organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1274

5-[4-(1H-Imidazol-1-yl)phen­yl]-1H-tetra­zole

aCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, bCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and cSchool of Environment Science and Engineering, Donghua University, Shanghai 200051, People's Republic of China
*Correspondence e-mail: songwd60@163.com

(Received 21 March 2012; accepted 29 March 2012; online 4 April 2012)

In the title compound, C10H8N6, the tetra­zole and benzene rings are close to being coplanar [dihedral angle = 9.90 (16)°], but the imidazole ring is rotated 37.18 (09)° out of the benzene plane. In the crystal, mol­ecules are connected through tetra­zole–imidazole N—H⋯N hydrogen bonds, giving rise to zigzag chains, which extend along [010].

Related literature

For our previous work based on the imidazole derivatives as ligands, see: Li et al. (2010[Li, S.-J., Miao, D.-L., Song, W.-D., Li, S.-H. & Yan, J.-B. (2010). Acta Cryst. E66, m1096-m1097.]); Tong et al. (2011[Tong, S.-W., Li, S.-J., Song, W.-D., Miao, D.-L. & An, J.-B. (2011). Acta Cryst. E67, m1870-m1871.]); Tong et al., (2012[Tong, S.-W., Song, W.-D., Miao, D.-L., Li, S.-J. & An, J.-B. (2012). Acta Cryst. E68, m433-m434.]). For related structures, see: Huang et al. (2009[Huang, R.-Y., Zhu, K., Chen, H., Liu, G.-X. & Ren, X.-M. (2009). Wuji Huaxue Xuebao, 25, 162-165.]); Cheng (2011[Cheng, X.-C. (2011). Acta Cryst. E67, m1757.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N6

  • Mr = 212.22

  • Monoclinic, P 21

  • a = 3.7219 (12) Å

  • b = 16.429 (5) Å

  • c = 7.791 (2) Å

  • β = 97.167 (6)°

  • V = 472.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.985

  • 3477 measured reflections

  • 1421 independent reflections

  • 1239 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.120

  • S = 1.35

  • 1421 reflections

  • 145 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N2i 0.86 1.93 2.751 (4) 158
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The imidazole derivatives can be used to synthesize various types of metal complexes because they contain available N-donor sites for coordination. Our research group has shown great interest in metal-organic complexes with imidazole derivatives, e.g. 2-propylimidazole-4,5-dicarboxylic acid (Tong et al., 2011; Li et al., 2010) and 5-[4-imidazol-1-yl)phenyl]tetrazole (1-tetrazole-4-imidazolebenzene) (Tong et al., 2012). In this paper, we report the crystal structure of this ligand from crystals obtained under hydrothermal conditions. As illustrated in Fig. 1, the tetrazole and benzene rings are close to coplanar [dihedral angle, 9.90 (16)°] but the imidazole ring is rotated 37.18 (19)° out of the benzene plane. The molecules are connected into one-dimensional zigzag chains through tetrazole N—H···Nimidazole hydrogen bonds (Table 1, Fig. 2). For the structures of complexes with this ligand, see Huang et al. (2009) and Cheng (2011).

Related literature top

For our previous work based on the imidazole derivatives as ligands, see: Li et al. (2010); Tong et al. (2011); Tong et al., (2012). For related structures, see: Huang et al. (2009); Cheng (2011).

Experimental top

5-[4-imidazol-1-yl)phenyl]tetrazole (0.2 mmol, 0.043 g) in 12 ml of N,N-dimethylformamide was sealed in an autoclave equipped with a Teflon liner (25 ml) and then heated at 413 K for 3 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement top

The imidazolyl and phenyl H-atoms and the tetrazole N H-atom were located in a difference-Fourier but were refined as riding with C—H = 0.93 Å or N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The one-dimensional chain structure extending along [010], with hydrogen bonds shown as dashed lines.
5-[4-(1H-Imidazol-1-yl)phenyl]-1H-tetrazole top
Crystal data top
C10H8N6F(000) = 220
Mr = 212.22Dx = 1.491 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1003 reflections
a = 3.7219 (12) Åθ = 2.6–22.3°
b = 16.429 (5) ŵ = 0.10 mm1
c = 7.791 (2) ÅT = 296 K
β = 97.167 (6)°Block, colorless
V = 472.6 (3) Å30.30 × 0.20 × 0.15 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1421 independent reflections
Radiation source: fine-focus sealed tube1239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 44
Tmin = 0.971, Tmax = 0.985k = 1918
3477 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.35 w = 1/[σ2(Fo2) + (0.051P)2 + 0.001P]
where P = (Fo2 + 2Fc2)/3
1421 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
C10H8N6V = 472.6 (3) Å3
Mr = 212.22Z = 2
Monoclinic, P21Mo Kα radiation
a = 3.7219 (12) ŵ = 0.10 mm1
b = 16.429 (5) ÅT = 296 K
c = 7.791 (2) Å0.30 × 0.20 × 0.15 mm
β = 97.167 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1421 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1239 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.985Rint = 0.038
3477 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.120H-atom parameters constrained
S = 1.35Δρmax = 0.25 e Å3
1421 reflectionsΔρmin = 0.31 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9106 (8)0.45885 (16)0.5643 (3)0.0314 (7)
N20.9495 (8)0.57050 (19)0.7228 (4)0.0388 (8)
N30.3005 (9)0.16887 (18)0.0321 (4)0.0370 (8)
H30.25170.14750.12730.044*
N40.2320 (10)0.13459 (19)0.1262 (4)0.0451 (9)
N50.3436 (11)0.1857 (2)0.2329 (4)0.0487 (9)
N60.4867 (9)0.2536 (2)0.1484 (4)0.0422 (8)
C10.6945 (10)0.3256 (2)0.4631 (4)0.0350 (9)
H1A0.69560.30950.57760.042*
C20.5860 (10)0.2723 (2)0.3310 (4)0.0352 (9)
H2A0.51890.21950.35630.042*
C30.5757 (9)0.2967 (2)0.1594 (4)0.0276 (8)
C40.6843 (9)0.3746 (2)0.1250 (4)0.0326 (8)
H4A0.68050.39110.01060.039*
C50.7988 (9)0.4287 (2)0.2560 (4)0.0330 (9)
H5A0.87190.48100.23080.040*
C60.8024 (9)0.4037 (2)0.4249 (4)0.0287 (8)
C70.8324 (9)0.5391 (2)0.5711 (4)0.0350 (9)
H7A0.71070.56840.47960.042*
C81.1139 (10)0.5070 (2)0.8171 (4)0.0359 (9)
H8A1.22500.51100.93050.043*
C91.0919 (10)0.4384 (2)0.7229 (4)0.0338 (8)
H9A1.18120.38730.75780.041*
C100.4558 (10)0.2411 (2)0.0171 (4)0.0310 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0388 (17)0.0255 (18)0.0297 (16)0.0014 (13)0.0032 (13)0.0001 (13)
N20.050 (2)0.0313 (17)0.0346 (16)0.0023 (15)0.0045 (14)0.0022 (14)
N30.0485 (19)0.0313 (18)0.0303 (16)0.0028 (15)0.0015 (14)0.0012 (13)
N40.062 (2)0.0357 (19)0.0359 (18)0.0056 (17)0.0009 (15)0.0041 (15)
N50.074 (3)0.039 (2)0.0330 (19)0.0032 (18)0.0052 (18)0.0041 (16)
N60.059 (2)0.0367 (18)0.0318 (16)0.0055 (16)0.0080 (15)0.0003 (15)
C10.047 (2)0.032 (2)0.0268 (19)0.0006 (18)0.0065 (16)0.0046 (15)
C20.048 (2)0.027 (2)0.0317 (19)0.0044 (17)0.0078 (16)0.0036 (15)
C30.0263 (17)0.0287 (19)0.0279 (17)0.0004 (15)0.0040 (14)0.0004 (15)
C40.040 (2)0.034 (2)0.0249 (19)0.0007 (17)0.0053 (16)0.0049 (15)
C50.038 (2)0.028 (2)0.0338 (19)0.0045 (17)0.0094 (16)0.0049 (15)
C60.0290 (19)0.0288 (19)0.0281 (18)0.0000 (16)0.0027 (15)0.0034 (15)
C70.037 (2)0.033 (2)0.034 (2)0.0034 (17)0.0001 (16)0.0018 (15)
C80.039 (2)0.040 (2)0.0278 (17)0.0008 (18)0.0023 (15)0.0000 (17)
C90.039 (2)0.031 (2)0.0293 (18)0.0042 (17)0.0018 (15)0.0032 (15)
C100.0362 (19)0.029 (2)0.0281 (19)0.0020 (16)0.0054 (15)0.0017 (15)
Geometric parameters (Å, º) top
N1—C71.353 (4)C1—H1A0.9300
N1—C91.374 (4)C2—C31.392 (4)
N1—C61.433 (4)C2—H2A0.9300
N2—C71.313 (4)C3—C41.377 (5)
N2—C81.376 (5)C3—C101.463 (4)
N3—C101.332 (5)C4—C51.381 (5)
N3—N41.351 (4)C4—H4A0.9300
N3—H30.8600C5—C61.377 (4)
N4—N51.286 (5)C5—H5A0.9300
N5—N61.369 (5)C7—H7A0.9300
N6—C101.324 (4)C8—C91.342 (5)
C1—C21.374 (5)C8—H8A0.9300
C1—C61.387 (5)C9—H9A0.9300
C7—N1—C9106.7 (3)C3—C4—H4A119.2
C7—N1—C6127.2 (3)C5—C4—H4A119.2
C9—N1—C6125.9 (3)C6—C5—C4118.7 (3)
C7—N2—C8105.0 (3)C6—C5—H5A120.7
C10—N3—N4109.0 (3)C4—C5—H5A120.7
C10—N3—H3125.5C5—C6—C1120.8 (3)
N4—N3—H3125.5C5—C6—N1120.2 (3)
N5—N4—N3106.2 (3)C1—C6—N1118.9 (3)
N4—N5—N6111.0 (3)N2—C7—N1111.7 (3)
C10—N6—N5105.4 (3)N2—C7—H7A124.2
C2—C1—C6119.6 (3)N1—C7—H7A124.2
C2—C1—H1A120.2C9—C8—N2110.6 (3)
C6—C1—H1A120.2C9—C8—H8A124.7
C1—C2—C3120.4 (3)N2—C8—H8A124.7
C1—C2—H2A119.8C8—C9—N1106.0 (3)
C3—C2—H2A119.8C8—C9—H9A127.0
C4—C3—C2118.7 (3)N1—C9—H9A127.0
C4—C3—C10120.1 (3)N6—C10—N3108.3 (3)
C2—C3—C10121.1 (3)N6—C10—C3125.9 (3)
C3—C4—C5121.7 (3)N3—C10—C3125.8 (3)
C10—N3—N4—N50.2 (4)C9—N1—C6—C135.1 (5)
N3—N4—N5—N60.2 (4)C8—N2—C7—N10.5 (4)
N4—N5—N6—C100.1 (5)C9—N1—C7—N20.4 (4)
C6—C1—C2—C31.5 (5)C6—N1—C7—N2175.1 (3)
C1—C2—C3—C41.5 (5)C7—N2—C8—C90.5 (4)
C1—C2—C3—C10179.1 (3)N2—C8—C9—N10.3 (4)
C2—C3—C4—C50.7 (5)C7—N1—C9—C80.0 (4)
C10—C3—C4—C5179.9 (3)C6—N1—C9—C8175.5 (3)
C3—C4—C5—C60.2 (5)N5—N6—C10—N30.1 (4)
C4—C5—C6—C10.2 (5)N5—N6—C10—C3179.3 (3)
C4—C5—C6—N1178.4 (3)N4—N3—C10—N60.2 (4)
C2—C1—C6—C50.7 (5)N4—N3—C10—C3179.2 (3)
C2—C1—C6—N1179.2 (3)C4—C3—C10—N610.2 (6)
C7—N1—C6—C539.0 (5)C2—C3—C10—N6169.2 (4)
C9—N1—C6—C5146.3 (3)C4—C3—C10—N3170.6 (3)
C7—N1—C6—C1139.6 (4)C2—C3—C10—N310.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N2i0.861.932.751 (4)158
Symmetry code: (i) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H8N6
Mr212.22
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)3.7219 (12), 16.429 (5), 7.791 (2)
β (°) 97.167 (6)
V3)472.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.971, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
3477, 1421, 1239
Rint0.038
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.120, 1.35
No. of reflections1421
No. of parameters145
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.31

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N2i0.861.932.751 (4)157.9
Symmetry code: (i) x+1, y1/2, z+1.
 

Acknowledgements

We acknowledge the Public Science and Technology Research Funds Projects of Ocean (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003–018(c)], the Guangdong Chinese Academy of Science Comprehensive Strategic Cooperation Project (grant No. 2009B091300121) and the Guangdong Province Key Project in the Field of Social Development [grant No. A2009011–007(c)].

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, X.-C. (2011). Acta Cryst. E67, m1757.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, R.-Y., Zhu, K., Chen, H., Liu, G.-X. & Ren, X.-M. (2009). Wuji Huaxue Xuebao, 25, 162–165.  CAS Google Scholar
First citationLi, S.-J., Miao, D.-L., Song, W.-D., Li, S.-H. & Yan, J.-B. (2010). Acta Cryst. E66, m1096–m1097.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, S.-W., Li, S.-J., Song, W.-D., Miao, D.-L. & An, J.-B. (2011). Acta Cryst. E67, m1870–m1871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTong, S.-W., Song, W.-D., Miao, D.-L., Li, S.-J. & An, J.-B. (2012). Acta Cryst. E68, m433–m434.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1274
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds