metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m567-m568

trans-Bis(acetato-κO)bis­­(2-amino­ethanol-κ2N,O)nickel(II)

aTechnische Universität Darmstadt, Fachbereich Material- und Geowissenschaften, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: mseifba@materials.tu-darmstadt.de

(Received 13 March 2012; accepted 2 April 2012; online 13 April 2012)

In the title compound, [Ni(CH3CO2)2(C2H7NO)2], the NiII cation, located on an inversion center, is N,O-chelated by two 2-amino­ethanol mol­ecules and further coordinated by two monodendate acetate anions in a slightly distorted octa­hedral geometry. The latter is stabilized by intra­molecular O—H⋯O hydrogen bonds involving the non-coordinated O atom of the acetate and the H atom of the hy­droxy group of the 2-amino­ethanol ligand. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular framework that involves (a) the coordinated acetate O atom and one of the H atoms of the amino group and (b) the non-coordinated acetate O atom and the other H atom of the amino group.

Related literature

For an application of the title compound, see: Baza­rjani et al. (2011[Bazarjani, M. S., Kleebe, H. J., Muller, M. M., Fasel, C., Yazdi, M. B., Gurlo, A. & Riedel, R. (2011). Chem. Mater. 23, 4112-4123.]). For the synthesis of NiO via the sol-gel route, see: Ozer & Lampert (1998[Ozer, N. & Lampert, C. M. (1998). Sol. Energy Mater. Sol. Cells, 54, 147-156.]); Livage & Ganguli (2001[Livage, J. & Ganguli, D. (2001). Sol. Energy Mater. Sol. Cells, 68, 365-381.]). For supra­molecular structures of transition metal complexes, see: Desiraju (1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.], 2007[Desiraju, G. R. (2007). Angew. Chem. Int. Ed. Engl. 46, 8342-8356.]). For related structures, see: Downie et al. (1971[Downie, T. C., Harrison, W., Raper, E. S. & Hepworth, M. A. (1971). Acta Cryst. B27, 706-712.]); Werner et al. (1996[Werner, M., Berner, J. & Jones, P. G. (1996). Acta Cryst. C52, 72-74.]); Williams et al. (2001[Williams, P. A., Jones, A. C., Bickley, J. F., Steiner, A., Davies, H. O., Leedham, T. J., Impey, S. A., Garcia, J., Allen, S., Rougier, A. & Blyr, A. (2001). J. Mater. Chem. 11, 2329-2334.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2H3O2)2(C2H7NO)2]

  • Mr = 298.97

  • Monoclinic, P 21 /c

  • a = 5.3284 (5) Å

  • b = 9.216 (1) Å

  • c = 13.133 (2) Å

  • β = 94.22 (1)°

  • V = 643.17 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 293 K

  • 0.16 × 0.08 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.792, Tmax = 0.914

  • 2309 measured reflections

  • 1314 independent reflections

  • 1035 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.093

  • S = 1.03

  • 1314 reflections

  • 89 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11N⋯O2i 0.85 (2) 2.24 (2) 3.071 (3) 168 (3)
N1—H12N⋯O3ii 0.86 (2) 2.60 (2) 3.352 (3) 146 (3)
O1—H1O⋯O3 0.81 (2) 1.80 (2) 2.587 (3) 166 (3)
Symmetry codes: (i) x-1, y, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The synthesis of the title compound is performed at room temperature under ambient conditions by substituting H2O of [Ni(CH3CO2)2(H2O)4] with 2-aminoethanol. As the title compound is water-free, stable under ambient conditions and well soluble in lower alcohols, it represents a cost effective precursor for the sol-gel synthesis of NiO-based nanostrutures. The latter are of interest for switchable automobile mirrors and smart windows (Ozer & Lampert, 1998). Another application of the title compound is the synthesis of nanocomposite materials; nickel-polysilazane materials with ultrasmall and well dispersed nickel nanoparticles were obtained at room temperature in the reaction between the title compound and a polysilazane (Bazarjani et al., 2011). The title compound possesses significantly higher stability and higher solubility in lower alcohols when compared with a similar NiII complex coordinated by two N,N-dimethylaminoethanol molecules, [Ni(CH3CO2)2(C4H11NO)2], which is air-sensitive (Williams et al., 2001). These differences are due to the –NH2 group of the 2-aminoethanol ligand which is in the solid state hydrogen bonded to neighbouring [Ni(CH3CO2)2(C2H7NO)2] units and in solution it can get involved in hydrogen bonding with lower alcohols. The former results in the increased stability of the title compound, the latter is responsible for higher solubility of the title compound in alcohols (e.g. for methanol, compare 0.18 mol l-1 for the title compund to 0.10 mol l-1 for [Ni(CH3CO2)2(C4H11NO)2] at 25 °C).

Figure 1 shows a perspective view of the NiII coordination in the title compound; the atom numbering scheme, the interatomic distances and angles are also indicated. The distortion from octahedral symmetry is due to the slight deviation of the internal bite angle of the 2-aminoethanol ligands from 90°, i.e. 83.16 (9)° for N1—Ni1—O1i, which is similar to that observed in [Ni(CH3CO2)2(C4H11NO)2] (Williams et al., 2001). The title compound is stabilized through inter- and intramolecular O—H···O and N—H···O hydrogen bonds similar to those of other supramolecular crystals of transition metal complexes (Desiraju, 1995, 2007) (Figure 2, Table 1).

The geometry and coordination of the monodentate acetate group in the title compound is comparable to those in [Ni(CH3CO2)2(H2O)4] (Downie et al., 1971), in [Ni(CH3CO2)2(C6H7N3O)2(EtOH)2] (Werner et al., 1996), and in [Ni(CH3CO2)2(C4H11NO)2] (Williams et al., 2001). The acetate groups are close to be fully ionized (CH3CO2-); as in a fully ionized acetate, the C–C–O angles (B and C in Figure 3) are about 115.7° and the O–C–O angle is about 126° (A in Figure 3, Table 2) (Williams et al., 2001). The length of the Ni—O(acetate) (Table 3), Ni—O(non-acetate) (Table 4) and Ni—N bonds (Table 5) in the title compound are comparable to those in similar NiII complexes, i.e. in [Ni(CH3CO2)2(C4H11NO)2] (Williams et al., 2001), [Ni(CH3CO2)2(H2O)4] (Downie et al., 1971) and [Ni(CH3CO2)2(C6H7N3O)2(EtOH)2] (Werner et al., 1996).

Related literature top

For an application of the title compound, see: Bazarjani et al. (2011). For the synthesis of NiO via the sol-gel route, see: Ozer & Lampert (1998); Livage & Ganguli (2001). For supramolecular crystals of transition metal complexes, see: Desiraju (1995, 2007). For related structures, see: Downie et al. (1971); Werner et al. (1996); Williams et al. (2001).

Experimental top

Synthesis of title compound. 5.76 g of nickel (II) acetate tetrahydrate (>=99.0%, Sigma Aldrich) was added to 150 cm3 absolute ethanol (>=98, Sigma Aldrich) and mixed with 4.24 g of ethanolamine (>=99.0%, Sigma Aldrich) in a molar ratio of 1:3. The resultant bluish solution was stirred in air for 24 h, paper filtered to remove any insoluble compounds and used for the crystallization of single crystals based on the following procedure: one third of the latter bluish clear solution was removed via distillation under vacuum at room temperature. The solution was kept at 5 °C for two weeks to grow the single crystals.

Refinement top

The H atoms of the NH group and OH group were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å and O—H = 0.82 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. A perspective view of crystal structure of the title compound: intramolecular and intermolecular hydrogen bonding among the [Ni(CH3CO2)2(C2H7NO)2] units.
[Figure 3] Fig. 3. Geometry of the monodentate acetate group. For values of bond lengths a and b and bond angles A, B and C see Table 2.
trans-Bis(acetato-κO)bis(2-aminoethanol- κ2N,O)nickel(II) top
Crystal data top
[Ni(C2H3O2)2(C2H7NO)2]F(000) = 316
Mr = 298.97Dx = 1.544 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1155 reflections
a = 5.3284 (5) Åθ = 2.7–28.0°
b = 9.216 (1) ŵ = 1.53 mm1
c = 13.133 (2) ÅT = 293 K
β = 94.22 (1)°Rod, light blue
V = 643.17 (13) Å30.16 × 0.08 × 0.06 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1314 independent reflections
Radiation source: fine-focus sealed tube1035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 46
Tmin = 0.792, Tmax = 0.914k = 116
2309 measured reflectionsl = 1611
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.1361P]
where P = (Fo2 + 2Fc2)/3
1314 reflections(Δ/σ)max < 0.001
89 parametersΔρmax = 0.32 e Å3
3 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Ni(C2H3O2)2(C2H7NO)2]V = 643.17 (13) Å3
Mr = 298.97Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.3284 (5) ŵ = 1.53 mm1
b = 9.216 (1) ÅT = 293 K
c = 13.133 (2) Å0.16 × 0.08 × 0.06 mm
β = 94.22 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1314 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1035 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.914Rint = 0.022
2309 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0363 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.32 e Å3
1314 reflectionsΔρmin = 0.25 e Å3
89 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0425 (6)0.1901 (3)0.0329 (3)0.0405 (7)
H1A0.14600.15860.02690.049*
H1B0.04140.11330.08340.049*
C20.2241 (5)0.7831 (3)0.0038 (2)0.0373 (7)
H2A0.28460.86730.03140.045*
H2B0.33460.76690.06480.045*
C30.2827 (5)0.4706 (3)0.2084 (2)0.0344 (7)
C40.5055 (6)0.5114 (5)0.2804 (2)0.0572 (10)
H4A0.55770.60850.26580.069*
H4B0.64170.44550.27170.069*
H4C0.45870.50640.34950.069*
N10.2255 (4)0.6560 (3)0.06274 (18)0.0304 (5)
H11N0.373 (4)0.624 (3)0.069 (2)0.036*
H12N0.161 (5)0.681 (3)0.1224 (16)0.036*
O10.1486 (4)0.3187 (2)0.07349 (15)0.0315 (5)
H1O0.077 (5)0.328 (4)0.1293 (16)0.038*
O20.2717 (3)0.5287 (2)0.12075 (15)0.0331 (5)
O30.1255 (4)0.3817 (3)0.23830 (16)0.0475 (6)
Ni10.00000.50000.00000.02502 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0472 (17)0.0281 (15)0.0470 (17)0.0085 (13)0.0089 (14)0.0003 (13)
C20.0388 (16)0.0297 (15)0.0437 (17)0.0039 (13)0.0053 (13)0.0015 (14)
C30.0283 (13)0.0462 (19)0.0286 (15)0.0031 (12)0.0011 (11)0.0047 (12)
C40.0442 (18)0.098 (3)0.0287 (15)0.016 (2)0.0052 (14)0.0002 (19)
N10.0269 (11)0.0343 (13)0.0303 (13)0.0046 (10)0.0048 (10)0.0000 (11)
O10.0288 (10)0.0335 (11)0.0325 (11)0.0061 (9)0.0037 (8)0.0012 (9)
O20.0282 (9)0.0412 (12)0.0292 (10)0.0055 (8)0.0024 (8)0.0035 (8)
O30.0456 (12)0.0659 (15)0.0308 (11)0.0150 (12)0.0010 (9)0.0109 (11)
Ni10.0218 (2)0.0271 (3)0.0259 (3)0.0032 (2)0.00023 (17)0.0028 (2)
Geometric parameters (Å, º) top
C1—O11.432 (4)C4—H4B0.9600
C1—C2i1.518 (4)C4—H4C0.9600
C1—H1A0.9700N1—Ni12.082 (2)
C1—H1B0.9700N1—H11N0.849 (17)
C2—N11.462 (4)N1—H12N0.863 (17)
C2—C1i1.518 (4)O1—Ni12.1129 (19)
C2—H2A0.9700O1—H1O0.805 (17)
C2—H2B0.9700O2—Ni12.0841 (19)
C3—O31.255 (3)Ni1—N1i2.082 (2)
C3—O21.267 (4)Ni1—O2i2.0841 (19)
C3—C41.510 (4)Ni1—O1i2.1129 (19)
C4—H4A0.9600
O1—C1—C2i111.2 (2)Ni1—N1—H11N111 (2)
O1—C1—H1A109.4C2—N1—H12N108 (2)
C2i—C1—H1A109.4Ni1—N1—H12N110 (2)
O1—C1—H1B109.4H11N—N1—H12N108 (3)
C2i—C1—H1B109.4C1—O1—Ni1108.21 (16)
H1A—C1—H1B108.0C1—O1—H1O105 (2)
N1—C2—C1i109.1 (2)Ni1—O1—H1O100 (2)
N1—C2—H2A109.9C3—O2—Ni1128.35 (18)
C1i—C2—H2A109.9N1—Ni1—N1i180.0
N1—C2—H2B109.9N1—Ni1—O2i90.00 (9)
C1i—C2—H2B109.9N1i—Ni1—O2i90.00 (9)
H2A—C2—H2B108.3N1—Ni1—O290.00 (9)
O3—C3—O2125.0 (3)N1i—Ni1—O290.00 (9)
O3—C3—C4118.6 (3)O2i—Ni1—O2180.00 (8)
O2—C3—C4116.4 (3)N1—Ni1—O1i83.18 (9)
C3—C4—H4A109.5N1i—Ni1—O1i96.82 (9)
C3—C4—H4B109.5O2i—Ni1—O1i90.90 (7)
H4A—C4—H4B109.5O2—Ni1—O1i89.10 (8)
C3—C4—H4C109.5N1—Ni1—O196.82 (9)
H4A—C4—H4C109.5N1i—Ni1—O183.18 (9)
H4B—C4—H4C109.5O2i—Ni1—O189.10 (8)
C2—N1—Ni1106.76 (16)O2—Ni1—O190.90 (7)
C2—N1—H11N113 (2)O1i—Ni1—O1180.00 (9)
C1i—C2—N1—Ni143.2 (3)C3—O2—Ni1—N184.3 (2)
C2i—C1—O1—Ni132.6 (3)C3—O2—Ni1—N1i95.7 (2)
O3—C3—O2—Ni10.3 (4)C3—O2—Ni1—O1i167.5 (2)
C4—C3—O2—Ni1179.4 (2)C3—O2—Ni1—O112.5 (2)
C2—N1—Ni1—O2i70.53 (18)C1—O1—Ni1—N1173.11 (17)
C2—N1—Ni1—O2109.47 (18)C1—O1—Ni1—N1i6.89 (17)
C2—N1—Ni1—O1i20.37 (17)C1—O1—Ni1—O2i83.22 (17)
C2—N1—Ni1—O1159.63 (17)C1—O1—Ni1—O296.78 (17)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O2ii0.85 (2)2.24 (2)3.071 (3)168 (3)
N1—H12N···O3iii0.86 (2)2.60 (2)3.352 (3)146 (3)
O1—H1O···O30.81 (2)1.80 (2)2.587 (3)166 (3)
Symmetry codes: (ii) x1, y, z; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C2H3O2)2(C2H7NO)2]
Mr298.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.3284 (5), 9.216 (1), 13.133 (2)
β (°) 94.22 (1)
V3)643.17 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.16 × 0.08 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.792, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
2309, 1314, 1035
Rint0.022
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 1.03
No. of reflections1314
No. of parameters89
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.25

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O2i0.849 (17)2.236 (18)3.071 (3)168 (3)
N1—H12N···O3ii0.863 (17)2.60 (2)3.352 (3)146 (3)
O1—H1O···O30.805 (17)1.799 (19)2.587 (3)166 (3)
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2.
Geometry of monodentate acetate groups in different octahedral NiII complexes (for definitions of bond lengths and angles, please refer to Fig. 3). top
ComplexC—OaC—ObC—CABCReference
[Ni(CH3CO2)2(C2H7NO)2]1.255 (3)1.267 (4)1.510 (4)125.0 (3)118.6 (3)116.4 (3)This work
[Ni(CH3CO2)2(C4H11NO)2]1.260 (4), 1.249 (4)1.263 (4)1.498 (5), 1.504 (5)124.6 (3), 125.7 (3)118.0 (3), 117.7 (3)117.4 (3), 116.6 (3)Williams et al. (2001)
[Ni(CH3CO2)2(H2O)4]1.255 (5)1.272 (5)1.503 (3)122.5119.5117.9Downie et al. (1971)
[Ni(CH3CO2)2(C6H7N3O)2(EtOH)2]1.255 (4)1.265 (4)1.511 (5)124.7 (3)117.3 (3)117.9 (3)Werner et al. (1996)
Ni—O(acetate) bond lengths (Å) and angles (°) in different NiII complexes. top
ComplexNi—O(acetate)Reference
[Ni(CH3CO2)2(C2H7NO)2]2.0841 (19)This work
[Ni(CH3CO2)2(C4H11NO)2]2.050 (2), 2.043 (2)Williams et al. (2001)
[Ni(CH3CO2)2(H2O)4]2.067 (3)Downie et al. (1971)
[Ni(CH3CO2)2(C6H7N3O)2(EtOH)2]2.118 (2)Werner et al. (1996)
Ni—O(non-acetate ligand) bond lengths (Å) in different NiII complexes. top
ComplexNi—O(non-acetate ligand)Reference
[Ni(CH3CO2)2(C2H7NO)2]Ni—O (C2H7NO) 2.1129 (19)This work
[Ni(CH3CO2)2(C4H11NO)2]Ni—O (C4H11NO) 2.111 (2), 2.109 (2)Williams et al. (2001)
[Ni(CH3CO2)2(H2O)4]Ni—O (H2O) 2.048 (4)Downie et al. (1971)
[Ni(C5H8O2)2(C4H11NO)]Ni—O (C5H8O2) 2.026 (3), 2.013 (4), 2.024 (4), 2.2045 (3); Ni—O (C4H11NO) 2.111 (4)Williams et al. (2001)
Ni—N bond lengths (Å) in different NiII complexes. top
ComplexNi—N (Å)Reference
[Ni(CH3CO2)2(C2H7NO)2]Ni—N 2.082 (2)This work
[Ni(CH3CO2)2(C4H11NO)2]Ni—N 2.142 (3), 2.145 (3)Williams et al. (2001)
[Ni(C5H8O2)2(C4H11NO)]Ni—N 2.169 (4)Williams et al. (2001)
[Ni(CH3CO2)2(C6H7N3O)2(EtOH)2]Ni—N 2.054 (3), 2.116 (3)Werner et al. (1996)
 

Acknowledgements

This work was performed within the framework of the project "Thermoresistant Ceramic Membranes with Integrated Gas Sensor for High Temperature Separation and Detection of Hydrogen and Carbon Monoxide" as part of the DFG Priority Programme "Adapting Surfaces for High Temperature Applications" (DFG-SPP 1299, www.spp-haut.de, DFG – German Research Foundation).

References

First citationBazarjani, M. S., Kleebe, H. J., Muller, M. M., Fasel, C., Yazdi, M. B., Gurlo, A. & Riedel, R. (2011). Chem. Mater. 23, 4112–4123.  CAS Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. (2007). Angew. Chem. Int. Ed. Engl. 46, 8342–8356.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDownie, T. C., Harrison, W., Raper, E. S. & Hepworth, M. A. (1971). Acta Cryst. B27, 706–712.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLivage, J. & Ganguli, D. (2001). Sol. Energy Mater. Sol. Cells, 68, 365–381.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationOzer, N. & Lampert, C. M. (1998). Sol. Energy Mater. Sol. Cells, 54, 147–156.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWerner, M., Berner, J. & Jones, P. G. (1996). Acta Cryst. C52, 72–74.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, P. A., Jones, A. C., Bickley, J. F., Steiner, A., Davies, H. O., Leedham, T. J., Impey, S. A., Garcia, J., Allen, S., Rougier, A. & Blyr, A. (2001). J. Mater. Chem. 11, 2329–2334.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m567-m568
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds