metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m578-m579

Tri­chloridotris{N-[phen­yl(pyridin-2-yl)methyl­­idene]hydroxyl­amine-κ2N,N′}neodymium(III)

aCollege of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China
*Correspondence e-mail: yanghua7687@163.com

(Received 16 March 2012; accepted 31 March 2012; online 13 April 2012)

In the title compound, [NdCl3(C12H10N2O)3], the central NdIII ion is nine-coordinated by six N atoms from three bidentate chelate N-[phen­yl(pyridin-2-yl)methyl­idene]hydroxyl­amine ligands and three Cl ions, and displays a distorted tricapped trigonal prismatic geometry. The complex mol­ecules are stabilized by intra­molecular O—H⋯Cl hydrogen bonds.

Related literature

For complexes of oximes, see: Kukushkin & Pombeiro (1999[Kukushkin, Y. & Pombeiro, A. J. L. (1999). Coord. Chem. Rev. 181, 147-175.]); Milios et al. (2007[Milios, C. J., Inglis, R., Vinslava, A., Bagai, R., Wernsdorfer, W., Parsons, S., Perlepes, S. P., Christou, G. & Brechin, E. K. (2007). J. Am. Chem. Soc. 129, 12505-12511.]); Fritsky et al. (2004[Fritsky, O., Swiatek-Kozlowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746-3752.]); Xu et al. (2007[Xu, H. B., Wang, B. W., Pan, F., Wang, Z. M. & Gao, S. (2007). Angew. Chem. Int. Ed. 46, 7388-7392.]); Papatriantafyllopoulou et al. (2009[Papatriantafyllopoulou, C., Estrader, M., Efthymiou, C. G., Dermitzaki, D., Gkotsis, K., Terzis, A., Diaz, C. & Perlepes, S. P. (2009). Polyhedron, 28, 1652-1655.]). For 3d-metal complexes of N-[phen­yl(pyridine-2-yl)methyl­idene]hydroxyl­amine, see: Milios et al. (2003[Milios, C. J., Kefalloniti, E., Raptopoulou, C. P., Terzis, A., Vicente, R., Lalioti, N., Escuer, A. & Perlepes, S. P. (2003). Chem. Commun. pp. 819-821.]); Milios et al. (2004[Milios, C. J., Stamatatos, T. C., Kyritsis, P., Terzis, A., Raptopoulou, C. P., Vicente, R., Escuer, A. & Perlepes, S. P. (2004). Eur. J. Inorg. Chem. pp. 2885-2901.]). For an Sm complex with this ligand, see: Lei et al. (2012[Lei, T., Chen, W., Chen, Y., Hu, B. & Li, Y. (2012). Acta Cryst. E68, m344-m345.]).

[Scheme 1]

Experimental

Crystal data
  • [NdCl3(C12H10N2O)3]

  • Mr = 845.25

  • Triclinic, [P \overline 1]

  • a = 8.6367 (17) Å

  • b = 10.460 (2) Å

  • c = 19.847 (4) Å

  • α = 91.87 (3)°

  • β = 94.38 (3)°

  • γ = 92.80 (3)°

  • V = 1784.4 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.72 mm−1

  • T = 293 K

  • 0.31 × 0.18 × 0.13 mm

Data collection
  • Bruker SMART CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.617, Tmax = 0.807

  • 30524 measured reflections

  • 7775 independent reflections

  • 7155 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.059

  • S = 1.04

  • 7775 reflections

  • 445 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected bond lengths (Å)

Nd1—N2 2.604 (2)
Nd1—N1 2.661 (2)
Nd1—N5 2.680 (2)
Nd1—N4 2.6953 (19)
Nd1—N6 2.7018 (19)
Nd1—N3 2.742 (2)
Nd1—Cl3 2.7686 (8)
Nd1—Cl2 2.7903 (9)
Nd1—Cl1 2.8296 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl3 0.82 2.22 2.966 (2) 152
O2—H2A⋯Cl1 0.82 2.19 2.9290 (19) 151
O3—H3A⋯Cl2 0.82 2.19 2.930 (2) 150

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordination chemistry of oximes (Kukushkin & Pombeiro, 1999; Milios et al., 2007) continues to attract considerable attention, with the efforts of several research groups driven by a number of considerations. These include the use of metal oxime complexes in supramolecular chemistry (Fritsky et al., 2004) and the employment of oximate ligands in the synthesis of complexes with interesting magnetic properties (Xu et al., 2007; Papatriantafyllopoulou et al., 2009; Milios et al., 2007). N-[phenyl(pyridine-2-yl)methylidene]hydroxylamine [(py)C(ph)NOH], is one of the oximes that is currently a popular ligand for synthesis of the 3d-metal complexes (Milios et al., 2003; Milios et al., 2004). However, the structures of rare earth metal complexes with this ligand are uncommon in the crystallographic literature. Here we report the structure of the neodymium complex with [(py)C(ph)NOH], the title compound [NdCl3(C12H10N2O)3], which was synthesized by the reaction of NdCl3 . 6H2O with the ligand under autogenous pressure. The title compound is isomorphous with the SmIII analogue (Lei et al., 2012).

In the title complex, the central NdIII ion is nine-coordinated by six nitrogen atoms from three bidentate chelate ligands and three Cl- ions [Nd—N range, 2.604 (2)–2.742 (2) Å; Nd—Cl, 2.7686 (8)–2.8296 (10) Å (Table 1)] and displays a distorted tricapped trigonal prismatic geometry (Fig. 1). The discrete complex molecules are stabilized by intramolecular O—H···Cl hydrogen bonds (Table 2, Fig. 2).

Related literature top

For complexes of oximes, see: Kukushkin & Pombeiro (1999); Milios et al. (2007); Fritsky et al. (2004); Xu et al. (2007); Papatriantafyllopoulou et al. (2009). For 3d-metal complexes of N-[phenyl(pyridine-2-yl)methylidene]hydroxylamine, see: Milios et al. (2003); Milios et al. (2004). For an Sm complex with this ligand, see: Lei et al. (2012).

Experimental top

A mixture of phenyl-2-pyridyl ketone oxime (0.0198 g, 0.10 mmol), NdCl3 . 6H2O (0.0179 g, 0.05 mmol), and ethanol (2 mL) was sealed in a 6 mL Pyrex tube. The tube was heated at 80 °C for 4 days under autogenous pressure. Cooling of the resultant solution to room temperature gave colourless crystals of the product. The crystals were collected by filtration, washed with ethanol (2 mL) and dried in air. Yield: 54%. Anal. Calcd. for C36H30Cl3N6NdO3: C, 51.15; H, 3.58; N, 9.94%. Found: C, 50.93; H, 3.43; N, 9.76%.

Refinement top

H atoms were placed in calculated positions and included in the refinement using a riding-model approximation, with C—H = 0.93 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Intramolecular hydrogen-bonding interactions in the title complex, with hydrogen bonds shown as dashed lines.
Trichloridotris{N-[phenyl(pyridin-2-yl)methylidene]hydroxylamine- κ2N,N'}neodymium(III) top
Crystal data top
[NdCl3(C12H10N2O)3]Z = 2
Mr = 845.25F(000) = 846
Triclinic, P1char
Hall symbol: -P 1Dx = 1.573 Mg m3
a = 8.6367 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.460 (2) ÅCell parameters from 7737 reflections
c = 19.847 (4) Åθ = 2.2–27.0°
α = 91.87 (3)°µ = 1.72 mm1
β = 94.38 (3)°T = 293 K
γ = 92.80 (3)°Block, colourless
V = 1784.4 (6) Å30.31 × 0.18 × 0.13 mm
Data collection top
Bruker SMART CCD-detector
diffractometer
7775 independent reflections
Radiation source: fine-focus sealed tube7155 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 27.0°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.617, Tmax = 0.807k = 1313
30524 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0316P)2 + 0.3895P]
where P = (Fo2 + 2Fc2)/3
7775 reflections(Δ/σ)max = 0.002
445 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[NdCl3(C12H10N2O)3]γ = 92.80 (3)°
Mr = 845.25V = 1784.4 (6) Å3
Triclinic, P1Z = 2
a = 8.6367 (17) ÅMo Kα radiation
b = 10.460 (2) ŵ = 1.72 mm1
c = 19.847 (4) ÅT = 293 K
α = 91.87 (3)°0.31 × 0.18 × 0.13 mm
β = 94.38 (3)°
Data collection top
Bruker SMART CCD-detector
diffractometer
7775 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
7155 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 0.807Rint = 0.028
30524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.04Δρmax = 0.50 e Å3
7775 reflectionsΔρmin = 0.44 e Å3
445 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.170030 (12)0.594157 (10)0.248609 (5)0.03370 (4)
Cl20.10720 (8)0.35456 (5)0.30113 (3)0.05379 (15)
Cl10.27975 (7)0.70288 (6)0.13140 (3)0.05048 (14)
Cl30.48680 (7)0.57109 (6)0.27455 (3)0.05349 (15)
N20.2436 (2)0.41331 (18)0.16542 (10)0.0429 (4)
N60.2375 (2)0.61037 (18)0.38390 (9)0.0437 (4)
N10.0455 (2)0.48814 (17)0.15808 (9)0.0397 (4)
N30.0819 (2)0.65372 (18)0.31740 (9)0.0415 (4)
N50.2564 (2)0.81945 (17)0.31196 (10)0.0434 (4)
C270.3334 (5)1.0579 (3)0.37346 (19)0.0884 (11)
H270.35721.13810.39430.106*
N40.0185 (2)0.77901 (18)0.20749 (9)0.0418 (4)
C70.2007 (3)0.2515 (2)0.07372 (11)0.0416 (5)
C180.1209 (2)0.8276 (2)0.24228 (11)0.0378 (4)
O10.3882 (2)0.36271 (19)0.17316 (10)0.0627 (5)
H1A0.44190.40340.20310.094*
O20.0065 (2)0.83670 (19)0.14624 (9)0.0592 (5)
H2A0.06870.81040.12820.089*
C190.2129 (3)0.9365 (2)0.21929 (11)0.0397 (5)
C50.0047 (3)0.4056 (2)0.10935 (11)0.0394 (5)
O30.2290 (2)0.50316 (16)0.42307 (8)0.0576 (4)
H3A0.20280.43980.39870.086*
C170.1480 (2)0.7670 (2)0.30694 (11)0.0384 (5)
C130.1152 (3)0.5941 (2)0.37345 (13)0.0502 (6)
H130.07590.51390.38030.060*
C310.2881 (3)0.7204 (3)0.49380 (12)0.0508 (6)
C60.1547 (3)0.3581 (2)0.11766 (11)0.0399 (5)
C210.2296 (4)1.1591 (3)0.19732 (14)0.0624 (7)
H210.18531.24210.19960.075*
C10.1928 (3)0.5235 (2)0.15376 (12)0.0459 (5)
H10.22410.57720.18790.055*
C40.1058 (3)0.3652 (3)0.05469 (12)0.0521 (6)
H40.07340.31120.02100.063*
C300.2678 (3)0.7144 (2)0.41872 (11)0.0440 (5)
C240.3642 (3)0.9139 (3)0.19283 (13)0.0512 (6)
H240.41100.83190.19230.061*
C140.2040 (3)0.6440 (3)0.42155 (13)0.0569 (6)
H140.22220.59940.46020.068*
C250.2728 (3)0.9250 (2)0.27624 (14)0.0537 (6)
H250.25820.91670.22940.064*
C200.1452 (3)1.0601 (2)0.22234 (13)0.0516 (6)
H200.04371.07590.24110.062*
C290.2820 (3)0.8323 (2)0.37946 (12)0.0475 (5)
C230.4461 (3)1.0143 (3)0.16705 (14)0.0630 (7)
H230.54760.99940.14820.076*
C320.4105 (3)0.6620 (3)0.52790 (13)0.0559 (6)
H320.48370.62240.50360.067*
C160.2384 (3)0.8229 (2)0.35265 (13)0.0516 (6)
H160.28100.90130.34410.062*
C330.4240 (4)0.6624 (3)0.59736 (15)0.0744 (9)
H330.50550.62220.61990.089*
C110.1861 (4)0.0299 (3)0.03858 (14)0.0635 (7)
H110.14480.05300.04270.076*
C120.1387 (3)0.1293 (2)0.07905 (13)0.0549 (6)
H120.06480.11290.10980.066*
C20.3004 (3)0.4845 (3)0.10144 (14)0.0554 (6)
H20.40180.51100.10060.067*
C220.3780 (4)1.1357 (3)0.16916 (14)0.0676 (8)
H220.43321.20260.15130.081*
C80.3121 (3)0.2733 (3)0.02820 (14)0.0605 (7)
H80.35730.35520.02500.073*
C90.3564 (4)0.1743 (3)0.01235 (15)0.0738 (9)
H90.42980.18970.04340.089*
C30.2561 (3)0.4062 (3)0.05076 (14)0.0612 (7)
H30.32580.38080.01420.073*
C150.2652 (3)0.7611 (3)0.41137 (14)0.0597 (7)
H150.32380.79820.44350.072*
C350.1970 (5)0.7814 (4)0.60097 (17)0.0867 (11)
H350.12570.82200.62600.104*
C260.3100 (4)1.0446 (3)0.30484 (18)0.0729 (8)
H260.31911.11530.27800.087*
C100.2927 (4)0.0537 (3)0.00695 (14)0.0663 (8)
H100.32230.01280.03460.080*
C360.1811 (4)0.7812 (3)0.53085 (15)0.0708 (8)
H360.09920.82160.50880.085*
C340.3174 (5)0.7219 (4)0.63336 (16)0.0888 (12)
H340.32700.72200.68030.107*
C280.3211 (4)0.9497 (3)0.41152 (16)0.0735 (9)
H280.33910.95620.45830.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.03692 (7)0.02906 (7)0.03506 (7)0.00424 (4)0.00134 (4)0.00019 (4)
Cl20.0757 (4)0.0322 (3)0.0531 (3)0.0011 (3)0.0043 (3)0.0023 (2)
Cl10.0546 (3)0.0522 (3)0.0471 (3)0.0083 (3)0.0152 (3)0.0057 (3)
Cl30.0391 (3)0.0638 (4)0.0559 (3)0.0057 (3)0.0057 (2)0.0067 (3)
N20.0381 (9)0.0402 (10)0.0505 (11)0.0122 (8)0.0013 (8)0.0055 (8)
N60.0537 (11)0.0375 (10)0.0399 (10)0.0020 (8)0.0022 (8)0.0021 (8)
N10.0399 (9)0.0357 (10)0.0434 (10)0.0052 (8)0.0020 (8)0.0007 (8)
N30.0434 (10)0.0372 (10)0.0449 (10)0.0043 (8)0.0065 (8)0.0070 (8)
N50.0473 (10)0.0341 (10)0.0486 (11)0.0012 (8)0.0056 (8)0.0010 (8)
C270.132 (3)0.0428 (16)0.087 (2)0.0277 (18)0.021 (2)0.0182 (16)
N40.0471 (10)0.0395 (10)0.0406 (10)0.0087 (8)0.0080 (8)0.0085 (8)
C70.0463 (12)0.0391 (12)0.0395 (11)0.0083 (10)0.0026 (9)0.0033 (9)
C180.0390 (11)0.0327 (11)0.0421 (11)0.0045 (9)0.0043 (9)0.0014 (9)
O10.0439 (9)0.0694 (12)0.0732 (13)0.0254 (9)0.0082 (8)0.0251 (10)
O20.0709 (12)0.0669 (12)0.0464 (9)0.0307 (10)0.0216 (8)0.0219 (9)
C190.0465 (12)0.0367 (11)0.0378 (11)0.0112 (9)0.0092 (9)0.0038 (9)
C50.0432 (11)0.0347 (11)0.0400 (11)0.0033 (9)0.0012 (9)0.0004 (9)
O30.0852 (13)0.0419 (9)0.0445 (9)0.0005 (9)0.0032 (9)0.0069 (7)
C170.0398 (11)0.0352 (11)0.0402 (11)0.0009 (9)0.0047 (9)0.0012 (9)
C130.0487 (13)0.0478 (14)0.0557 (14)0.0033 (11)0.0073 (11)0.0153 (11)
C310.0542 (14)0.0535 (15)0.0435 (13)0.0110 (12)0.0077 (11)0.0074 (11)
C60.0438 (12)0.0349 (11)0.0412 (11)0.0060 (9)0.0044 (9)0.0029 (9)
C210.087 (2)0.0373 (13)0.0674 (17)0.0171 (13)0.0259 (16)0.0089 (12)
C10.0426 (12)0.0432 (13)0.0523 (13)0.0081 (10)0.0033 (10)0.0012 (10)
C40.0551 (14)0.0561 (15)0.0441 (13)0.0093 (12)0.0024 (11)0.0088 (11)
C300.0434 (12)0.0454 (13)0.0424 (12)0.0003 (10)0.0028 (9)0.0039 (10)
C240.0435 (13)0.0515 (14)0.0597 (15)0.0071 (11)0.0062 (11)0.0058 (12)
C140.0586 (15)0.0644 (17)0.0491 (14)0.0020 (13)0.0124 (12)0.0132 (12)
C250.0626 (15)0.0399 (13)0.0585 (15)0.0035 (11)0.0066 (12)0.0045 (11)
C200.0555 (14)0.0422 (13)0.0585 (15)0.0070 (11)0.0094 (12)0.0036 (11)
C290.0498 (13)0.0422 (13)0.0497 (13)0.0042 (10)0.0073 (11)0.0068 (10)
C230.0500 (14)0.084 (2)0.0590 (16)0.0265 (14)0.0082 (12)0.0115 (15)
C320.0616 (16)0.0540 (15)0.0503 (14)0.0100 (12)0.0015 (12)0.0005 (12)
C160.0565 (14)0.0481 (14)0.0521 (14)0.0096 (11)0.0131 (11)0.0009 (11)
C330.086 (2)0.077 (2)0.0556 (17)0.0239 (18)0.0106 (16)0.0101 (15)
C110.089 (2)0.0368 (13)0.0653 (17)0.0058 (13)0.0113 (15)0.0059 (12)
C120.0658 (16)0.0435 (14)0.0570 (15)0.0007 (12)0.0186 (12)0.0038 (11)
C20.0427 (13)0.0603 (16)0.0625 (16)0.0095 (12)0.0041 (11)0.0003 (13)
C220.085 (2)0.0652 (19)0.0611 (17)0.0458 (17)0.0277 (15)0.0205 (14)
C80.0739 (18)0.0513 (15)0.0576 (16)0.0027 (13)0.0204 (14)0.0051 (12)
C90.084 (2)0.078 (2)0.0618 (17)0.0028 (17)0.0327 (16)0.0137 (15)
C30.0541 (15)0.0714 (18)0.0550 (15)0.0049 (13)0.0141 (12)0.0037 (13)
C150.0648 (16)0.0647 (17)0.0521 (15)0.0055 (14)0.0203 (13)0.0008 (13)
C350.100 (3)0.098 (3)0.063 (2)0.018 (2)0.0377 (19)0.0240 (18)
C260.094 (2)0.0370 (14)0.088 (2)0.0098 (14)0.0204 (18)0.0034 (14)
C100.080 (2)0.0618 (18)0.0586 (16)0.0186 (15)0.0136 (15)0.0186 (14)
C360.0677 (18)0.082 (2)0.0618 (17)0.0014 (16)0.0121 (14)0.0123 (15)
C340.115 (3)0.103 (3)0.0442 (16)0.040 (2)0.0093 (19)0.0032 (17)
C280.102 (2)0.0538 (17)0.0621 (17)0.0224 (16)0.0136 (16)0.0154 (14)
Geometric parameters (Å, º) top
Nd1—N22.604 (2)C21—H210.9300
Nd1—N12.661 (2)C1—C21.377 (3)
Nd1—N52.680 (2)C1—H10.9300
Nd1—N42.6953 (19)C4—C31.384 (4)
Nd1—N62.7018 (19)C4—H40.9300
Nd1—N32.742 (2)C30—C291.485 (3)
Nd1—Cl32.7686 (8)C24—C231.384 (4)
Nd1—Cl22.7903 (9)C24—H240.9300
Nd1—Cl12.8296 (10)C14—C151.372 (4)
N2—C61.277 (3)C14—H140.9300
N2—O11.380 (2)C25—C261.370 (4)
N6—C301.275 (3)C25—H250.9300
N6—O31.387 (2)C20—H200.9300
N1—C11.339 (3)C29—C281.380 (4)
N1—C51.354 (3)C23—C221.371 (4)
N3—C131.336 (3)C23—H230.9300
N3—C171.355 (3)C32—C331.374 (4)
N5—C251.339 (3)C32—H320.9300
N5—C291.342 (3)C16—C151.380 (4)
C27—C261.363 (5)C16—H160.9300
C27—C281.385 (4)C33—C341.369 (5)
C27—H270.9300C33—H330.9300
N4—C181.278 (3)C11—C101.358 (4)
N4—O21.383 (2)C11—C121.390 (4)
C7—C121.372 (3)C11—H110.9300
C7—C81.386 (3)C12—H120.9300
C7—C61.481 (3)C2—C31.365 (4)
C18—C171.479 (3)C2—H20.9300
C18—C191.485 (3)C22—H220.9300
O1—H1A0.8200C8—C91.378 (4)
O2—H2A0.8200C8—H80.9300
C19—C241.377 (3)C9—C101.362 (4)
C19—C201.390 (3)C9—H90.9300
C5—C41.381 (3)C3—H30.9300
C5—C61.485 (3)C15—H150.9300
O3—H3A0.8200C35—C341.367 (5)
C17—C161.376 (3)C35—C361.388 (4)
C13—C141.375 (4)C35—H350.9300
C13—H130.9300C26—H260.9300
C31—C321.389 (4)C10—H100.9300
C31—C361.389 (4)C36—H360.9300
C31—C301.486 (3)C34—H340.9300
C21—C221.366 (4)C28—H280.9300
C21—C201.379 (4)
N2—Nd1—N160.38 (6)C7—C6—C5120.62 (19)
N2—Nd1—N5146.60 (6)C22—C21—C20120.3 (3)
N1—Nd1—N5140.98 (6)C22—C21—H21119.9
N2—Nd1—N4121.50 (6)C20—C21—H21119.9
N1—Nd1—N472.25 (6)N1—C1—C2123.5 (2)
N5—Nd1—N468.74 (6)N1—C1—H1118.3
N2—Nd1—N6126.82 (6)C2—C1—H1118.3
N1—Nd1—N6139.68 (6)C5—C4—C3119.1 (2)
N5—Nd1—N659.14 (6)C5—C4—H4120.4
N4—Nd1—N6111.33 (6)C3—C4—H4120.4
N2—Nd1—N3137.44 (6)N6—C30—C29115.7 (2)
N1—Nd1—N383.49 (6)N6—C30—C31123.3 (2)
N5—Nd1—N375.89 (6)C29—C30—C31121.0 (2)
N4—Nd1—N358.57 (6)C19—C24—C23119.5 (3)
N6—Nd1—N367.56 (6)C19—C24—H24120.3
N2—Nd1—Cl374.36 (5)C23—C24—H24120.3
N1—Nd1—Cl3134.58 (4)C15—C14—C13118.6 (2)
N5—Nd1—Cl378.41 (5)C15—C14—H14120.7
N4—Nd1—Cl3136.62 (5)C13—C14—H14120.7
N6—Nd1—Cl371.65 (5)N5—C25—C26123.7 (3)
N3—Nd1—Cl3138.76 (4)N5—C25—H25118.1
N2—Nd1—Cl269.77 (5)C26—C25—H25118.1
N1—Nd1—Cl277.37 (5)C21—C20—C19119.4 (3)
N5—Nd1—Cl2130.24 (4)C21—C20—H20120.3
N4—Nd1—Cl2131.64 (4)C19—C20—H20120.3
N6—Nd1—Cl271.34 (5)N5—C29—C28121.7 (2)
N3—Nd1—Cl281.64 (5)N5—C29—C30117.4 (2)
Cl3—Nd1—Cl291.19 (4)C28—C29—C30120.9 (2)
N2—Nd1—Cl170.22 (5)C22—C23—C24120.2 (3)
N1—Nd1—Cl181.67 (5)C22—C23—H23119.9
N5—Nd1—Cl186.33 (5)C24—C23—H23119.9
N4—Nd1—Cl170.85 (5)C33—C32—C31120.5 (3)
N6—Nd1—Cl1138.42 (5)C33—C32—H32119.8
N3—Nd1—Cl1129.42 (4)C31—C32—H32119.8
Cl3—Nd1—Cl179.77 (3)C17—C16—C15119.1 (2)
Cl2—Nd1—Cl1139.95 (3)C17—C16—H16120.5
C6—N2—O1113.33 (18)C15—C16—H16120.5
C6—N2—Nd1126.43 (14)C34—C33—C32119.9 (3)
O1—N2—Nd1120.13 (13)C34—C33—H33120.0
C30—N6—O3113.23 (18)C32—C33—H33120.0
C30—N6—Nd1125.00 (15)C10—C11—C12120.1 (3)
O3—N6—Nd1121.56 (13)C10—C11—H11120.0
C1—N1—C5117.13 (19)C12—C11—H11120.0
C1—N1—Nd1122.39 (15)C7—C12—C11120.2 (2)
C5—N1—Nd1120.07 (14)C7—C12—H12119.9
C13—N3—C17116.6 (2)C11—C12—H12119.9
C13—N3—Nd1121.58 (15)C3—C2—C1119.0 (2)
C17—N3—Nd1119.27 (14)C3—C2—H2120.5
C25—N5—C29117.5 (2)C1—C2—H2120.5
C25—N5—Nd1120.04 (16)C21—C22—C23120.4 (2)
C29—N5—Nd1122.42 (15)C21—C22—H22119.8
C26—C27—C28118.7 (3)C23—C22—H22119.8
C26—C27—H27120.6C9—C8—C7120.3 (3)
C28—C27—H27120.6C9—C8—H8119.8
C18—N4—O2112.71 (17)C7—C8—H8119.8
C18—N4—Nd1125.20 (14)C10—C9—C8120.1 (3)
O2—N4—Nd1122.00 (12)C10—C9—H9120.0
C12—C7—C8118.9 (2)C8—C9—H9120.0
C12—C7—C6120.9 (2)C2—C3—C4119.0 (2)
C8—C7—C6120.1 (2)C2—C3—H3120.5
N4—C18—C17116.40 (18)C4—C3—H3120.5
N4—C18—C19122.86 (19)C14—C15—C16118.9 (2)
C17—C18—C19120.71 (18)C14—C15—H15120.6
N2—O1—H1A109.5C16—C15—H15120.6
N4—O2—H2A109.5C34—C35—C36120.1 (3)
C24—C19—C20120.1 (2)C34—C35—H35120.0
C24—C19—C18119.6 (2)C36—C35—H35120.0
C20—C19—C18120.2 (2)C27—C26—C25118.7 (3)
N1—C5—C4122.2 (2)C27—C26—H26120.6
N1—C5—C6116.83 (19)C25—C26—H26120.6
C4—C5—C6120.9 (2)C11—C10—C9120.5 (3)
N6—O3—H3A109.5C11—C10—H10119.8
N3—C17—C16122.7 (2)C9—C10—H10119.8
N3—C17—C18116.38 (19)C35—C36—C31119.7 (3)
C16—C17—C18120.9 (2)C35—C36—H36120.2
N3—C13—C14124.0 (2)C31—C36—H36120.2
N3—C13—H13118.0C35—C34—C33120.7 (3)
C14—C13—H13118.0C35—C34—H34119.7
C32—C31—C36119.1 (2)C33—C34—H34119.7
C32—C31—C30120.8 (2)C29—C28—C27119.5 (3)
C36—C31—C30120.1 (3)C29—C28—H28120.2
N2—C6—C7124.1 (2)C27—C28—H28120.2
N2—C6—C5115.26 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl30.822.222.966 (2)152
O2—H2A···Cl10.822.192.9290 (19)151
O3—H3A···Cl20.822.192.930 (2)150

Experimental details

Crystal data
Chemical formula[NdCl3(C12H10N2O)3]
Mr845.25
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.6367 (17), 10.460 (2), 19.847 (4)
α, β, γ (°)91.87 (3), 94.38 (3), 92.80 (3)
V3)1784.4 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.72
Crystal size (mm)0.31 × 0.18 × 0.13
Data collection
DiffractometerBruker SMART CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.617, 0.807
No. of measured, independent and
observed [I > 2σ(I)] reflections
30524, 7775, 7155
Rint0.028
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.059, 1.04
No. of reflections7775
No. of parameters445
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.44

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Nd1—N22.604 (2)Nd1—N32.742 (2)
Nd1—N12.661 (2)Nd1—Cl32.7686 (8)
Nd1—N52.680 (2)Nd1—Cl22.7903 (9)
Nd1—N42.6953 (19)Nd1—Cl12.8296 (10)
Nd1—N62.7018 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl30.822.222.966 (2)152
O2—H2A···Cl10.822.192.9290 (19)151
O3—H3A···Cl20.822.192.930 (2)150
 

Acknowledgements

The author appreciates financial support from Yanan University (grant No. YD2011–20) and the Science and Technology Bureau of Yanan City (grant No. kn2009–16).

References

First citationBruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFritsky, O., Swiatek-Kozlowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.  Web of Science CSD CrossRef CAS Google Scholar
First citationKukushkin, Y. & Pombeiro, A. J. L. (1999). Coord. Chem. Rev. 181, 147–175.  Web of Science CrossRef CAS Google Scholar
First citationLei, T., Chen, W., Chen, Y., Hu, B. & Li, Y. (2012). Acta Cryst. E68, m344–m345.  CSD CrossRef IUCr Journals Google Scholar
First citationMilios, C. J., Inglis, R., Vinslava, A., Bagai, R., Wernsdorfer, W., Parsons, S., Perlepes, S. P., Christou, G. & Brechin, E. K. (2007). J. Am. Chem. Soc. 129, 12505–12511.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMilios, C. J., Kefalloniti, E., Raptopoulou, C. P., Terzis, A., Vicente, R., Lalioti, N., Escuer, A. & Perlepes, S. P. (2003). Chem. Commun. pp. 819–821.  Web of Science CSD CrossRef Google Scholar
First citationMilios, C. J., Stamatatos, T. C., Kyritsis, P., Terzis, A., Raptopoulou, C. P., Vicente, R., Escuer, A. & Perlepes, S. P. (2004). Eur. J. Inorg. Chem. pp. 2885–2901.  Web of Science CSD CrossRef Google Scholar
First citationPapatriantafyllopoulou, C., Estrader, M., Efthymiou, C. G., Dermitzaki, D., Gkotsis, K., Terzis, A., Diaz, C. & Perlepes, S. P. (2009). Polyhedron, 28, 1652–1655.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H. B., Wang, B. W., Pan, F., Wang, Z. M. & Gao, S. (2007). Angew. Chem. Int. Ed. 46, 7388–7392.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m578-m579
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds