organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1294-o1295

6-Chloro-N4,N4-di­methyl­pyrimidine-2,4-di­amine

aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: chdsguo@sdnu.edu.cn

(Received 19 March 2012; accepted 28 March 2012; online 4 April 2012)

The asymmetric unit of the title compound, C6H9ClN4, contains four independent mol­ecules (A, B, C and D). Their main difference is the torsion angles, ranging from 1.6 (5) to 5.9 (5)°, between the methyl group and the pyrimidine plane. A pair of inter­molecular N—H⋯N hydrogen bonds link mol­ecules A and C into a twisted dimer with a dihedral angle of 32.9 (1)° between the two pyrimidine rings, creating an R22(8) motif. In the packing, each two mol­ecules of B, C and D form centrosymmetric dimers through two inter­molecular N—H⋯N hydrogen bonds, locally creating R22(8) motifs. The dimers of C and D are alternately bridged by A into an infinite zigzag strip, locally creating two different R22(8) motifs with dihedral angles of 32.9 (1) and 63.4 (1)° between the pyrimidine rings. Finally, these strips together with the dimers of B associate into a complicated three-dimensional framework.

Related literature

For background to pyrimidine derivatives, see: Ligthart et al. (2005[Ligthart, G. B. W. L., Ohkawa, H., Sijbesma, R. P. & Meijer, E. W. (2005). J. Am. Chem. Soc. 127, 810-811.]); Rabie et al. (2007[Rabie, U. M., Abou-El-Wafa, M. H. & Mohamed, R. A. (2007). J. Mol. Struct. 871, 6-13.]); Goswami et al.(2008[Goswami, S., Jana, S., Hazra, A., Fun, H.-K. & Chantrapromma, S. (2008). Supramol. Chem. 20, 495-500.]); Sherrington & Taskinen (2001[Sherrington, D. C. & Taskinen, K. A. (2001). Chem. Soc. Rev. 30, 83-93.]). For similar structures, see: Cetina et al. (2005[Cetina, M., Nagl, A., Prekupec, S., Raić-Malić, S. & Mintas, M. (2005). Acta Cryst. C61, o158-o160.]); Fun et al. (2006[Fun, H.-K., Goswami, S., Jana, S. & Chantrapromma, S. (2006). Acta Cryst. E62, o5332-o5334.]); Li et al. (2008[Li, Z.-J., Huang, J.-E. & Meng, A.-L. (2008). Acta Cryst. E64, o759.]); Ebenezer & Muthiah (2010[Ebenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o516.]); Cheng et al. (2011[Cheng, Y., Chen, L.-S., Liu, Q.-K., Wu, J. & Guo, D.-S. (2011). Acta Cryst. C67, o244-o248.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9ClN4

  • Mr = 172.62

  • Triclinic, [P \overline 1]

  • a = 7.9438 (19) Å

  • b = 14.225 (3) Å

  • c = 14.895 (3) Å

  • α = 100.114 (3)°

  • β = 94.421 (4)°

  • γ = 100.524 (4)°

  • V = 1618.7 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 298 K

  • 0.21 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.919, Tmax = 0.937

  • 8239 measured reflections

  • 5619 independent reflections

  • 3769 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.136

  • S = 0.97

  • 5619 reflections

  • 405 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11B⋯N1 0.87 2.48 3.310 (4) 161
N3—H3A⋯N9 0.86 2.41 3.264 (4) 168
N16—H16B⋯N15i 0.87 2.17 3.038 (4) 174
N11—H11A⋯N10ii 0.87 2.21 3.086 (4) 174
N7—H7B⋯N5iii 0.88 2.19 3.064 (3) 178
N3—H3B⋯N6iv 0.89 2.35 3.230 (4) 169
N7—H7A⋯N2iv 0.87 2.33 3.136 (3) 155
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) -x, -y, -z+1; (iii) -x+1, -y+1, -z; (iv) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Functionalized pyrimidines play a major role in molecular recognition and supramolecular chemistry because of their potential ability to form stable hydrogen-bonded chains via their stereochemically associated amino groups and annular N atoms (Sherrington et al., 2001; Ligthart et al., 2005; Rabie et al., 2007; Goswami et al., 2008; Cheng et al., 2011). Lots of substituted 2-aminopyrimidine compounds have been elucidated (Fun et al., 2006; Li et al., 2008; Ebenezer et al., 2010; Cheng et al., 2011). We report here the crystal structure of a related organic compound, 6-chloro-N4,N4-dimethylpyrimidine-2,4-diamine.

The title compound, C6H9ClN4, contains four crystallographically independent molecules (Fig. 1), A, B, C and D, in the asymmetric unit, among which A and C are connected into a twisted dimer by two intermolecular N3—H3A···N9 and N11—H11B···N1 hydrogen bonds (Table 1), with a dihedral angle of 32.9 (1)° between the two pyrimidine rings. The bond lengths and angles of all molecules are similar except for the torsion angles between the methyl groups and the pyrimidine rings, ranging from 1.6 (5) to 5.9 (5)°.

In the packing of the title compound, each inversion-related two molecules of B, C and D form a centrosymmetric dimer through two intermolecular N—H···N hydrogen bonds (Table 1), locally creating an R22(8) motif (Bernstein et al., 1995). For example, in the dimer of D (Fig. 2), hydrogen bonds arise from atoms N7—H7B at (x, y, z) and (-x + 1, -y + 1, -z), which act as hydrogen-bond donors, respectively, to atoms N5 at (-x + 1, -y + 1, -z) and (x, y, z). The dimers of C and D are alternately arranged and bridged by the molecule A, creating an infinite zigzag strip (Cetina et al., 2005) (Fig. 3). In such a strip, the amino group of each molecule acts as a dual donor in N—H···N hydrogen bonds, while the pyrimidine ring serves as a dual acceptor. Interestingly, two different R22(8) motifs are formed with dihedral angles of 32.9 (1) and 63.4 (1)° between two adjacent pyrimidine rings. Finally, these strips together with the dimers of B are packed into a complicated three dimensional framework.

Related literature top

For background to pyrimidine derivatives, see: Ligthart et al. (2005); Rabie et al. (2007); Goswami et al.(2008); Sherrington & Taskinen (2001). For similar structures, see: Cetina et al. (2005); Fun et al. (2006); Li et al. (2008); Ebenezer & Muthiah (2010); Cheng et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

2-Amino-4,6-dichloropyrimidine (0.082 g, 0.5 mmol) and K2CO3 (0.276 g, 2 mmol) were dissolved in DMF (2 ml) and H2O (2 ml), the mixture was heated at 343 K for 0.5 h and then cooled to room temperature. The resulting mixture was extracted with ethyl acetate. The organic layer was separated and washed with brine, then dried over anhydrous MgSO4. Removal of the solvent under reduced pressure gave the title compound as a yellow solid (yield 85%). Single crystals suitable for X-ray diffraction analysis were obtained by liquid–liquid diffusion from hexane and CH2Cl2 at 298 K.

Refinement top

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to anisotropically refined atoms were placed in geometrically idealized positions and included as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) (aromatic); C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) (methyl); N—H = 0.87–0.88 Å and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. A centrosymmetric dimer of the D molecule, viewed along the crystallographic b axis, showing the R22(8) motif. For the sake of clarity, H atoms not involved in the motif have been omitted [symmetry code: (i) -x + 1, -y + 1, -z].
[Figure 3] Fig. 3. An infinite zigzag strip formed by a combination of A, C and D through hydrogen bonds, showing different R22(8) motifs. For the sake of clarity, H atoms not involved in the motifs have been omitted [symmetry codes: (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y, -z + 1].
6-Chloro-N4,N4-dimethylpyrimidine-2,4-diamine top
Crystal data top
C6H9ClN4Z = 8
Mr = 172.62F(000) = 720
Triclinic, P1Dx = 1.417 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9438 (19) ÅCell parameters from 2311 reflections
b = 14.225 (3) Åθ = 2.6–27.7°
c = 14.895 (3) ŵ = 0.41 mm1
α = 100.114 (3)°T = 298 K
β = 94.421 (4)°Block, colourless
γ = 100.524 (4)°0.21 × 0.18 × 0.16 mm
V = 1618.7 (7) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5619 independent reflections
Radiation source: fine-focus sealed tube3769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 98
Tmin = 0.919, Tmax = 0.937k = 1616
8239 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0681P)2]
where P = (Fo2 + 2Fc2)/3
5619 reflections(Δ/σ)max = 0.001
405 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C6H9ClN4γ = 100.524 (4)°
Mr = 172.62V = 1618.7 (7) Å3
Triclinic, P1Z = 8
a = 7.9438 (19) ÅMo Kα radiation
b = 14.225 (3) ŵ = 0.41 mm1
c = 14.895 (3) ÅT = 298 K
α = 100.114 (3)°0.21 × 0.18 × 0.16 mm
β = 94.421 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5619 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3769 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.937Rint = 0.029
8239 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 0.97Δρmax = 0.27 e Å3
5619 reflectionsΔρmin = 0.32 e Å3
405 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3407 (3)0.34115 (18)0.54662 (16)0.0383 (6)
N20.4648 (3)0.47960 (18)0.66542 (16)0.0369 (6)
N30.5150 (4)0.32771 (19)0.67110 (18)0.0534 (8)
N40.1803 (4)0.3573 (2)0.41724 (17)0.0498 (8)
N50.3131 (3)0.56029 (17)0.00737 (15)0.0377 (6)
N60.2031 (3)0.57494 (17)0.15383 (16)0.0356 (6)
N70.4281 (4)0.49791 (19)0.12364 (16)0.0469 (8)
N80.0361 (4)0.64285 (19)0.18002 (18)0.0451 (7)
N90.4193 (3)0.08990 (18)0.62696 (16)0.0379 (6)
N100.1931 (3)0.03793 (18)0.54295 (16)0.0390 (7)
N110.1596 (4)0.12009 (19)0.5723 (2)0.0542 (8)
N120.6743 (4)0.0572 (2)0.68555 (18)0.0478 (7)
N130.3235 (4)0.9764 (2)0.83692 (19)0.0511 (8)
N140.5994 (4)1.03959 (18)0.90517 (17)0.0405 (7)
N150.8008 (3)0.93718 (19)0.93227 (17)0.0412 (7)
N160.8765 (4)1.10315 (19)0.9711 (2)0.0567 (8)
C10.2689 (4)0.3996 (2)0.4992 (2)0.0387 (8)
C20.2883 (4)0.4998 (2)0.5353 (2)0.0405 (8)
H20.23820.54120.50470.049*
C30.3852 (4)0.5320 (2)0.6179 (2)0.0370 (8)
C40.4379 (4)0.3849 (2)0.6250 (2)0.0399 (8)
C50.1705 (5)0.2558 (3)0.3791 (2)0.0619 (11)
H5A0.25310.23090.41390.093*
H5B0.19510.24900.31640.093*
H5C0.05680.21980.38150.093*
C60.1034 (5)0.4146 (3)0.3586 (2)0.0667 (11)
H6A0.03970.45590.39420.100*
H6B0.02720.37150.30920.100*
H6C0.19290.45410.33400.100*
C70.0773 (4)0.6171 (2)0.1222 (2)0.0362 (8)
C80.1760 (5)0.6879 (3)0.1505 (3)0.0643 (11)
H8A0.12970.74410.12620.096*
H8B0.23610.70720.20200.096*
H8C0.25440.64200.10390.096*
C90.0343 (5)0.6179 (3)0.2706 (2)0.0570 (10)
H9A0.12840.56490.27050.086*
H9B0.04580.67350.31500.086*
H9C0.07250.59900.28610.086*
C100.0687 (4)0.6347 (2)0.0317 (2)0.0376 (8)
H100.01500.66480.00840.045*
C110.1901 (4)0.6050 (2)0.01859 (19)0.0363 (8)
C120.3096 (4)0.5455 (2)0.09442 (19)0.0348 (7)
C130.7969 (5)0.0067 (3)0.6925 (2)0.0623 (11)
H13A0.74740.05970.72040.093*
H13B0.90060.02950.72930.093*
H13C0.82320.03210.63220.093*
C140.7279 (5)0.1570 (2)0.7337 (3)0.0610 (11)
H14A0.77360.19700.69210.092*
H14B0.81490.16070.78330.092*
H14C0.63060.17970.75770.092*
C150.5186 (4)0.0239 (2)0.63617 (19)0.0375 (8)
C160.4614 (4)0.0744 (2)0.5956 (2)0.0418 (8)
H160.53030.12030.59870.050*
C170.2997 (4)0.0987 (2)0.55161 (19)0.0367 (8)
C180.2619 (4)0.0556 (2)0.5810 (2)0.0380 (8)
C190.1863 (5)0.8969 (3)0.7904 (3)0.0694 (12)
H19A0.22900.85840.74100.104*
H19B0.09280.92280.76630.104*
H19C0.14620.85690.83300.104*
C200.2873 (5)1.0738 (3)0.8461 (2)0.0594 (11)
H20A0.37971.11940.88480.089*
H20B0.18161.07550.87300.089*
H20C0.27651.09090.78670.089*
C210.4788 (4)0.9608 (2)0.8677 (2)0.0394 (8)
C220.5135 (4)0.8663 (2)0.8614 (2)0.0447 (9)
H220.43150.81060.83590.054*
C230.6750 (5)0.8624 (2)0.8952 (2)0.0419 (8)
C240.7528 (4)1.0241 (2)0.9355 (2)0.0396 (8)
Cl10.41068 (13)0.65460 (6)0.66924 (6)0.0559 (3)
Cl20.72990 (15)0.74846 (7)0.89197 (7)0.0725 (3)
Cl30.21621 (13)0.21962 (6)0.49962 (6)0.0594 (3)
Cl40.19291 (13)0.62621 (7)0.13080 (5)0.0581 (3)
H7A0.43120.48820.17940.070*
H11B0.20610.18180.58030.070*
H16A0.85161.16140.98220.070*
H3A0.49910.26530.65220.070*
H7B0.50170.48220.08520.070*
H16B0.96611.09351.00270.070*
H3B0.58050.35460.72350.070*
H11A0.05790.10090.54080.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0343 (17)0.0405 (16)0.0382 (14)0.0061 (13)0.0005 (12)0.0055 (12)
N20.0337 (17)0.0400 (16)0.0369 (14)0.0079 (13)0.0031 (12)0.0067 (12)
N30.066 (2)0.0450 (17)0.0496 (17)0.0224 (16)0.0095 (15)0.0045 (13)
N40.047 (2)0.060 (2)0.0405 (16)0.0082 (15)0.0063 (14)0.0101 (14)
N50.0362 (17)0.0406 (16)0.0368 (15)0.0086 (13)0.0070 (12)0.0070 (11)
N60.0336 (17)0.0365 (15)0.0388 (14)0.0103 (13)0.0078 (12)0.0078 (11)
N70.050 (2)0.0593 (19)0.0398 (15)0.0284 (16)0.0106 (13)0.0122 (13)
N80.0385 (18)0.0476 (17)0.0540 (17)0.0158 (14)0.0164 (14)0.0101 (13)
N90.0298 (16)0.0432 (16)0.0411 (15)0.0069 (13)0.0009 (12)0.0115 (12)
N100.0314 (17)0.0422 (17)0.0415 (15)0.0040 (14)0.0016 (12)0.0093 (12)
N110.0368 (19)0.0418 (17)0.081 (2)0.0086 (14)0.0111 (16)0.0110 (14)
N120.0370 (18)0.0517 (19)0.0523 (17)0.0066 (15)0.0087 (14)0.0122 (14)
N130.0315 (18)0.059 (2)0.0599 (18)0.0097 (15)0.0050 (14)0.0063 (14)
N140.0359 (18)0.0409 (16)0.0439 (15)0.0071 (14)0.0011 (13)0.0086 (12)
N150.0354 (17)0.0395 (17)0.0452 (15)0.0040 (14)0.0049 (13)0.0062 (12)
N160.048 (2)0.0376 (17)0.077 (2)0.0010 (15)0.0156 (16)0.0083 (14)
C10.0256 (19)0.049 (2)0.0412 (18)0.0038 (16)0.0070 (15)0.0107 (15)
C20.033 (2)0.050 (2)0.0437 (19)0.0134 (16)0.0066 (15)0.0154 (15)
C30.032 (2)0.0403 (19)0.0410 (18)0.0072 (16)0.0159 (15)0.0094 (14)
C40.033 (2)0.046 (2)0.0418 (18)0.0081 (16)0.0063 (15)0.0116 (16)
C50.061 (3)0.060 (3)0.050 (2)0.008 (2)0.0051 (19)0.0023 (17)
C60.054 (3)0.095 (3)0.051 (2)0.019 (2)0.0105 (19)0.017 (2)
C70.034 (2)0.0230 (17)0.0479 (18)0.0003 (15)0.0042 (15)0.0028 (13)
C80.047 (3)0.069 (3)0.086 (3)0.029 (2)0.020 (2)0.015 (2)
C90.057 (3)0.059 (2)0.058 (2)0.010 (2)0.0266 (19)0.0089 (17)
C100.035 (2)0.0297 (18)0.0488 (19)0.0062 (15)0.0008 (16)0.0107 (14)
C110.039 (2)0.0290 (17)0.0374 (17)0.0008 (15)0.0005 (15)0.0074 (13)
C120.033 (2)0.0321 (18)0.0383 (17)0.0067 (15)0.0053 (15)0.0040 (13)
C130.041 (2)0.076 (3)0.071 (3)0.018 (2)0.009 (2)0.017 (2)
C140.050 (3)0.053 (2)0.073 (3)0.0062 (19)0.019 (2)0.0236 (19)
C150.031 (2)0.047 (2)0.0357 (17)0.0060 (16)0.0044 (15)0.0143 (14)
C160.033 (2)0.048 (2)0.0485 (19)0.0157 (17)0.0056 (16)0.0128 (16)
C170.034 (2)0.0422 (19)0.0354 (17)0.0076 (16)0.0033 (15)0.0108 (14)
C180.030 (2)0.046 (2)0.0405 (17)0.0097 (17)0.0055 (15)0.0134 (15)
C190.038 (2)0.088 (3)0.076 (3)0.006 (2)0.010 (2)0.014 (2)
C200.052 (3)0.074 (3)0.061 (2)0.032 (2)0.0055 (19)0.0148 (19)
C210.035 (2)0.043 (2)0.0380 (17)0.0033 (17)0.0050 (15)0.0064 (14)
C220.039 (2)0.042 (2)0.0471 (19)0.0002 (17)0.0058 (16)0.0035 (15)
C230.046 (2)0.037 (2)0.0430 (18)0.0104 (17)0.0022 (17)0.0085 (14)
C240.038 (2)0.039 (2)0.0386 (17)0.0002 (17)0.0019 (15)0.0080 (14)
Cl10.0686 (7)0.0406 (5)0.0582 (5)0.0122 (5)0.0097 (5)0.0062 (4)
Cl20.0785 (8)0.0406 (6)0.0913 (7)0.0163 (5)0.0270 (6)0.0051 (5)
Cl30.0610 (7)0.0407 (5)0.0700 (6)0.0063 (5)0.0074 (5)0.0037 (4)
Cl40.0674 (7)0.0670 (6)0.0436 (5)0.0108 (5)0.0059 (4)0.0233 (4)
Geometric parameters (Å, º) top
N1—C41.333 (4)C1—C21.409 (4)
N1—C11.353 (4)C2—C31.357 (4)
N2—C31.321 (4)C2—H20.9300
N2—C41.347 (4)C3—Cl11.746 (3)
N3—C41.350 (4)C5—H5A0.9600
N3—H3A0.8649C5—H5B0.9600
N3—H3B0.8870C5—H5C0.9600
N4—C11.343 (4)C6—H6A0.9600
N4—C51.441 (4)C6—H6B0.9600
N4—C61.467 (4)C6—H6C0.9600
N5—C111.329 (4)C7—C101.411 (4)
N5—C121.351 (3)C8—H8A0.9600
N6—C121.338 (4)C8—H8B0.9600
N6—C71.351 (4)C8—H8C0.9600
N7—C121.344 (4)C9—H9A0.9600
N7—H7A0.8654C9—H9B0.9600
N7—H7B0.8789C9—H9C0.9600
N8—C71.348 (4)C10—C111.349 (4)
N8—C91.453 (4)C10—H100.9300
N8—C81.456 (4)C11—Cl41.751 (3)
N9—C181.341 (4)C13—H13A0.9600
N9—C151.350 (4)C13—H13B0.9600
N10—C171.330 (4)C13—H13C0.9600
N10—C181.346 (4)C14—H14A0.9600
N11—C181.348 (4)C14—H14B0.9600
N11—H11B0.8716C14—H14C0.9600
N11—H11A0.8741C15—C161.399 (4)
N12—C151.349 (4)C16—C171.352 (4)
N12—C141.444 (4)C16—H160.9300
N12—C131.458 (4)C17—Cl31.742 (3)
N13—C211.353 (4)C19—H19A0.9600
N13—C201.450 (4)C19—H19B0.9600
N13—C191.452 (5)C19—H19C0.9600
N14—C241.337 (4)C20—H20A0.9600
N14—C211.338 (4)C20—H20B0.9600
N15—C231.325 (4)C20—H20C0.9600
N15—C241.353 (4)C21—C221.409 (4)
N16—C241.348 (4)C22—C231.356 (4)
N16—H16A0.8773C22—H220.9300
N16—H16B0.8682C23—Cl21.747 (3)
C4—N1—C1116.3 (3)H8B—C8—H8C109.5
C3—N2—C4113.1 (3)N8—C9—H9A109.5
C4—N3—H3A122.0N8—C9—H9B109.5
C4—N3—H3B118.9H9A—C9—H9B109.5
H3A—N3—H3B119.1N8—C9—H9C109.5
C1—N4—C5121.6 (3)H9A—C9—H9C109.5
C1—N4—C6121.2 (3)H9B—C9—H9C109.5
C5—N4—C6116.9 (3)C11—C10—C7115.4 (3)
C11—N5—C12113.1 (3)C11—C10—H10122.3
C12—N6—C7117.2 (2)C7—C10—H10122.3
C12—N7—H7A118.4N5—C11—C10127.1 (3)
C12—N7—H7B116.9N5—C11—Cl4114.1 (2)
H7A—N7—H7B124.6C10—C11—Cl4118.8 (2)
C7—N8—C9121.4 (3)N6—C12—N7117.7 (3)
C7—N8—C8121.0 (3)N6—C12—N5126.5 (3)
C9—N8—C8117.3 (3)N7—C12—N5115.8 (3)
C18—N9—C15116.7 (3)N12—C13—H13A109.5
C17—N10—C18113.7 (3)N12—C13—H13B109.5
C18—N11—H11B119.1H13A—C13—H13B109.5
C18—N11—H11A120.3N12—C13—H13C109.5
H11B—N11—H11A117.1H13A—C13—H13C109.5
C15—N12—C14122.1 (3)H13B—C13—H13C109.5
C15—N12—C13121.0 (3)N12—C14—H14A109.5
C14—N12—C13116.9 (3)N12—C14—H14B109.5
C21—N13—C20121.8 (3)H14A—C14—H14B109.5
C21—N13—C19121.7 (3)N12—C14—H14C109.5
C20—N13—C19116.5 (3)H14A—C14—H14C109.5
C24—N14—C21116.9 (3)H14B—C14—H14C109.5
C23—N15—C24112.7 (3)N12—C15—N9117.0 (3)
C24—N16—H16A120.6N12—C15—C16122.0 (3)
C24—N16—H16B116.8N9—C15—C16120.9 (3)
H16A—N16—H16B117.8C17—C16—C15115.9 (3)
N4—C1—N1116.8 (3)C17—C16—H16122.1
N4—C1—C2122.5 (3)C15—C16—H16122.1
N1—C1—C2120.7 (3)N10—C17—C16126.1 (3)
C3—C2—C1115.4 (3)N10—C17—Cl3114.6 (2)
C3—C2—H2122.3C16—C17—Cl3119.3 (2)
C1—C2—H2122.3N9—C18—N10126.6 (3)
N2—C3—C2126.7 (3)N9—C18—N11117.6 (3)
N2—C3—Cl1114.8 (2)N10—C18—N11115.8 (3)
C2—C3—Cl1118.5 (2)N13—C19—H19A109.5
N1—C4—N2127.6 (3)N13—C19—H19B109.5
N1—C4—N3116.7 (3)H19A—C19—H19B109.5
N2—C4—N3115.7 (3)N13—C19—H19C109.5
N4—C5—H5A109.5H19A—C19—H19C109.5
N4—C5—H5B109.5H19B—C19—H19C109.5
H5A—C5—H5B109.5N13—C20—H20A109.5
N4—C5—H5C109.5N13—C20—H20B109.5
H5A—C5—H5C109.5H20A—C20—H20B109.5
H5B—C5—H5C109.5N13—C20—H20C109.5
N4—C6—H6A109.5H20A—C20—H20C109.5
N4—C6—H6B109.5H20B—C20—H20C109.5
H6A—C6—H6B109.5N14—C21—N13116.9 (3)
N4—C6—H6C109.5N14—C21—C22121.0 (3)
H6A—C6—H6C109.5N13—C21—C22122.1 (3)
H6B—C6—H6C109.5C23—C22—C21115.3 (3)
N8—C7—N6117.9 (3)C23—C22—H22122.4
N8—C7—C10121.8 (3)C21—C22—H22122.4
N6—C7—C10120.4 (3)N15—C23—C22126.9 (3)
N8—C8—H8A109.5N15—C23—Cl2114.3 (2)
N8—C8—H8B109.5C22—C23—Cl2118.8 (3)
H8A—C8—H8B109.5N14—C24—N16117.3 (3)
N8—C8—H8C109.5N14—C24—N15127.2 (3)
H8A—C8—H8C109.5N16—C24—N15115.5 (3)
C5—N4—C1—N13.6 (5)C14—N12—C15—N95.5 (5)
C6—N4—C1—N1177.5 (3)C13—N12—C15—N9174.5 (3)
C5—N4—C1—C2176.3 (3)C14—N12—C15—C16174.8 (3)
C6—N4—C1—C22.4 (5)C13—N12—C15—C165.3 (5)
C4—N1—C1—N4175.7 (3)C18—N9—C15—N12177.3 (3)
C4—N1—C1—C24.2 (4)C18—N9—C15—C162.9 (4)
N4—C1—C2—C3178.4 (3)N12—C15—C16—C17177.1 (3)
N1—C1—C2—C31.4 (5)N9—C15—C16—C173.2 (5)
C4—N2—C3—C21.8 (5)C18—N10—C17—C161.8 (5)
C4—N2—C3—Cl1178.1 (2)C18—N10—C17—Cl3178.0 (2)
C1—C2—C3—N21.8 (5)C15—C16—C17—N100.8 (5)
C1—C2—C3—Cl1178.2 (2)C15—C16—C17—Cl3179.5 (2)
C1—N1—C4—N24.4 (5)C15—N9—C18—N100.2 (5)
C1—N1—C4—N3177.7 (3)C15—N9—C18—N11179.0 (3)
C3—N2—C4—N11.5 (5)C17—N10—C18—N92.1 (5)
C3—N2—C4—N3179.4 (3)C17—N10—C18—N11178.7 (3)
C9—N8—C7—N65.8 (5)C24—N14—C21—N13180.0 (3)
C8—N8—C7—N6179.5 (3)C24—N14—C21—C220.4 (4)
C9—N8—C7—C10175.3 (3)C20—N13—C21—N141.5 (5)
C8—N8—C7—C101.6 (5)C19—N13—C21—N14176.5 (3)
C12—N6—C7—N8176.8 (3)C20—N13—C21—C22178.1 (3)
C12—N6—C7—C104.3 (4)C19—N13—C21—C223.9 (5)
N8—C7—C10—C11179.9 (3)N14—C21—C22—C230.3 (4)
N6—C7—C10—C111.2 (4)N13—C21—C22—C23179.9 (3)
C12—N5—C11—C100.3 (5)C24—N15—C23—C221.0 (5)
C12—N5—C11—Cl4179.4 (2)C24—N15—C23—Cl2178.6 (2)
C7—C10—C11—N51.2 (5)C21—C22—C23—N150.4 (5)
C7—C10—C11—Cl4178.6 (2)C21—C22—C23—Cl2179.2 (2)
C7—N6—C12—N7175.9 (3)C21—N14—C24—N16178.2 (3)
C7—N6—C12—N55.5 (5)C21—N14—C24—N150.3 (5)
C11—N5—C12—N63.2 (5)C23—N15—C24—N141.0 (5)
C11—N5—C12—N7178.2 (3)C23—N15—C24—N16178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11B···N10.872.483.310 (4)161
N3—H3A···N90.862.413.264 (4)168
N16—H16B···N15i0.872.173.038 (4)174
N11—H11A···N10ii0.872.213.086 (4)174
N7—H7B···N5iii0.882.193.064 (3)178
N3—H3B···N6iv0.892.353.230 (4)169
N7—H7A···N2iv0.872.333.136 (3)155
Symmetry codes: (i) x+2, y+2, z+2; (ii) x, y, z+1; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H9ClN4
Mr172.62
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.9438 (19), 14.225 (3), 14.895 (3)
α, β, γ (°)100.114 (3), 94.421 (4), 100.524 (4)
V3)1618.7 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.21 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.919, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
8239, 5619, 3769
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.136, 0.97
No. of reflections5619
No. of parameters405
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.32

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11B···N10.872.483.310 (4)160.6
N3—H3A···N90.862.413.264 (4)167.8
N16—H16B···N15i0.872.173.038 (4)173.7
N11—H11A···N10ii0.872.213.086 (4)174.3
N7—H7B···N5iii0.882.193.064 (3)178.1
N3—H3B···N6iv0.892.353.230 (4)169.4
N7—H7A···N2iv0.872.333.136 (3)155.1
Symmetry codes: (i) x+2, y+2, z+2; (ii) x, y, z+1; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China (grant No. 20572064) and the Natural Science Foundation of Shandong Province (grant No. ZR2010BM022) is gratefully acknowledged.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCetina, M., Nagl, A., Prekupec, S., Raić-Malić, S. & Mintas, M. (2005). Acta Cryst. C61, o158–o160.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCheng, Y., Chen, L.-S., Liu, Q.-K., Wu, J. & Guo, D.-S. (2011). Acta Cryst. C67, o244–o248.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEbenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Goswami, S., Jana, S. & Chantrapromma, S. (2006). Acta Cryst. E62, o5332–o5334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoswami, S., Jana, S., Hazra, A., Fun, H.-K. & Chantrapromma, S. (2008). Supramol. Chem. 20, 495–500.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z.-J., Huang, J.-E. & Meng, A.-L. (2008). Acta Cryst. E64, o759.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLigthart, G. B. W. L., Ohkawa, H., Sijbesma, R. P. & Meijer, E. W. (2005). J. Am. Chem. Soc. 127, 810–811.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRabie, U. M., Abou-El-Wafa, M. H. & Mohamed, R. A. (2007). J. Mol. Struct. 871, 6–13.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSherrington, D. C. & Taskinen, K. A. (2001). Chem. Soc. Rev. 30, 83–93.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1294-o1295
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds