organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1399

4,4′-Di­nitro-2,2′-[propane-1,3-diylbis(iminiumylmethanylyl­­idene)]diphenolate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 10 April 2012; accepted 10 April 2012; online 18 April 2012)

The title compound, C17H16N4O6, is a Schiff base, which is found as a bis-zwitterion in the solid state. The geometry around the iminium N atom indicates sp2-hybridization. The diiminiumpropyl­ene chain is in an approximate double-gauche conformation, with average N—C—C—C torsion angles of 69.3°. The zwitterion shows strong intra­molecular N—H⋯O hydrogen bonds between the iminium N and phenolate O atom. In the crystal, bifurcated N—H⋯(O,O) hydrogen bonds assemble pairs of molecules into inversion dimers.

Related literature

For the crystal structure of the related zwitterion, 4-nitro-2-{[(tricyclo­[3.3.1.13,7]decan-1-yl)iminium­yl]meth­yl}phenolate, see: Ha (2012[Ha, K. (2012). Acta Cryst. E68, o1221.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16N4O6

  • Mr = 372.34

  • Orthorhombic, P b c a

  • a = 11.5698 (5) Å

  • b = 13.0393 (6) Å

  • c = 22.0393 (10) Å

  • V = 3324.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 200 K

  • 0.31 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.890, Tmax = 1.000

  • 23432 measured reflections

  • 4120 independent reflections

  • 2286 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.138

  • S = 1.03

  • 4120 reflections

  • 252 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H3N⋯O1 0.93 (3) 1.77 (3) 2.583 (2) 145 (3)
N3—H2N⋯O4 0.90 (3) 1.93 (3) 2.642 (2) 135 (2)
N3—H2N⋯O4i 0.90 (3) 2.17 (3) 2.891 (2) 136 (2)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, C17H16N4O6, is a tetradentate Schiff base, which can act as a dibasic ligand, that is, the N2O2 donor atoms can coordinate to a metal ion. In the crystal structure, the Schiff base is found as a bis(zwitterion) in the phenolate-iminium forms (Fig. 1), similar to the structure of the related zwitterion 4-nitro-2-{[(tricyclo[3.3.1.13,7]decan-1-yl)iminiumyl]methyl}phenolate (Ha, 2012). It seems that the acid strength of the phenol was reinforced by the inductive effects of the electron-withdrawing NO2 group.

The N—C bond lengths and the C—N—C bond angles indicate that the iminium N atoms are sp2-hybridized [N2C7 = 1.292 (2) Å, N2—C8 = 1.456 (3) Å, <C7—N2—C8 = 125.25 (19)°; N3C11 = 1.293 (3) Å, N3—C10 = 1.457 (3) Å, <C11—N3—C10 = 124.97 (18)°]. The dihedral angles for the four atoms within the diiminiumpropylene chain display that the chain is approximately in the double gauche conformation [<N2—C8—C9—C10 = 69.6 (2)° and <C8—C9—C10—N3 = 69.0 (2)°]. The zwitterion shows strong intramolecular N—H···O hydrogen bonds between the iminium N atom and the phenolate O atom, with N···O distances of 2.583 (2) Å and 2.642 (2) Å, forming nearly planar six-membered rings (Fig. 2, Table 1). Two ions are assembled by additional intermolecular N—H···O hydrogen bonds with N···O = 2.891 (2) Å, forming a dimer-type species (Fig. 2, Table 1). In the crystal structure, the benzene rings are not parallel, the dihedral angle between the rings being 11.45 (2)°. Several π-π interactions between the adjacent benzene rings are present, the shortest centroid-centroid distance being 3.5432 (11) Å.

Related literature top

For the crystal structure of the related zwitterion, 4-nitro-2-{[(tricyclo[3.3.1.13,7]decan-1-yl)iminiumyl]methyl}phenolate, see: Ha (2012).

Experimental top

1,3-Diaminopropane (0.3704 g, 5.00 mmol) and 5-nitrosalicylaldehyde (1.6719 g, 10.00 mmol) in EtOH (20 ml) were stirred for 2 h at room temparature. After addition of pentane (30 ml) to the reaction mixture, the formed precipitate was separated by filtration, washed with ether (50 ml), and dried at 323 K, to give a yellow powder (1.8169 g). Yellow block-like crystals, suitable for X-ray analysis, were obtained by slow evaporation of a CH3CN solution at room temparature.

Refinement top

The iminium H atoms were located from a difference Fourier map and refined freely. C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å (CH) or 0.99 Å (CH2) with Uiso(H) = 1.2Ueq(C). The highest peak (0.28 e Å-3) and the deepest hole (-0.30 e Å-3) in the difference Fourier map are located 1.60 Å and 0.81 Å, respectively, from the atoms O3 and H3N.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom numbering. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. A partial view along the b axis of the crystal packing of the title compound. Intra- and intermolecular N—H···O hydrogen-bonds are shown as dashed lines (see Table 1 for details).
4,4'-Dinitro-2,2'-[propane-1,3-diylbis(iminiumylmethanylylidene)]diphenolate top
Crystal data top
C17H16N4O6F(000) = 1552
Mr = 372.34Dx = 1.488 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3572 reflections
a = 11.5698 (5) Åθ = 2.5–25.3°
b = 13.0393 (6) ŵ = 0.12 mm1
c = 22.0393 (10) ÅT = 200 K
V = 3324.9 (3) Å3Block, yellow
Z = 80.31 × 0.17 × 0.15 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
4120 independent reflections
Radiation source: fine-focus sealed tube2286 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
ϕ and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1515
Tmin = 0.890, Tmax = 1.000k = 1417
23432 measured reflectionsl = 2829
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.0212P]
where P = (Fo2 + 2Fc2)/3
4120 reflections(Δ/σ)max < 0.001
252 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C17H16N4O6V = 3324.9 (3) Å3
Mr = 372.34Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.5698 (5) ŵ = 0.12 mm1
b = 13.0393 (6) ÅT = 200 K
c = 22.0393 (10) Å0.31 × 0.17 × 0.15 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
4120 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2286 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 1.000Rint = 0.084
23432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.28 e Å3
4120 reflectionsΔρmin = 0.30 e Å3
252 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18305 (12)0.22185 (11)0.21082 (6)0.0397 (4)
O20.63010 (14)0.28176 (13)0.05617 (7)0.0495 (4)
O30.50263 (15)0.25797 (13)0.01460 (7)0.0522 (5)
O40.62220 (12)0.00556 (11)0.48734 (6)0.0383 (4)
O50.96696 (14)0.02327 (15)0.27155 (8)0.0636 (5)
O61.08562 (13)0.02659 (13)0.34711 (8)0.0536 (5)
N10.52991 (16)0.26527 (13)0.03929 (9)0.0372 (4)
N20.34001 (16)0.22765 (13)0.29410 (8)0.0325 (4)
H2N0.491 (2)0.0128 (18)0.4342 (13)0.061 (8)*
N30.48198 (14)0.01663 (13)0.39362 (9)0.0300 (4)
H3N0.266 (3)0.2203 (19)0.2781 (13)0.079 (9)*
N40.98619 (16)0.02418 (14)0.32658 (9)0.0388 (5)
C10.26324 (17)0.23326 (14)0.17156 (9)0.0293 (5)
C20.23969 (18)0.23465 (14)0.10807 (9)0.0321 (5)
H20.16190.22900.09470.038*
C30.32499 (18)0.24381 (14)0.06613 (9)0.0320 (5)
H30.30650.24330.02410.038*
C40.44063 (18)0.25404 (14)0.08474 (9)0.0296 (5)
C50.46937 (17)0.25358 (14)0.14490 (9)0.0294 (5)
H50.54790.26080.15670.035*
C60.38325 (17)0.24253 (14)0.18915 (9)0.0270 (4)
C70.41546 (18)0.23887 (14)0.25139 (9)0.0305 (5)
H70.49480.24490.26190.037*
C80.36602 (19)0.22306 (16)0.35868 (9)0.0349 (5)
H8A0.33650.28580.37870.042*
H8B0.45080.22080.36440.042*
C90.31172 (18)0.12934 (15)0.38808 (9)0.0330 (5)
H9A0.22850.12800.37770.040*
H9B0.31790.13640.43270.040*
C100.36533 (17)0.02741 (15)0.36953 (9)0.0320 (5)
H10A0.31660.02950.38470.038*
H10B0.36780.02290.32470.038*
C110.57442 (17)0.00744 (14)0.36110 (9)0.0274 (4)
H110.56650.00980.31820.033*
C120.68702 (17)0.00597 (14)0.38544 (8)0.0261 (4)
C130.70501 (18)0.01066 (14)0.45046 (9)0.0281 (4)
C140.82265 (18)0.02299 (16)0.47050 (9)0.0353 (5)
H140.83820.02770.51270.042*
C150.91170 (18)0.02810 (16)0.43079 (9)0.0347 (5)
H150.98850.03580.44530.042*
C160.89073 (17)0.02195 (15)0.36768 (9)0.0293 (4)
C170.78028 (17)0.01169 (14)0.34546 (9)0.0293 (5)
H170.76750.00850.30290.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0255 (8)0.0574 (10)0.0362 (9)0.0014 (7)0.0025 (7)0.0090 (7)
O20.0335 (9)0.0701 (12)0.0450 (10)0.0044 (8)0.0064 (8)0.0105 (8)
O30.0570 (11)0.0726 (12)0.0269 (9)0.0072 (8)0.0058 (8)0.0012 (7)
O40.0334 (8)0.0565 (10)0.0250 (8)0.0030 (7)0.0042 (7)0.0031 (6)
O50.0469 (11)0.1112 (16)0.0326 (10)0.0119 (10)0.0109 (8)0.0110 (9)
O60.0278 (9)0.0770 (13)0.0560 (11)0.0016 (8)0.0043 (8)0.0064 (9)
N10.0380 (11)0.0407 (11)0.0330 (11)0.0072 (8)0.0040 (9)0.0031 (8)
N20.0311 (10)0.0420 (11)0.0243 (10)0.0018 (8)0.0008 (8)0.0051 (7)
N30.0304 (10)0.0370 (10)0.0225 (10)0.0030 (7)0.0016 (8)0.0009 (7)
N40.0323 (11)0.0474 (12)0.0367 (11)0.0026 (8)0.0050 (9)0.0073 (8)
C10.0265 (11)0.0295 (11)0.0318 (11)0.0006 (8)0.0022 (9)0.0047 (8)
C20.0304 (11)0.0321 (12)0.0336 (12)0.0020 (9)0.0048 (9)0.0041 (9)
C30.0391 (13)0.0284 (11)0.0285 (11)0.0002 (9)0.0043 (9)0.0018 (8)
C40.0306 (12)0.0312 (11)0.0271 (11)0.0023 (9)0.0029 (9)0.0029 (8)
C50.0241 (10)0.0316 (12)0.0324 (12)0.0015 (8)0.0017 (9)0.0024 (8)
C60.0260 (10)0.0279 (11)0.0272 (11)0.0023 (8)0.0019 (9)0.0040 (8)
C70.0285 (11)0.0314 (11)0.0315 (11)0.0009 (9)0.0011 (9)0.0022 (8)
C80.0368 (12)0.0418 (13)0.0260 (12)0.0022 (10)0.0015 (9)0.0002 (9)
C90.0315 (12)0.0400 (13)0.0274 (11)0.0029 (9)0.0019 (9)0.0022 (9)
C100.0278 (11)0.0425 (13)0.0256 (11)0.0015 (9)0.0017 (9)0.0013 (9)
C110.0324 (11)0.0280 (11)0.0218 (10)0.0010 (8)0.0012 (9)0.0004 (8)
C120.0288 (11)0.0263 (11)0.0233 (10)0.0014 (8)0.0002 (8)0.0009 (7)
C130.0317 (11)0.0276 (11)0.0251 (11)0.0018 (8)0.0004 (9)0.0010 (8)
C140.0331 (12)0.0469 (13)0.0260 (11)0.0042 (10)0.0033 (9)0.0041 (9)
C150.0284 (11)0.0414 (13)0.0344 (13)0.0037 (10)0.0029 (9)0.0040 (9)
C160.0300 (11)0.0306 (11)0.0274 (11)0.0010 (8)0.0036 (9)0.0036 (8)
C170.0346 (12)0.0297 (11)0.0236 (10)0.0003 (9)0.0011 (9)0.0015 (8)
Geometric parameters (Å, º) top
O1—C11.277 (2)C5—H50.9500
O2—N11.236 (2)C6—C71.422 (3)
O3—N11.233 (2)C7—H70.9500
O4—C131.258 (2)C8—C91.519 (3)
O5—N41.233 (2)C8—H8A0.9900
O6—N41.237 (2)C8—H8B0.9900
N1—C41.446 (3)C9—C101.523 (3)
N2—C71.292 (2)C9—H9A0.9900
N2—C81.456 (3)C9—H9B0.9900
N2—H3N0.93 (3)C10—H10A0.9900
N3—C111.293 (3)C10—H10B0.9900
N3—C101.457 (3)C11—C121.420 (3)
N3—H2N0.90 (3)C11—H110.9500
N4—C161.429 (3)C12—C171.395 (3)
C1—C21.426 (3)C12—C131.449 (3)
C1—C61.447 (3)C13—C141.440 (3)
C2—C31.357 (3)C14—C151.353 (3)
C2—H20.9500C14—H140.9500
C3—C41.406 (3)C15—C161.414 (3)
C3—H30.9500C15—H150.9500
C4—C51.367 (3)C16—C171.375 (3)
C5—C61.402 (3)C17—H170.9500
O3—N1—O2122.92 (18)N2—C8—H8B109.4
O3—N1—C4118.46 (18)C9—C8—H8B109.4
O2—N1—C4118.62 (18)H8A—C8—H8B108.0
C7—N2—C8125.25 (19)C8—C9—C10114.79 (17)
C7—N2—H3N110.9 (18)C8—C9—H9A108.6
C8—N2—H3N123.8 (18)C10—C9—H9A108.6
C11—N3—C10124.97 (18)C8—C9—H9B108.6
C11—N3—H2N116.4 (16)C10—C9—H9B108.6
C10—N3—H2N118.5 (16)H9A—C9—H9B107.5
O5—N4—O6121.87 (18)N3—C10—C9111.32 (17)
O5—N4—C16118.95 (18)N3—C10—H10A109.4
O6—N4—C16119.19 (19)C9—C10—H10A109.4
O1—C1—C2121.84 (18)N3—C10—H10B109.4
O1—C1—C6121.70 (18)C9—C10—H10B109.4
C2—C1—C6116.44 (18)H10A—C10—H10B108.0
C3—C2—C1122.04 (19)N3—C11—C12124.13 (18)
C3—C2—H2119.0N3—C11—H11117.9
C1—C2—H2119.0C12—C11—H11117.9
C2—C3—C4120.12 (19)C17—C12—C11118.54 (17)
C2—C3—H3119.9C17—C12—C13120.74 (18)
C4—C3—H3119.9C11—C12—C13120.70 (17)
C5—C4—C3120.94 (19)O4—C13—C14121.84 (18)
C5—C4—N1119.89 (19)O4—C13—C12121.81 (18)
C3—C4—N1119.17 (18)C14—C13—C12116.34 (18)
C4—C5—C6120.15 (18)C15—C14—C13121.78 (19)
C4—C5—H5119.9C15—C14—H14119.1
C6—C5—H5119.9C13—C14—H14119.1
C5—C6—C7119.23 (18)C14—C15—C16120.17 (19)
C5—C6—C1120.30 (18)C14—C15—H15119.9
C7—C6—C1120.47 (18)C16—C15—H15119.9
N2—C7—C6121.97 (19)C17—C16—C15121.02 (18)
N2—C7—H7119.0C17—C16—N4119.63 (18)
C6—C7—H7119.0C15—C16—N4119.33 (18)
N2—C8—C9111.38 (17)C16—C17—C12119.93 (18)
N2—C8—H8A109.4C16—C17—H17120.0
C9—C8—H8A109.4C12—C17—H17120.0
O1—C1—C2—C3178.08 (18)C11—N3—C10—C9118.0 (2)
C6—C1—C2—C30.2 (3)C8—C9—C10—N369.0 (2)
C1—C2—C3—C41.1 (3)C10—N3—C11—C12178.09 (18)
C2—C3—C4—C50.9 (3)N3—C11—C12—C17178.00 (18)
C2—C3—C4—N1179.06 (17)N3—C11—C12—C130.3 (3)
O3—N1—C4—C5174.81 (18)C17—C12—C13—O4179.94 (17)
O2—N1—C4—C55.2 (3)C11—C12—C13—O41.7 (3)
O3—N1—C4—C35.2 (3)C17—C12—C13—C140.9 (3)
O2—N1—C4—C3174.75 (18)C11—C12—C13—C14179.17 (17)
C3—C4—C5—C60.2 (3)O4—C13—C14—C15179.76 (19)
N1—C4—C5—C6179.88 (17)C12—C13—C14—C151.1 (3)
C4—C5—C6—C7177.95 (18)C13—C14—C15—C160.4 (3)
C4—C5—C6—C11.0 (3)C14—C15—C16—C170.6 (3)
O1—C1—C6—C5179.14 (18)C14—C15—C16—N4178.00 (18)
C2—C1—C6—C50.8 (3)O5—N4—C16—C174.5 (3)
O1—C1—C6—C70.2 (3)O6—N4—C16—C17175.25 (19)
C2—C1—C6—C7178.14 (17)O5—N4—C16—C15176.89 (18)
C8—N2—C7—C6179.92 (17)O6—N4—C16—C153.4 (3)
C5—C6—C7—N2179.22 (18)C15—C16—C17—C120.8 (3)
C1—C6—C7—N20.2 (3)N4—C16—C17—C12177.83 (17)
C7—N2—C8—C9128.3 (2)C11—C12—C17—C16178.29 (17)
N2—C8—C9—C1069.6 (2)C13—C12—C17—C160.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H3N···O10.93 (3)1.77 (3)2.583 (2)145 (3)
N3—H2N···O40.90 (3)1.93 (3)2.642 (2)135 (2)
N3—H2N···O4i0.90 (3)2.17 (3)2.891 (2)136 (2)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H16N4O6
Mr372.34
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)11.5698 (5), 13.0393 (6), 22.0393 (10)
V3)3324.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.31 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.890, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
23432, 4120, 2286
Rint0.084
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.138, 1.03
No. of reflections4120
No. of parameters252
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.30

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H3N···O10.93 (3)1.77 (3)2.583 (2)145 (3)
N3—H2N···O40.90 (3)1.93 (3)2.642 (2)135 (2)
N3—H2N···O4i0.90 (3)2.17 (3)2.891 (2)136 (2)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011–0030747).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2012). Acta Cryst. E68, o1221.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1399
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds