organic compounds
2,4-Diamino-6-methyl-1,3,5-triazin-1-ium hydrogen oxalate
aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: bohari@pkrisc.cc.ukm.my
The title compound, C4H8N5+·C2HO4−, was obtained from the reaction of oxalic acid and 2,4-diamino-6-methyl-1,3,5-triazine. The protonated triazine ring is essentially planar with a maximum deviation of 0.035 (1) Å, but the hydrogen oxalate anion is less planar, with a maximum deviation of 0.131 (1) Å for both carbonyl O atoms. In the crystal, the ions are linked by intermolecular N—H⋯O, N—H⋯N, O—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. Weak π–π [centroid–centroid distance = 3.763 Å] and C—O⋯π interactions [O⋯centroid = 3.5300 (16) Å, C—O⋯centroid = 132.19 (10)°] are also present.
Related literature
For bond-length data see: Allen et al. (1987) and for a description of the Cambridge Structural Database, see: Allen (2002). For background to triazine derivatives, see: Sebenik et al. (1989). For related structures, see: Kaczmarek et al. (2008); Xiao (2008); Fan et al. (2009); Qian & Huang (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812016637/zq2157sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812016637/zq2157Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812016637/zq2157Isup3.cml
10 ml aqueous solution of ammonium thiocyanate (0.152 g, 2 mmol) was added into a beaker containing oxalate acid (0.126 g, 1 mmol) and 2,4-diamino- 6-methyl-1,3,5-triazine (2 mmol) in 40 ml distilled water. After one week of evaporation at room temperature colourless crystals were obtained. Yield 92%; Melting point: 457.1–458.3 K.
After their location in the difference map, the H-atoms attached to the C and the amino N atoms were fixed geometrically at ideal positions and allowed to ride on the parent atoms with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.5Ueq(C) and 1.2Ueq(N). However, the protonated amino and hydroxyl hydrogen atoms were located from the Fourier map and refined isotropically.
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).Fig. 1. Molecular structure of the title compound with 50% probability displacement ellipsoids. | |
Fig. 2. Packing diagram of the title compound viewed down a axis. The dashed lines denote hydrogen bonds. |
C4H8N5+·C2HO4− | Z = 2 |
Mr = 215.18 | F(000) = 224 |
Triclinic, P1 | Dx = 1.585 Mg m−3 |
Hall symbol: -P 1 | Melting point = 492.2–492.5 K |
a = 5.6208 (12) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.9828 (17) Å | Cell parameters from 1963 reflections |
c = 10.857 (2) Å | θ = 1.9–27.0° |
α = 76.846 (4)° | µ = 0.13 mm−1 |
β = 75.882 (4)° | T = 298 K |
γ = 75.954 (4)° | Block, colourless |
V = 450.92 (17) Å3 | 0.50 × 0.22 × 0.19 mm |
Bruker SMART APEX CCD area-detector diffractometer | 1959 independent reflections |
Radiation source: fine-focus sealed tube | 1708 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 83.66 pixels mm-1 | θmax = 27.0°, θmin = 1.9° |
ω scan | h = −7→7 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −10→10 |
Tmin = 0.935, Tmax = 0.974 | l = −13→13 |
5551 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0664P)2 + 0.0976P] where P = (Fo2 + 2Fc2)/3 |
1959 reflections | (Δ/σ)max = 0.001 |
145 parameters | Δρmax = 0.25 e Å−3 |
1 restraint | Δρmin = −0.27 e Å−3 |
C4H8N5+·C2HO4− | γ = 75.954 (4)° |
Mr = 215.18 | V = 450.92 (17) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.6208 (12) Å | Mo Kα radiation |
b = 7.9828 (17) Å | µ = 0.13 mm−1 |
c = 10.857 (2) Å | T = 298 K |
α = 76.846 (4)° | 0.50 × 0.22 × 0.19 mm |
β = 75.882 (4)° |
Bruker SMART APEX CCD area-detector diffractometer | 1959 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1708 reflections with I > 2σ(I) |
Tmin = 0.935, Tmax = 0.974 | Rint = 0.023 |
5551 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 1 restraint |
wR(F2) = 0.113 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.25 e Å−3 |
1959 reflections | Δρmin = −0.27 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.01323 (19) | 0.22067 (16) | 1.09284 (10) | 0.0435 (3) | |
O2 | 1.20977 (17) | 0.36561 (14) | 0.91142 (9) | 0.0383 (3) | |
O3 | 0.8189 (2) | 0.38620 (18) | 0.80042 (10) | 0.0490 (3) | |
O4 | 0.60164 (18) | 0.30135 (15) | 0.99698 (10) | 0.0401 (3) | |
H4 | 0.476 (3) | 0.322 (3) | 0.964 (2) | 0.076 (7)* | |
N1 | 0.2651 (2) | 0.08398 (15) | 0.40173 (11) | 0.0342 (3) | |
N2 | 0.3693 (2) | 0.31924 (15) | 0.46944 (11) | 0.0326 (3) | |
N3 | 0.5937 (2) | 0.21615 (15) | 0.28003 (11) | 0.0324 (3) | |
H3 | 0.733 (4) | 0.221 (2) | 0.2103 (19) | 0.049 (5)* | |
N4 | 0.0411 (2) | 0.18887 (17) | 0.58245 (12) | 0.0421 (3) | |
H4D | 0.0102 | 0.2572 | 0.6377 | 0.051* | |
H4E | −0.0506 | 0.1130 | 0.5922 | 0.051* | |
N5 | 0.7025 (2) | 0.43757 (17) | 0.34456 (12) | 0.0393 (3) | |
H5A | 0.6827 | 0.5064 | 0.3983 | 0.047* | |
H5B | 0.8206 | 0.4415 | 0.2771 | 0.047* | |
C1 | 0.4493 (3) | 0.09606 (17) | 0.30219 (13) | 0.0307 (3) | |
C2 | 0.2280 (3) | 0.20042 (18) | 0.48339 (13) | 0.0316 (3) | |
C3 | 0.5530 (3) | 0.32675 (18) | 0.36537 (12) | 0.0302 (3) | |
C4 | 0.5070 (3) | −0.0268 (2) | 0.21033 (15) | 0.0400 (4) | |
H4A | 0.5078 | −0.1442 | 0.2574 | 0.060* | |
H4B | 0.6685 | −0.0204 | 0.1560 | 0.060* | |
H4C | 0.3822 | 0.0048 | 0.1580 | 0.060* | |
C5 | 1.0268 (2) | 0.30348 (18) | 0.98158 (13) | 0.0296 (3) | |
C6 | 0.8009 (2) | 0.33563 (18) | 0.91548 (13) | 0.0301 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0288 (5) | 0.0646 (7) | 0.0332 (6) | −0.0124 (5) | −0.0051 (4) | 0.0009 (5) |
O2 | 0.0237 (5) | 0.0565 (7) | 0.0344 (6) | −0.0147 (4) | −0.0014 (4) | −0.0052 (5) |
O3 | 0.0351 (6) | 0.0828 (9) | 0.0297 (6) | −0.0157 (6) | −0.0046 (4) | −0.0093 (5) |
O4 | 0.0234 (5) | 0.0622 (7) | 0.0351 (6) | −0.0161 (5) | −0.0038 (4) | −0.0035 (5) |
N1 | 0.0374 (7) | 0.0359 (6) | 0.0315 (6) | −0.0161 (5) | 0.0015 (5) | −0.0103 (5) |
N2 | 0.0381 (6) | 0.0360 (6) | 0.0262 (6) | −0.0158 (5) | 0.0009 (5) | −0.0091 (5) |
N3 | 0.0344 (6) | 0.0375 (6) | 0.0265 (6) | −0.0140 (5) | 0.0022 (5) | −0.0097 (5) |
N4 | 0.0467 (7) | 0.0500 (8) | 0.0340 (7) | −0.0264 (6) | 0.0091 (5) | −0.0165 (6) |
N5 | 0.0447 (7) | 0.0487 (7) | 0.0297 (6) | −0.0263 (6) | 0.0048 (5) | −0.0124 (5) |
C1 | 0.0338 (7) | 0.0308 (6) | 0.0282 (7) | −0.0090 (5) | −0.0039 (5) | −0.0061 (5) |
C2 | 0.0353 (7) | 0.0343 (7) | 0.0263 (7) | −0.0126 (6) | −0.0019 (5) | −0.0064 (5) |
C3 | 0.0338 (7) | 0.0337 (7) | 0.0241 (6) | −0.0117 (5) | −0.0031 (5) | −0.0045 (5) |
C4 | 0.0471 (9) | 0.0389 (8) | 0.0360 (8) | −0.0132 (6) | 0.0003 (6) | −0.0147 (6) |
C5 | 0.0222 (6) | 0.0375 (7) | 0.0291 (7) | −0.0064 (5) | −0.0002 (5) | −0.0110 (5) |
C6 | 0.0247 (6) | 0.0381 (7) | 0.0289 (7) | −0.0084 (5) | −0.0013 (5) | −0.0103 (5) |
O1—C5 | 1.2322 (17) | N4—C2 | 1.3112 (18) |
O2—C5 | 1.2560 (16) | N4—H4D | 0.8600 |
O3—C6 | 1.2093 (17) | N4—H4E | 0.8600 |
O4—C6 | 1.2913 (16) | N5—C3 | 1.3104 (18) |
O4—H4 | 0.831 (10) | N5—H5A | 0.8600 |
N1—C1 | 1.3054 (18) | N5—H5B | 0.8600 |
N1—C2 | 1.3727 (17) | C1—C4 | 1.4812 (19) |
N2—C3 | 1.3329 (17) | C4—H4A | 0.9600 |
N2—C2 | 1.3400 (17) | C4—H4B | 0.9600 |
N3—C1 | 1.3465 (17) | C4—H4C | 0.9600 |
N3—C3 | 1.3643 (18) | C5—C6 | 1.5476 (19) |
N3—H3 | 0.950 (19) | ||
C6—O4—H4 | 113.8 (16) | N2—C2—N1 | 124.86 (12) |
C1—N1—C2 | 116.03 (12) | N5—C3—N2 | 120.67 (12) |
C3—N2—C2 | 116.42 (11) | N5—C3—N3 | 118.55 (12) |
C1—N3—C3 | 119.67 (12) | N2—C3—N3 | 120.76 (12) |
C1—N3—H3 | 122.3 (11) | C1—C4—H4A | 109.5 |
C3—N3—H3 | 117.8 (11) | C1—C4—H4B | 109.5 |
C2—N4—H4D | 120.0 | H4A—C4—H4B | 109.5 |
C2—N4—H4E | 120.0 | C1—C4—H4C | 109.5 |
H4D—N4—H4E | 120.0 | H4A—C4—H4C | 109.5 |
C3—N5—H5A | 120.0 | H4B—C4—H4C | 109.5 |
C3—N5—H5B | 120.0 | O1—C5—O2 | 127.05 (13) |
H5A—N5—H5B | 120.0 | O1—C5—C6 | 118.95 (12) |
N1—C1—N3 | 122.20 (12) | O2—C5—C6 | 113.99 (12) |
N1—C1—C4 | 119.85 (12) | O3—C6—O4 | 126.24 (13) |
N3—C1—C4 | 117.95 (12) | O3—C6—C5 | 121.73 (12) |
N4—C2—N2 | 119.38 (12) | O4—C6—C5 | 112.03 (11) |
N4—C2—N1 | 115.75 (12) | ||
C2—N1—C1—N3 | −0.4 (2) | C2—N2—C3—N5 | −179.22 (13) |
C2—N1—C1—C4 | 178.65 (13) | C2—N2—C3—N3 | −1.0 (2) |
C3—N3—C1—N1 | 1.8 (2) | C1—N3—C3—N5 | 177.20 (13) |
C3—N3—C1—C4 | −177.27 (13) | C1—N3—C3—N2 | −1.1 (2) |
C3—N2—C2—N4 | −178.67 (14) | O1—C5—C6—O3 | −166.01 (14) |
C3—N2—C2—N1 | 2.5 (2) | O2—C5—C6—O3 | 13.0 (2) |
C1—N1—C2—N4 | 179.32 (13) | O1—C5—C6—O4 | 13.65 (18) |
C1—N1—C2—N2 | −1.8 (2) | O2—C5—C6—O4 | −167.33 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1i | 0.95 (2) | 1.77 (2) | 2.7134 (17) | 174 (2) |
N3—H3···O4i | 0.95 (2) | 2.50 (2) | 2.9841 (17) | 111.7 (16) |
O4—H4···O2 | 0.83 (2) | 1.66 (2) | 2.4921 (16) | 175 (2) |
N4—H4D···O3ii | 0.86 | 2.17 | 2.9902 (19) | 160 |
N4—H4E···N1iii | 0.86 | 2.18 | 3.0399 (19) | 174 |
N5—H5A···N2iv | 0.86 | 2.14 | 3.0027 (19) | 179 |
N5—H5B···O2v | 0.86 | 2.28 | 2.8558 (17) | 124 |
N5—H5B···O3v | 0.86 | 2.59 | 3.2337 (19) | 133 |
C4—H4C···O1vi | 0.96 | 2.49 | 3.339 (2) | 148 |
Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z; (iii) −x, −y, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x+2, −y+1, −z+1; (vi) x−1, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C4H8N5+·C2HO4− |
Mr | 215.18 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 5.6208 (12), 7.9828 (17), 10.857 (2) |
α, β, γ (°) | 76.846 (4), 75.882 (4), 75.954 (4) |
V (Å3) | 450.92 (17) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.50 × 0.22 × 0.19 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.935, 0.974 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5551, 1959, 1708 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.113, 1.03 |
No. of reflections | 1959 |
No. of parameters | 145 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.25, −0.27 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1i | 0.95 (2) | 1.77 (2) | 2.7134 (17) | 174 (2) |
N3—H3···O4i | 0.95 (2) | 2.50 (2) | 2.9841 (17) | 111.7 (16) |
O4—H4···O2 | 0.833 (19) | 1.661 (19) | 2.4921 (16) | 175 (2) |
N4—H4D···O3ii | 0.86 | 2.17 | 2.9902 (19) | 160 |
N4—H4E···N1iii | 0.86 | 2.18 | 3.0399 (19) | 174 |
N5—H5A···N2iv | 0.86 | 2.14 | 3.0027 (19) | 179 |
N5—H5B···O2v | 0.86 | 2.28 | 2.8558 (17) | 124 |
N5—H5B···O3v | 0.86 | 2.59 | 3.2337 (19) | 133 |
C4—H4C···O1vi | 0.96 | 2.49 | 3.339 (2) | 148 |
Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z; (iii) −x, −y, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x+2, −y+1, −z+1; (vi) x−1, y, z−1. |
Acknowledgements
The authors would like to thank the Malaysian Government and Universiti Kebangsaan Malaysia for the research grants UKM-GUP-NBT-68–27–110.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Fan, Y., You, W., Qian, H.-F., Liu, J.-L. & Huang, W. (2009). Acta Cryst. E65, o494. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kaczmarek, M., Radecka-Paryzek, W. & Kubicki, M. (2008). Acta Cryst. E64, o269. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Qian, H.-F. & Huang, W. (2010). Acta Cryst. E66, o759. Web of Science CrossRef IUCr Journals Google Scholar
Sebenik, A., Osredkar, U. & Zigon, M. (1989). Polym. Bull. 22, 155–161. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xiao, Z.-H. (2008). Acta Cryst. E64, o411. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
It is known that many triazine derivatives possess biological properties beside its usefullness as intermediates in the pharmaceutical industry (Sebenik et al., 1989). 2,4-diamino-6-1,3,5-triazine has been reported to co-crystallize with methanol (Kaczmarek et al., 2008) and ethanol (Xiao, 2008). On the other hand, the triazine nitrogen atom at position 1 can be easily protonated as in compound (C4H8N5)Cl (Qian & Huang, 2010) and (C4H8N5)NO3 (Fan et al., 2009) which were obtained from the normal acid-base reaction. The title compound is a similar salt but having a hydrogen oxalate as counter anion (Fig.1). The non hydrogen triazine ring, C1/N1/C2/N2/C3/N3, is planar with a maximum deviation of 0.035 (1) Å from the least square plane for N3 atom. The hydrogen oxalate anion O1/C1/O2/C2/O3/O4, is less planar with a maximum deviation of 0.131 (1) Å for O1 and O4 atoms. The bond lengths and angles are in normal ranges (Allen et al., 1987; Allen, 2002). In the crystal structure the molecules are linked by N—H···O, N—H···N, O—H···O and C—H···O intermolecular hydrogen bonds (symmetry codes as in Table 2) to form a three-dimensional network (Fig. 2). In addition, there are weak π–π interactions between the triazine ring centroids Cg1 (symmetry code: 1-x, -y, 1-z) with a distance of 3.763 Å and a C6—O3···π involving the triazine (C1/N1/C2/N2/C3/N3) centroid (symmetry code: 1-x, 1-y, 1-z) with a O3···Cg1 distance of 3.5300 (16) Å and a C6—O3—Cg1 bond angle of 132.19 (10)°.