1667 (19)165.8 (17)
N1—H1B···O20.86 (2)1.972 (18)2.6233 (19)131.4 (16)
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the Science Research Foundation of Baoji University of Arts and Sciences (No. ZK1050)

References

First citationHu, S.-W., Rong, Z.-M. & Liu, Y.-C. (2010). Fine Chem. 27, 170–173.  CAS Google Scholar
First citationLiang, C. (2000). Jiangsu Chem. Eng. 28, 17–19.  Google Scholar
First citationQi, L., Pang, S.-P. & Sun, C.-H. (2009). Chin. J. Energ. Mater. 17, 4–6.  CAS Google Scholar
First citationQian, C.-L. (2005). Text. Chem. 3, 68–71.  Google Scholar
First citationRigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1392
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds