organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1556

3′,6′-Bis(ethyl­amino)-2′,7′-di­methyl-2-{2-(E)-[(thio­phen-2-yl)methyl­­idene­amino]­eth­yl}spiro­[isoindoline-1,9′-xanthen]-3-one methanol monosolvate

aCollege of Urban Planning and Environmental Science, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
*Correspondence e-mail: xuzhihong1980@yahoo.com

(Received 10 April 2012; accepted 23 April 2012; online 28 April 2012)

The title compound, C33H34N4O2S·CH3OH, was prepared as a spiro­lactam ring formation of rhodamine 6 G dye for comparison with a ring-opened form. The xanthene and spiro­lactam rings are approximately planar [r.m.s. deviations from planarity = 0.122 (3) and 0.072 (6) Å, respectively]. The dihedral angles formed by the spiro­lactam and thio­phene rings with the xanthene ring system are 89.7 (6) and 86.5 (2)°, respectively. The crystal structure features N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For rhodamine derivatives bearing a lactam moiety, see: Tian & Peng (2008[Tian, M.-Z. & Peng, X.-J. (2008). Acta Cryst. E64, o1645.]); Wu et al. (2007[Wu, D., Huang, W., Duan, C.-Y., Lin, Z.-H. & Meng, Q.-J. (2007). Inorg. Chem. 46, 1538-1540.]); Xi et al. (2011[Xi, P., Huang, L., Xie, G., Chen, F., Xu, Z., Bai, D. & Zeng, Z. (2011). Dalton Trans. 40, 6382-6384.]); Xu et al. (2009[Xu, Z.-H., Wang, H.-S., Tao, L.-T. & Wang, H.-W. (2009). Acta Cryst. E65, o1876.], 2011[Xu, Z., Zhang, L., Guo, R., Xiang, T., Wu, C., Zheng, Z. & Yang, F. (2011). Sens. Actuator B Chem. 156, 546-552.]); Xu, Guo et al. (2010[Xu, Z., Guo, W., Su, B., Shen, X.-K. & Yang, F. (2010). Acta Cryst. E66, o1500.]); Xu, Zhang et al. (2010[Xu, Z.-H., Zhang, Y.-L., Zhao, Y.-R. & Yang, F.-L. (2010). Acta Cryst. E66, o1504.]); Zhang et al. (2008[Zhang, L.-Z., Peng, X.-J., Gao, S. & Fan, J.-L. (2008). Acta Cryst. E64, o403.]).

[Scheme 1]

Experimental

Crystal data
  • C33H34N4O2S·CH4O

  • Mr = 582.74

  • Monoclinic, P 21 /c

  • a = 9.287 (2) Å

  • b = 9.493 (2) Å

  • c = 35.754 (8) Å

  • β = 95.683 (4)°

  • V = 3136.8 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 296 K

  • 0.25 × 0.23 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.975

  • 15561 measured reflections

  • 5610 independent reflections

  • 3564 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.250

  • S = 1.03

  • 5610 reflections

  • 385 parameters

  • 35 restraints

  • H-atom parameters constrained

  • Δρmax = 1.10 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.86 2.27 3.108 166
C5—H5⋯O2ii 0.93 2.44 3.360 170
Symmetry codes: (i) x+1, y, z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Among many fluorescent compounds, rhodamine dyes are known to have excellent photophysical properties, and they are one of the most widely used fluorophores for labeling and sensing biomolecules. There are a few single-crystal reports about rhodamine derivatives bearing a lactam moiety (Xu et al., 2009; Xi et al., 2011; Xu et al., 2011; Wu et al., 2007; Xu, Zhang et al., 2010; Xu, Guo et al., 2010; Zhang et al., 2008; Tian et al., 2008;). Detailed information on their molecular and crystal structures is necessary to understand their photophysical and photochemical properties.

In agreement with other reported models, (Xu et al., 2009; Wu et al., 2007; Zhang et al., 2008; Tian et al., 2008; Xi et al., 2011;) the main skeleton of the molecule is formed by the xanthene ring and the spirolactam-ring. As shown in Figure 1, The atoms of the xanthene ring or the spirolactam-ring are both nearly planar and are almost perpendicular to each other. The dihedral angle between the xanthene mean planes and the spirolactam ring fragment is 89.7 (6)°. The dihedral angle between the xanthene mean planes and the thiophene ring is 86.5 (2)°.

Related literature top

For rhodamine derivatives bearing a lactam moiety, see: Tian & Peng (2008); Wu et al. (2007); Xi et al. (2011); Xu et al. (2009, 2011); Xu, Guo et al. (2010); Xu, Zhang et al. (2010); Zhang et al. (2008).

Experimental top

A portion of N-(rhodamine-6 G)lactam-ethylenediamine (228 mg, 0.5 mmol) and thiophenecarboxaldehyde (57.7 mg, 0.6 mmol) were combined in fresh distilled acetonitrile (50 ml). The reaction solution was refluxed for 24 h under N2 atmosphere. After that, the solution was cooled (concentrated to 10 ml) and allowed to stand at room temperature overnight. The precipitate which appeared next day was filtered and the crude product was purified by recrystallization from acetonitrile to give 247.6 mg of the title compound in 90% yield. Single crystals suitable for X-ray measurements were obtained from reaction mother liquid by slow evaporation at room temperature.

Refinement top

The H atoms attached to C, N and O atoms were placed in geometrically calculated positions (C—H = 0.93–0.97 Å and O—H = 0.82 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(methyl C, O).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the compound and the solvent methanol molecular view down a-axis.
3',6'-Bis(ethylamino)-2',7'-dimethyl-2-{2-(E)-[(thiophen-2- yl)methylideneamino]ethyl}spiro[isoindoline-1,9'-xanthen]-3-one methanol monosolvate top
Crystal data top
C33H34N4O2S·CH4OF(000) = 1240
Mr = 582.74Dx = 1.234 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.287 (2) ÅCell parameters from 3316 reflections
b = 9.493 (2) ŵ = 0.14 mm1
c = 35.754 (8) ÅT = 296 K
β = 95.683 (4)°Block, colorless
V = 3136.8 (12) Å30.25 × 0.23 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5610 independent reflections
Radiation source: fine-focus sealed tube3564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
phi and ω scansθmax = 25.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.965, Tmax = 0.975k = 1111
15561 measured reflectionsl = 4224
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.250H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1391P)2 + 1.4198P]
where P = (Fo2 + 2Fc2)/3
5610 reflections(Δ/σ)max < 0.001
385 parametersΔρmax = 1.10 e Å3
35 restraintsΔρmin = 0.56 e Å3
Crystal data top
C33H34N4O2S·CH4OV = 3136.8 (12) Å3
Mr = 582.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.287 (2) ŵ = 0.14 mm1
b = 9.493 (2) ÅT = 296 K
c = 35.754 (8) Å0.25 × 0.23 × 0.18 mm
β = 95.683 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5610 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3564 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.975Rint = 0.035
15561 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07735 restraints
wR(F2) = 0.250H-atom parameters constrained
S = 1.03Δρmax = 1.10 e Å3
5610 reflectionsΔρmin = 0.56 e Å3
385 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.3532 (3)0.0575 (4)0.04285 (10)0.0731 (9)
H30.28840.00010.04920.088*
C210.3228 (4)0.1405 (5)0.01026 (12)0.0769 (12)
H21A0.39160.11900.00760.092*
H21B0.33260.23950.01680.092*
C220.1706 (5)0.1118 (6)0.00738 (14)0.1012 (17)
H22A0.16290.01510.01520.152*
H22B0.14950.17200.02880.152*
H22C0.10300.13000.01070.152*
N21.2815 (3)0.4693 (3)0.07386 (9)0.0700 (9)
H21.36200.48740.08700.084*
C281.2508 (6)0.5386 (6)0.03806 (16)0.0947 (15)
H28A1.34180.56980.02970.114*
H28B1.21030.46920.02010.114*
C291.1596 (11)0.6506 (11)0.0368 (3)0.181 (3)
H29A1.06260.61830.03860.272*
H29B1.16370.69990.01340.272*
H29C1.18810.71300.05730.272*
S10.50637 (16)0.71838 (15)0.19815 (4)0.1033 (5)
O10.8277 (3)0.2390 (3)0.06317 (7)0.0677 (8)
C160.7508 (3)0.0775 (3)0.10973 (9)0.0468 (8)
C330.9946 (3)0.1860 (3)0.11752 (8)0.0448 (7)
C140.9616 (3)0.0529 (3)0.14470 (9)0.0437 (7)
C250.9593 (3)0.2555 (3)0.08435 (9)0.0493 (8)
C301.2295 (3)0.3048 (4)0.12193 (9)0.0508 (8)
N40.8638 (3)0.1385 (3)0.17287 (7)0.0463 (6)
C200.4841 (4)0.0657 (4)0.06497 (10)0.0577 (9)
C271.1875 (3)0.3756 (3)0.08784 (9)0.0516 (8)
C170.6351 (4)0.0026 (4)0.11972 (10)0.0573 (9)
H170.64810.05450.14190.069*
C90.9808 (3)0.0692 (3)0.18313 (9)0.0477 (8)
O20.9118 (3)0.0733 (3)0.23449 (7)0.0712 (7)
C230.5967 (4)0.1470 (4)0.05452 (10)0.0589 (9)
H230.58480.19820.03220.071*
C80.9173 (3)0.0521 (4)0.20091 (9)0.0511 (8)
C240.7267 (3)0.1532 (4)0.07680 (9)0.0515 (8)
C261.0530 (4)0.3494 (4)0.06969 (10)0.0579 (9)
H261.02430.39540.04720.070*
C150.8912 (3)0.0887 (3)0.13460 (8)0.0436 (7)
C321.1319 (3)0.2136 (3)0.13547 (9)0.0502 (8)
H321.15920.16750.15800.060*
C121.0738 (4)0.2726 (4)0.13768 (12)0.0616 (10)
H121.10520.34310.12240.074*
C131.0076 (3)0.1542 (4)0.12131 (10)0.0540 (8)
H130.99470.14370.09530.065*
C70.7759 (4)0.2598 (4)0.17917 (11)0.0559 (9)
H7A0.73850.24950.20340.067*
H7B0.69380.26090.16020.067*
N10.7468 (3)0.5095 (3)0.18310 (9)0.0635 (8)
C111.0941 (4)0.2885 (4)0.17591 (13)0.0669 (10)
H111.13980.36890.18620.080*
C50.7711 (4)0.5849 (4)0.21151 (12)0.0659 (10)
H50.85530.56970.22730.079*
C101.0479 (4)0.1873 (4)0.19906 (11)0.0621 (10)
H101.06150.19780.22500.074*
C30.7036 (6)0.7954 (6)0.25073 (17)0.1065 (18)
H3A0.78570.79880.26790.128*
C40.6718 (5)0.6968 (4)0.22100 (12)0.0725 (11)
C60.8522 (4)0.3990 (4)0.17837 (12)0.0641 (10)
H6A0.93030.40350.19850.077*
H6B0.89300.41080.15460.077*
C10.4698 (8)0.8549 (7)0.2229 (2)0.121 (2)
H10.38230.90310.21980.145*
C20.5783 (10)0.8903 (7)0.2483 (2)0.142 (3)
H2A0.57500.96970.26340.170*
O30.5909 (4)0.5509 (5)0.10809 (10)0.1090 (12)
H3B0.62200.55100.13040.164*
C340.6938 (7)0.6016 (7)0.08725 (18)0.126 (2)
H34A0.66590.69350.07790.188*
H34B0.70380.53940.06650.188*
H34C0.78440.60780.10260.188*
C180.5032 (4)0.0097 (4)0.09893 (11)0.0629 (10)
C190.3811 (5)0.0949 (6)0.11157 (15)0.0973 (16)
H19A0.41520.14820.13350.146*
H19B0.34530.15810.09180.146*
H19C0.30480.03310.11750.146*
C311.3756 (4)0.3270 (5)0.14240 (12)0.0770 (12)
H31A1.38740.26600.16390.116*
H31B1.38510.42330.15050.116*
H31C1.44850.30600.12600.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0471 (17)0.087 (2)0.080 (2)0.0115 (16)0.0174 (15)0.0034 (19)
C210.057 (2)0.093 (3)0.075 (3)0.004 (2)0.020 (2)0.011 (2)
C220.058 (3)0.143 (5)0.095 (3)0.007 (3)0.027 (2)0.024 (3)
N20.0590 (18)0.079 (2)0.071 (2)0.0209 (16)0.0008 (15)0.0240 (17)
C280.081 (3)0.088 (3)0.114 (4)0.021 (3)0.004 (3)0.040 (3)
C290.193 (9)0.179 (8)0.170 (8)0.020 (7)0.005 (7)0.007 (7)
S10.1007 (10)0.0925 (9)0.1156 (11)0.0222 (7)0.0048 (8)0.0020 (8)
O10.0522 (14)0.0884 (18)0.0585 (14)0.0218 (13)0.0145 (11)0.0252 (13)
C160.0396 (16)0.0493 (18)0.0501 (18)0.0038 (14)0.0019 (13)0.0029 (15)
C330.0427 (17)0.0447 (17)0.0462 (17)0.0008 (13)0.0002 (13)0.0029 (14)
C140.0352 (15)0.0459 (17)0.0492 (18)0.0076 (13)0.0003 (13)0.0038 (14)
C250.0438 (17)0.0559 (19)0.0467 (18)0.0054 (14)0.0028 (14)0.0044 (15)
C300.0428 (17)0.0556 (19)0.0527 (19)0.0068 (15)0.0022 (14)0.0047 (15)
N40.0449 (14)0.0462 (15)0.0472 (14)0.0008 (12)0.0013 (11)0.0020 (12)
C200.0448 (18)0.063 (2)0.062 (2)0.0004 (16)0.0102 (15)0.0086 (18)
C270.0465 (18)0.0512 (19)0.058 (2)0.0066 (15)0.0075 (15)0.0026 (16)
C170.0484 (19)0.061 (2)0.061 (2)0.0095 (16)0.0030 (16)0.0100 (17)
C90.0455 (17)0.0466 (18)0.0491 (18)0.0084 (14)0.0049 (14)0.0044 (15)
O20.0900 (19)0.0758 (17)0.0470 (14)0.0010 (15)0.0027 (13)0.0039 (13)
C230.0492 (19)0.070 (2)0.055 (2)0.0055 (17)0.0098 (16)0.0029 (17)
C80.0501 (18)0.0543 (19)0.0473 (19)0.0087 (15)0.0027 (14)0.0006 (16)
C240.0426 (17)0.061 (2)0.0496 (18)0.0058 (15)0.0009 (14)0.0006 (16)
C260.058 (2)0.063 (2)0.0512 (19)0.0083 (17)0.0012 (16)0.0146 (17)
C150.0397 (16)0.0460 (17)0.0442 (16)0.0030 (13)0.0010 (13)0.0025 (14)
C320.0427 (17)0.056 (2)0.0505 (18)0.0038 (15)0.0026 (14)0.0101 (15)
C120.050 (2)0.050 (2)0.085 (3)0.0005 (16)0.0104 (19)0.0049 (19)
C130.0457 (18)0.056 (2)0.060 (2)0.0050 (15)0.0064 (15)0.0048 (17)
C70.0488 (19)0.053 (2)0.065 (2)0.0001 (15)0.0029 (16)0.0059 (16)
N10.0647 (19)0.0474 (16)0.077 (2)0.0011 (14)0.0005 (16)0.0065 (16)
C110.057 (2)0.050 (2)0.093 (3)0.0025 (17)0.004 (2)0.014 (2)
C50.060 (2)0.063 (2)0.075 (3)0.0038 (18)0.0062 (19)0.005 (2)
C100.061 (2)0.058 (2)0.065 (2)0.0041 (18)0.0041 (18)0.0150 (19)
C30.093 (3)0.103 (4)0.125 (4)0.001 (3)0.018 (3)0.066 (3)
C40.080 (3)0.063 (2)0.077 (3)0.003 (2)0.021 (2)0.004 (2)
C60.057 (2)0.053 (2)0.082 (3)0.0007 (17)0.0056 (18)0.0047 (19)
C10.120 (5)0.108 (5)0.140 (5)0.032 (4)0.040 (4)0.004 (4)
C20.159 (7)0.115 (5)0.159 (6)0.019 (5)0.053 (5)0.055 (5)
O30.078 (2)0.149 (3)0.097 (2)0.047 (2)0.0066 (18)0.023 (2)
C340.099 (4)0.158 (6)0.121 (5)0.034 (4)0.015 (3)0.023 (4)
C180.0433 (19)0.067 (2)0.077 (3)0.0107 (17)0.0006 (17)0.003 (2)
C190.059 (3)0.127 (4)0.103 (3)0.034 (3)0.007 (2)0.022 (3)
C310.054 (2)0.097 (3)0.077 (3)0.025 (2)0.0080 (19)0.022 (2)
Geometric parameters (Å, º) top
N3—C201.385 (4)C17—H170.9300
N3—C211.412 (5)C9—C101.379 (5)
N3—H30.8600C9—C81.466 (5)
C21—C221.515 (5)O2—C81.223 (4)
C21—H21A0.9700C23—C241.381 (4)
C21—H21B0.9700C23—H230.9300
C22—H22A0.9600C26—H260.9300
C22—H22B0.9600C32—H320.9300
C22—H22C0.9600C12—C111.370 (6)
N2—C271.375 (4)C12—C131.383 (5)
N2—C281.442 (5)C12—H120.9300
N2—H20.8600C13—H130.9300
C28—C291.357 (10)C7—C61.502 (5)
C28—H28A0.9700C7—H7A0.9700
C28—H28B0.9700C7—H7B0.9700
C29—H29A0.9600N1—C51.245 (5)
C29—H29B0.9600N1—C61.456 (5)
C29—H29C0.9600C11—C101.365 (5)
S1—C11.625 (7)C11—H110.9300
S1—C41.680 (5)C5—C41.468 (6)
O1—C241.368 (4)C5—H50.9300
O1—C251.381 (4)C10—H100.9300
C16—C241.379 (4)C3—C41.425 (6)
C16—C171.392 (4)C3—C21.468 (9)
C16—C151.507 (4)C3—H3A0.9300
C33—C251.368 (4)C6—H6A0.9700
C33—C321.394 (4)C6—H6B0.9700
C33—C151.505 (4)C1—C21.330 (9)
C14—C131.370 (5)C1—H10.9300
C14—C91.377 (4)C2—H2A0.9300
C14—C151.522 (4)O3—C341.357 (6)
C25—C261.384 (5)O3—H3B0.8200
C30—C321.376 (4)C34—H34A0.9600
C30—C271.413 (5)C34—H34B0.9600
C30—C311.492 (5)C34—H34C0.9600
N4—C81.351 (4)C18—C191.498 (5)
N4—C71.442 (4)C19—H19A0.9600
N4—C151.493 (4)C19—H19B0.9600
C20—C231.381 (5)C19—H19C0.9600
C20—C181.405 (5)C31—H31A0.9600
C27—C261.372 (5)C31—H31B0.9600
C17—C181.370 (5)C31—H31C0.9600
C20—N3—C21122.1 (3)C25—C26—H26119.5
C20—N3—H3118.9N4—C15—C33110.5 (2)
C21—N3—H3118.9N4—C15—C16110.3 (2)
N3—C21—C22110.2 (4)C33—C15—C16110.7 (2)
N3—C21—H21A109.6N4—C15—C1499.8 (2)
C22—C21—H21A109.6C33—C15—C14111.2 (2)
N3—C21—H21B109.6C16—C15—C14113.8 (2)
C22—C21—H21B109.6C30—C32—C33124.1 (3)
H21A—C21—H21B108.1C30—C32—H32117.9
C21—C22—H22A109.5C33—C32—H32117.9
C21—C22—H22B109.5C11—C12—C13121.6 (4)
H22A—C22—H22B109.5C11—C12—H12119.2
C21—C22—H22C109.5C13—C12—H12119.2
H22A—C22—H22C109.5C14—C13—C12117.7 (3)
H22B—C22—H22C109.5C14—C13—H13121.2
C27—N2—C28122.7 (3)C12—C13—H13121.2
C27—N2—H2118.6N4—C7—C6115.1 (3)
C28—N2—H2118.6N4—C7—H7A108.5
C29—C28—N2117.1 (6)C6—C7—H7A108.5
C29—C28—H28A108.0N4—C7—H7B108.5
N2—C28—H28A108.0C6—C7—H7B108.5
C29—C28—H28B108.0H7A—C7—H7B107.5
N2—C28—H28B108.0C5—N1—C6116.0 (3)
H28A—C28—H28B107.3C10—C11—C12120.4 (3)
C28—C29—H29A109.5C10—C11—H11119.8
C28—C29—H29B109.5C12—C11—H11119.8
H29A—C29—H29B109.5N1—C5—C4122.5 (4)
C28—C29—H29C109.5N1—C5—H5118.7
H29A—C29—H29C109.5C4—C5—H5118.7
H29B—C29—H29C109.5C11—C10—C9118.6 (3)
C1—S1—C493.6 (3)C11—C10—H10120.7
C24—O1—C25118.2 (2)C9—C10—H10120.7
C24—C16—C17116.1 (3)C4—C3—C2104.7 (5)
C24—C16—C15121.6 (3)C4—C3—H3A127.6
C17—C16—C15122.1 (3)C2—C3—H3A127.6
C25—C33—C32116.0 (3)C3—C4—C5124.0 (4)
C25—C33—C15122.7 (3)C3—C4—S1113.3 (4)
C32—C33—C15121.3 (3)C5—C4—S1122.8 (3)
C13—C14—C9120.9 (3)N1—C6—C7107.9 (3)
C13—C14—C15128.9 (3)N1—C6—H6A110.1
C9—C14—C15110.3 (3)C7—C6—H6A110.1
C33—C25—O1122.9 (3)N1—C6—H6B110.1
C33—C25—C26122.2 (3)C7—C6—H6B110.1
O1—C25—C26114.9 (3)H6A—C6—H6B108.4
C32—C30—C27117.9 (3)C2—C1—S1112.8 (5)
C32—C30—C31121.0 (3)C2—C1—H1123.6
C27—C30—C31121.1 (3)S1—C1—H1123.6
C8—N4—C7122.8 (3)C1—C2—C3115.3 (6)
C8—N4—C15113.9 (3)C1—C2—H2A122.3
C7—N4—C15123.1 (3)C3—C2—H2A122.3
C23—C20—N3121.5 (3)C34—O3—H3B109.5
C23—C20—C18119.0 (3)O3—C34—H34A109.5
N3—C20—C18119.5 (3)O3—C34—H34B109.5
C26—C27—N2121.8 (3)H34A—C34—H34B109.5
C26—C27—C30118.8 (3)O3—C34—H34C109.5
N2—C27—C30119.4 (3)H34A—C34—H34C109.5
C18—C17—C16124.0 (3)H34B—C34—H34C109.5
C18—C17—H17118.0C17—C18—C20118.2 (3)
C16—C17—H17118.0C17—C18—C19121.7 (4)
C14—C9—C10120.8 (3)C20—C18—C19120.1 (3)
C14—C9—C8109.1 (3)C18—C19—H19A109.5
C10—C9—C8130.1 (3)C18—C19—H19B109.5
C20—C23—C24120.7 (3)H19A—C19—H19B109.5
C20—C23—H23119.7C18—C19—H19C109.5
C24—C23—H23119.7H19A—C19—H19C109.5
O2—C8—N4125.5 (3)H19B—C19—H19C109.5
O2—C8—C9127.7 (3)C30—C31—H31A109.5
N4—C8—C9106.8 (3)C30—C31—H31B109.5
O1—C24—C16123.8 (3)H31A—C31—H31B109.5
O1—C24—C23114.3 (3)C30—C31—H31C109.5
C16—C24—C23122.0 (3)H31A—C31—H31C109.5
C27—C26—C25121.0 (3)H31B—C31—H31C109.5
C27—C26—H26119.5
C20—N3—C21—C22178.4 (4)C25—C33—C15—N4120.9 (3)
C27—N2—C28—C2979.0 (7)C32—C33—C15—N457.2 (4)
C32—C33—C25—O1179.7 (3)C25—C33—C15—C161.7 (4)
C15—C33—C25—O12.1 (5)C32—C33—C15—C16179.8 (3)
C32—C33—C25—C261.0 (5)C25—C33—C15—C14129.2 (3)
C15—C33—C25—C26177.2 (3)C32—C33—C15—C1452.7 (4)
C24—O1—C25—C332.5 (5)C24—C16—C15—N4120.7 (3)
C24—O1—C25—C26176.8 (3)C17—C16—C15—N455.2 (4)
C21—N3—C20—C235.7 (6)C24—C16—C15—C332.0 (4)
C21—N3—C20—C18174.1 (4)C17—C16—C15—C33177.9 (3)
C28—N2—C27—C264.7 (6)C24—C16—C15—C14128.1 (3)
C28—N2—C27—C30175.7 (4)C17—C16—C15—C1456.0 (4)
C32—C30—C27—C260.7 (5)C13—C14—C15—N4177.2 (3)
C31—C30—C27—C26178.6 (4)C9—C14—C15—N44.9 (3)
C32—C30—C27—N2178.9 (3)C13—C14—C15—C3366.1 (4)
C31—C30—C27—N21.8 (5)C9—C14—C15—C33111.7 (3)
C24—C16—C17—C180.3 (5)C13—C14—C15—C1659.7 (4)
C15—C16—C17—C18176.4 (3)C9—C14—C15—C16122.4 (3)
C13—C14—C9—C100.6 (5)C27—C30—C32—C330.4 (5)
C15—C14—C9—C10177.5 (3)C31—C30—C32—C33178.9 (4)
C13—C14—C9—C8178.1 (3)C25—C33—C32—C300.4 (5)
C15—C14—C9—C83.8 (3)C15—C33—C32—C30177.9 (3)
N3—C20—C23—C24179.6 (3)C9—C14—C13—C120.1 (4)
C18—C20—C23—C240.7 (6)C15—C14—C13—C12177.6 (3)
C7—N4—C8—O28.3 (5)C11—C12—C13—C140.5 (5)
C15—N4—C8—O2177.7 (3)C8—N4—C7—C6103.6 (4)
C7—N4—C8—C9171.4 (3)C15—N4—C7—C682.9 (4)
C15—N4—C8—C92.6 (3)C13—C12—C11—C100.6 (5)
C14—C9—C8—O2178.9 (3)C6—N1—C5—C4177.4 (3)
C10—C9—C8—O20.3 (6)C12—C11—C10—C90.1 (5)
C14—C9—C8—N40.8 (3)C14—C9—C10—C110.5 (5)
C10—C9—C8—N4179.4 (3)C8—C9—C10—C11177.9 (3)
C25—O1—C24—C162.9 (5)C2—C3—C4—C5177.0 (5)
C25—O1—C24—C23177.7 (3)C2—C3—C4—S14.4 (6)
C17—C16—C24—O1178.9 (3)N1—C5—C4—C3172.5 (5)
C15—C16—C24—O12.8 (5)N1—C5—C4—S19.0 (6)
C17—C16—C24—C231.7 (5)C1—S1—C4—C32.2 (4)
C15—C16—C24—C23177.8 (3)C1—S1—C4—C5179.1 (4)
C20—C23—C24—O1179.3 (3)C5—N1—C6—C7118.2 (4)
C20—C23—C24—C161.2 (6)N4—C7—C6—N1176.9 (3)
N2—C27—C26—C25179.5 (3)C4—S1—C1—C21.0 (6)
C30—C27—C26—C250.1 (5)S1—C1—C2—C34.0 (9)
C33—C25—C26—C270.8 (6)C4—C3—C2—C15.3 (8)
O1—C25—C26—C27179.9 (3)C16—C17—C18—C201.5 (6)
C8—N4—C15—C33112.6 (3)C16—C17—C18—C19178.4 (4)
C7—N4—C15—C3373.4 (3)C23—C20—C18—C172.0 (5)
C8—N4—C15—C16124.6 (3)N3—C20—C18—C17178.2 (3)
C7—N4—C15—C1649.4 (4)C23—C20—C18—C19178.0 (4)
C8—N4—C15—C144.6 (3)N3—C20—C18—C191.8 (6)
C7—N4—C15—C14169.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.862.273.108166
C5—H5···O2ii0.932.443.360170
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC33H34N4O2S·CH4O
Mr582.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.287 (2), 9.493 (2), 35.754 (8)
β (°) 95.683 (4)
V3)3136.8 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.25 × 0.23 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.965, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
15561, 5610, 3564
Rint0.035
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.250, 1.03
No. of reflections5610
No. of parameters385
No. of restraints35
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 0.56

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.8602.2703.108166
C5—H5···O2ii0.9302.4403.360170
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Foundation for Key Youth Teachers of Henan Province, the Foundation for Key Youth Teachers of Xuchang University, Henan Province Science and Technology project (122300410005) and the Natural Science Foundation of the Education Department of Henan Province (12 A150029) for financial support.

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, M.-Z. & Peng, X.-J. (2008). Acta Cryst. E64, o1645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, D., Huang, W., Duan, C.-Y., Lin, Z.-H. & Meng, Q.-J. (2007). Inorg. Chem. 46, 1538–1540.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXi, P., Huang, L., Xie, G., Chen, F., Xu, Z., Bai, D. & Zeng, Z. (2011). Dalton Trans. 40, 6382–6384.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationXu, Z., Guo, W., Su, B., Shen, X.-K. & Yang, F. (2010). Acta Cryst. E66, o1500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, Z.-H., Wang, H.-S., Tao, L.-T. & Wang, H.-W. (2009). Acta Cryst. E65, o1876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, Z., Zhang, L., Guo, R., Xiang, T., Wu, C., Zheng, Z. & Yang, F. (2011). Sens. Actuator B Chem. 156, 546–552.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, Z.-H., Zhang, Y.-L., Zhao, Y.-R. & Yang, F.-L. (2010). Acta Cryst. E66, o1504.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L.-Z., Peng, X.-J., Gao, S. & Fan, J.-L. (2008). Acta Cryst. E64, o403.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1556
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds