organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1351

2-Carb­­oxy-6-(quinolin-1-ium-8-yl­­oxy)benzoate

aDepartment of Chemistry, University of Fuzhou, Fuzhou 350108, People's Republic of China
*Correspondence e-mail: wangjd@fzu.edu.cn

(Received 2 March 2012; accepted 31 March 2012; online 13 April 2012)

In the zwitterionic title compound, C17H11NO5, the dihedral angle between the two aromatic rings is 76.90 (7)°. The dihedral angles between the carboxyl groups and the benzene ring are 64.02 (9) and 21.67 (9)°, the larger angle being associated with an intra­molecular N—H⋯Ocarbox­yl hydrogen bond, resulting from proton transfer from the carb­oxy­lic acid group to the quinoline N atom and giving an S(9) ring motif. In the crystal, mol­ecules are connected by O—H⋯O hydrogen bonds into chains extending along the b-axis direction. An overall two-dimensional network structure is formed through ππ inter­actions between the quinoline rings [minimum ring-centroid separation = 3.6068 (6) Å].

Related literature

For the use of phthalic acid derivatives in the construction of coordination polymers, see: Su et al. (2007[Su, Y., Zang, S., Li, Y., Zhu, H. & Meng, Q. (2007). Cryst. Growth Des. 7, 1277-1283.]); Zhang, Su, Li et al. (2006)[Zang, S., Su, Y., Li, Y., Zhu, H. & Meng, Q. (2006). Inorg. Chem. Commun. 9, 337-340.]. For their potential applications, see: Wang et al. (2009[Wang, H., Zhang, D., Sun, D., Chen, Y., Zhang, L.-F., Tian, L., Jiang, J. & Ni, Z.-H. (2009). Cryst. Growth Des. 9, 5273-5282.]); Zhang, Su, Song et al. (2006)[Zang, S., Su, Y., Song, Y., Li, Y., Ni, Y., Zhu, H. & Meng, Q. (2006). Cryst. Growth Des. 6, 2369-2375.]. For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11NO5

  • Mr = 309.27

  • Monoclinic, P 21 /c

  • a = 7.7337 (15) Å

  • b = 11.580 (2) Å

  • c = 15.260 (3) Å

  • β = 98.43 (3)°

  • V = 1351.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.47 × 0.45 × 0.10 mm

Data collection
  • Rigaku Saturn 724 CCD area-detector diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 2000[Higashi, T. (2000). NUMABS. Rigaku Corporation, Tokyo, Japan.]). Tmin = 0.948, Tmax = 0.989

  • 11030 measured reflections

  • 3079 independent reflections

  • 2899 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.157

  • S = 1.27

  • 3079 reflections

  • 216 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O4i 0.93 (4) 1.67 (4) 2.584 (2) 165 (4)
N1—H1A⋯O5 0.90 (2) 1.67 (2) 2.570 (2) 179 (5)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Phthalic acid derivatives have proved useful as ligands for the construction of coordination polymers which have a number of potential applications (Zhang, Su, Song et al., 2006; Zhang, Su, Li et al., 2006; Su et al., 2007; Wang et al., 2009). As a part of our investigation of the rare earth coordination networks based on these phthalic acid derivatives, we report here the crystal structure of the title compound, the zwitterionic substituted phthalic acid C17H11NO5 (Fig. 1). In this molecule, the carboxylic acid substituent group at C15 has protonated the quinoline N-atom, giving an intramolecular N—H···Ocarboxyl hydrogen-bonding association [graph set S9 (Etter et al., 1990)]. The dihedral angles between the carboxyl groups and the benzene ring are 64.02 (9)° and 21.67 (9)°, the larger angle being associated with the intramolecular hydrogen bond. The molecules are connected by intermolecular carboxylic acid O—H···O hydrogen bonds (Table 1) giving one-dimensional chains which extend along the b axial direction and give an overall two-dimensional network structure through ππ interactions between the quinoline rings [minimum ring centroid separation, 3.6068 (6) Å] (Fig. 2).

Related literature top

For the use of phthalic acid derivatives in the construction of coordination polymers, see: Su et al. (2007); Zhang, Su, Li et al. (2006). For their potential applications, see: Wang et al. (2009); Zhang, Su, Song et al. (2006). For graph-set analysis, see: Etter et al. (1990).

Experimental top

3-Nitropthalonitrile (1.73 g, 10.0 mmol), 8-hydroxyquinoline (1.45 g, 10.0 mmol) and K2CO3 (4.14 g, 30.0 mmol) were suspended in dry DMF (20 ml) and stirred at room temperature under a nitrogen atmosphere for 4 h. The reaction mixture was then poured into water (200 ml), and the crude product was separated by filtration and purified by column chromatography on silica gel using CH2Cl2 as an eluent. After removal of the solvent by rotary evaporation, 2.25 g of 3-(quinolin-8-yloxy)-phthalonitrile was obtained in a yield of 83%. Under nitrogen, 2.71 g, 10.0 mmol) of this compound and KOH (1.20 g, 30.0 mmol) were suspended in 30 ml of distilled water and refluxed until the solution turned clear. After being cooled to room temperature, the pH of the reaction mixture was slowly adjusted to about 5–6 using HCl (6.0 mol/L) with stirring. The solid product was separated by filtration, and then washed successively with water (3 times 30 ml). After drying under vacuum, 2.78 g of final produc was obtained in a yield of 91%. The solid was dissolved in methyl alcohol and the filtered solution was evaporated slowly at room temperature for 5–10 days, giving colorless crystals suitable for X-ray structure analysis.

Refinement top

Carboxylic acid H atoms were located in a difference-Fourier analysis and their positional and isotropic displacement parameters were refined. Other H-atoms were placed in geometrically determined positions and were treated as riding, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme, with the intramolecular hydrogen bond shown as a dashed line. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The two-dimensional supramolecular structure formed through hydrogen-bonds and ππ stacking interactions. Hydrogen bonds are shown with green dashed lines and ππ stacking interactions are shown by blue dashed lines.
2-Carboxy-6-(quinolin-1-ium-8-yloxy)benzoate top
Crystal data top
C17H11NO5F(000) = 640
Mr = 309.27Dx = 1.520 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4908 reflections
a = 7.7337 (15) Åθ = 3.2–27.6°
b = 11.580 (2) ŵ = 0.11 mm1
c = 15.260 (3) ÅT = 293 K
β = 98.43 (3)°Plate, colourless
V = 1351.9 (5) Å30.47 × 0.45 × 0.10 mm
Z = 4
Data collection top
Rigaku Saturn 724 CCD area-detector
diffractometer
3079 independent reflections
Radiation source: fine-focus sealed tube2899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 27.6°, θmin = 3.2°
Absorption correction: numerical
(NUMABS; Higashi, 2000).
h = 910
Tmin = 0.948, Tmax = 0.989k = 1414
11030 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.27 w = 1/[σ2(Fo2) + (0.0659P)2 + 0.6417P]
where P = (Fo2 + 2Fc2)/3
3079 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C17H11NO5V = 1351.9 (5) Å3
Mr = 309.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7337 (15) ŵ = 0.11 mm1
b = 11.580 (2) ÅT = 293 K
c = 15.260 (3) Å0.47 × 0.45 × 0.10 mm
β = 98.43 (3)°
Data collection top
Rigaku Saturn 724 CCD area-detector
diffractometer
3079 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 2000).
2899 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.989Rint = 0.041
11030 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.27Δρmax = 0.30 e Å3
3079 reflectionsΔρmin = 0.29 e Å3
216 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.50110 (19)0.69917 (13)0.20095 (9)0.0243 (3)
O10.25866 (17)0.79156 (12)0.00275 (9)0.0188 (3)
O50.2260 (2)0.76160 (13)0.18306 (9)0.0256 (4)
N10.0436 (2)0.81385 (14)0.07072 (11)0.0193 (4)
O30.3439 (2)0.47845 (13)0.24357 (10)0.0323 (4)
O20.4250 (2)0.33268 (13)0.16305 (10)0.0299 (4)
C10.3499 (3)0.89691 (17)0.02677 (15)0.0238 (4)
H10.45400.92250.05930.029*
C20.3460 (3)0.86376 (18)0.05908 (15)0.0247 (4)
H20.44640.86800.08590.030*
C30.1888 (3)0.82314 (17)0.10662 (14)0.0225 (4)
H30.18640.80190.16560.027*
C40.1965 (3)0.89267 (17)0.06673 (14)0.0210 (4)
C50.0436 (2)0.84770 (16)0.01521 (12)0.0182 (4)
C60.1882 (3)0.93173 (18)0.15387 (14)0.0253 (5)
H60.28780.96050.18860.030*
C70.0340 (3)0.92718 (19)0.18686 (14)0.0259 (5)
H70.02860.95590.24330.031*
C80.1181 (3)0.87963 (18)0.13695 (13)0.0221 (4)
H80.22180.87610.16090.027*
C90.1119 (2)0.83900 (16)0.05353 (13)0.0188 (4)
C100.2595 (2)0.67061 (16)0.00022 (13)0.0179 (4)
C110.2268 (3)0.60626 (19)0.07763 (13)0.0252 (5)
H110.19610.64240.13210.030*
C120.2408 (3)0.4877 (2)0.07202 (14)0.0303 (5)
H120.21870.44330.12320.036*
C130.2875 (3)0.43417 (18)0.00914 (14)0.0262 (5)
H130.29710.35420.01200.031*
C140.3200 (3)0.49906 (17)0.08628 (13)0.0194 (4)
C150.3055 (2)0.61968 (17)0.08224 (12)0.0172 (4)
C160.3644 (3)0.43696 (17)0.17291 (13)0.0197 (4)
C170.3492 (3)0.69741 (16)0.16191 (12)0.0191 (4)
H2A0.447 (5)0.295 (4)0.218 (3)0.085 (13)*
H1A0.052 (4)0.794 (4)0.110 (2)0.102 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0257 (8)0.0249 (8)0.0204 (7)0.0003 (6)0.0027 (6)0.0041 (6)
O10.0191 (7)0.0175 (7)0.0193 (7)0.0007 (5)0.0012 (5)0.0013 (5)
O50.0315 (8)0.0255 (8)0.0193 (7)0.0092 (6)0.0017 (6)0.0038 (6)
N10.0204 (8)0.0174 (8)0.0201 (8)0.0001 (6)0.0026 (6)0.0020 (6)
O30.0535 (11)0.0249 (8)0.0204 (8)0.0080 (7)0.0113 (7)0.0022 (6)
O20.0490 (10)0.0205 (8)0.0193 (8)0.0094 (7)0.0020 (7)0.0021 (6)
C10.0200 (9)0.0159 (9)0.0342 (12)0.0013 (7)0.0005 (8)0.0048 (8)
C20.0204 (10)0.0214 (10)0.0329 (11)0.0009 (8)0.0063 (8)0.0050 (8)
C30.0259 (10)0.0188 (10)0.0236 (10)0.0015 (8)0.0063 (8)0.0044 (8)
C40.0198 (9)0.0151 (9)0.0268 (10)0.0004 (7)0.0011 (8)0.0015 (7)
C50.0195 (9)0.0150 (9)0.0194 (9)0.0010 (7)0.0004 (7)0.0020 (7)
C60.0259 (11)0.0196 (10)0.0278 (11)0.0001 (8)0.0045 (8)0.0030 (8)
C70.0306 (11)0.0252 (11)0.0204 (10)0.0024 (9)0.0014 (8)0.0057 (8)
C80.0243 (10)0.0201 (10)0.0219 (10)0.0021 (8)0.0033 (8)0.0021 (7)
C90.0200 (9)0.0164 (9)0.0191 (9)0.0006 (7)0.0001 (7)0.0003 (7)
C100.0176 (9)0.0173 (9)0.0191 (9)0.0017 (7)0.0031 (7)0.0001 (7)
C110.0313 (11)0.0267 (11)0.0160 (9)0.0061 (9)0.0016 (8)0.0002 (8)
C120.0451 (13)0.0255 (11)0.0179 (10)0.0053 (10)0.0039 (9)0.0066 (8)
C130.0357 (12)0.0180 (10)0.0226 (10)0.0024 (8)0.0031 (9)0.0036 (8)
C140.0206 (9)0.0187 (10)0.0183 (9)0.0015 (7)0.0010 (7)0.0008 (7)
C150.0161 (8)0.0178 (9)0.0177 (9)0.0003 (7)0.0025 (7)0.0012 (7)
C160.0221 (9)0.0166 (9)0.0201 (10)0.0022 (7)0.0019 (7)0.0001 (7)
C170.0257 (10)0.0158 (9)0.0154 (9)0.0011 (7)0.0024 (7)0.0011 (7)
Geometric parameters (Å, º) top
O4—C171.237 (2)C5—C91.416 (3)
O1—C91.390 (2)C6—C71.361 (3)
O1—C101.401 (2)C6—H60.9300
O5—C171.286 (2)C7—C81.416 (3)
N1—C31.324 (3)C7—H70.9300
N1—C51.369 (3)C8—C91.365 (3)
N1—H1A0.904 (19)C8—H80.9300
O3—C161.212 (2)C10—C151.388 (3)
O2—C161.312 (2)C10—C111.388 (3)
O2—H2A0.93 (4)C11—C121.379 (3)
C1—C21.361 (3)C11—H110.9300
C1—C41.412 (3)C12—C131.385 (3)
C1—H10.9300C12—H120.9300
C2—C31.403 (3)C13—C141.388 (3)
C2—H20.9300C13—H130.9300
C3—H30.9300C14—C151.402 (3)
C4—C61.415 (3)C14—C161.500 (3)
C4—C51.420 (3)C15—C171.511 (3)
C9—O1—C10114.24 (14)C7—C8—H8120.1
C3—N1—C5119.49 (18)C8—C9—O1121.25 (18)
C3—N1—H1A114 (3)C8—C9—C5120.59 (18)
C5—N1—H1A126 (3)O1—C9—C5118.12 (17)
C16—O2—H2A110 (3)C15—C10—C11122.27 (18)
C2—C1—C4120.31 (19)C15—C10—O1116.70 (16)
C2—C1—H1119.8C11—C10—O1120.90 (17)
C4—C1—H1119.8C12—C11—C10118.60 (19)
C1—C2—C3119.16 (19)C12—C11—H11120.7
C1—C2—H2120.4C10—C11—H11120.7
C3—C2—H2120.4C11—C12—C13120.61 (19)
N1—C3—C2122.5 (2)C11—C12—H12119.7
N1—C3—H3118.8C13—C12—H12119.7
C2—C3—H3118.8C12—C13—C14120.5 (2)
C1—C4—C6123.50 (19)C12—C13—H13119.8
C1—C4—C5117.26 (19)C14—C13—H13119.8
C6—C4—C5119.23 (19)C13—C14—C15119.92 (18)
N1—C5—C9119.65 (17)C13—C14—C16118.52 (18)
N1—C5—C4121.24 (18)C15—C14—C16121.53 (17)
C9—C5—C4119.11 (18)C10—C15—C14118.12 (17)
C7—C6—C4119.90 (19)C10—C15—C17118.28 (17)
C7—C6—H6120.1C14—C15—C17123.46 (17)
C4—C6—H6120.1O3—C16—O2124.23 (19)
C6—C7—C8121.31 (19)O3—C16—C14123.45 (18)
C6—C7—H7119.3O2—C16—C14112.32 (17)
C8—C7—H7119.3O4—C17—O5123.76 (18)
C9—C8—C7119.73 (19)O4—C17—C15118.82 (17)
C9—C8—H8120.1O5—C17—C15117.37 (17)
C4—C1—C2—C31.3 (3)C9—O1—C10—C1149.8 (2)
C5—N1—C3—C21.8 (3)C15—C10—C11—C120.1 (3)
C1—C2—C3—N11.1 (3)O1—C10—C11—C12175.68 (19)
C2—C1—C4—C6176.32 (19)C10—C11—C12—C130.3 (4)
C2—C1—C4—C53.0 (3)C11—C12—C13—C140.3 (4)
C3—N1—C5—C9179.36 (18)C12—C13—C14—C150.0 (3)
C3—N1—C5—C40.0 (3)C12—C13—C14—C16178.0 (2)
C1—C4—C5—N12.3 (3)C11—C10—C15—C140.4 (3)
C6—C4—C5—N1176.99 (18)O1—C10—C15—C14175.46 (16)
C1—C4—C5—C9178.31 (17)C11—C10—C15—C17176.33 (18)
C6—C4—C5—C92.4 (3)O1—C10—C15—C170.4 (3)
C1—C4—C6—C7178.45 (19)C13—C14—C15—C100.4 (3)
C5—C4—C6—C70.8 (3)C16—C14—C15—C10178.36 (17)
C4—C6—C7—C82.6 (3)C13—C14—C15—C17176.09 (19)
C6—C7—C8—C91.0 (3)C16—C14—C15—C176.0 (3)
C7—C8—C9—O1179.88 (18)C13—C14—C16—O3157.0 (2)
C7—C8—C9—C52.3 (3)C15—C14—C16—O320.9 (3)
C10—O1—C9—C8101.6 (2)C13—C14—C16—O222.0 (3)
C10—O1—C9—C580.5 (2)C15—C14—C16—O2160.01 (18)
N1—C5—C9—C8175.44 (18)C10—C15—C17—O4112.9 (2)
C4—C5—C9—C83.9 (3)C14—C15—C17—O462.7 (3)
N1—C5—C9—O12.5 (3)C10—C15—C17—O564.5 (2)
C4—C5—C9—O1178.14 (16)C14—C15—C17—O5119.8 (2)
C9—O1—C10—C15134.25 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O4i0.93 (4)1.67 (4)2.584 (2)165 (4)
N1—H1A···O50.90 (2)1.67 (2)2.570 (2)179 (5)
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H11NO5
Mr309.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.7337 (15), 11.580 (2), 15.260 (3)
β (°) 98.43 (3)
V3)1351.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.47 × 0.45 × 0.10
Data collection
DiffractometerRigaku Saturn 724 CCD area-detector
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 2000).
Tmin, Tmax0.948, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
11030, 3079, 2899
Rint0.041
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.157, 1.27
No. of reflections3079
No. of parameters216
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.29

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O4i0.93 (4)1.67 (4)2.584 (2)165 (4)
N1—H1A···O50.904 (19)1.665 (19)2.570 (2)179 (5)
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support by the Foundations of Fuzhou University (Nos. 2010-XQ-06 and JA11020).

References

First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (2000). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, Y., Zang, S., Li, Y., Zhu, H. & Meng, Q. (2007). Cryst. Growth Des. 7, 1277–1283.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, H., Zhang, D., Sun, D., Chen, Y., Zhang, L.-F., Tian, L., Jiang, J. & Ni, Z.-H. (2009). Cryst. Growth Des. 9, 5273–5282.  Web of Science CSD CrossRef CAS Google Scholar
First citationZang, S., Su, Y., Li, Y., Zhu, H. & Meng, Q. (2006). Inorg. Chem. Commun. 9, 337–340.  Web of Science CSD CrossRef CAS Google Scholar
First citationZang, S., Su, Y., Song, Y., Li, Y., Ni, Y., Zhu, H. & Meng, Q. (2006). Cryst. Growth Des. 6, 2369–2375.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1351
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds