organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1395

rac-Methyl 2-(2-formyl-4-nitro­phen­­oxy)hexa­noate

aState Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: dc_wang@hotmail.com

(Received 23 March 2012; accepted 10 April 2012; online 18 April 2012)

In the racemic title compound, C14H17NO6, the plane of the ester group of the methyl hexa­noate side chain makes a dihedral angle of 80.0 (2)° with the benzene ring, while the nitro group is approximately coplanar with the benzene ring [dihedral angle = 10.3 (2)°]. In the crystal, mol­ecules form weak aromatic C—H⋯Onitro hydrogen-bonding inter­actions, giving inversion dimers [graph set R22(8)].

Related literature

For applications of the title compound, see: Dale & White (2007[Dale, K. M. & White, C. M. (2007). Ann. Pharmacother. 41, 599-605.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.])

[Scheme 1]

Experimental

Crystal data
  • C14H17NO6

  • Mr = 295.29

  • Monoclinic, P 21 /n

  • a = 14.918 (3) Å

  • b = 4.922 (1) Å

  • c = 20.928 (4) Å

  • β = 103.26 (3)°

  • V = 1495.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 four-circle diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.980, Tmax = 0.990

  • 2722 measured reflections

  • 2722 independent reflections

  • 1228 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.172

  • S = 1.00

  • 2722 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.93 2.52 3.442 (6) 169
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, C14H17NO6 is a good organic intermediate for the synthesis of the drug dronedarone, an important drug used to treat cardiac arrhythmia (Dale & White, 2007), and its crystal structure is reported herein.

In the title compound (Fig. 1), both the nitro group and the aldehyde group are approximately coplanar with the benzene ring, as shown by the torsion angles O1—N—C3—C4 [170.9 (4)°] and C6—C5—C7—O3 [177.6 (4)°]. The plane of the ester group of the methyl hexanoate side chain makes a dihedral angle of 80.0 (2)° with the benzene ring. In the crystal, the molecules are linked by weak intermolecular aromatic C2—H···O1nitro hydrogen-bonding interactions (Table 1), giving centrosymmetric cyclic dimers [graph set R22(8) (Etter et al., 1990)]. Also present are intramolecular interactions between the aldehyde and methylene C—H groups and the ether O-atom.

Related literature top

For applications of the title compound, see: Dale & White (2007). For graph-set analysis, see: Etter et al. (1990)

Experimental top

A mixture of 5-nitrosalicylaldehyde (0.2 mol, 33.4 g), methyl 2-bromohexanoate (2-bromhexine acid methyl ester) (0.2 mol, 41.8g) and anhydrous potassium carbonate (0.2 mol, 27.6g) in DMF (400 ml) was reacted for 3.5h at 365-367 K. After the completion of the reaction, the precipitate was filtered and washed and the product (0.1 g) was crystallized from 15 ml of CH3OH at room temperature to give colorless crystals from which a specimen was selected for X-ray data collection.

Refinement top

All H atoms were placed in calculated positions and treated as riding, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for CH(aromatic), C—H(aliphatic), CH, CH2 and CH3 H atoms, respectively and with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom numbering scheme. Non-H atoms are shown as 30% probability displacement ellipsoids.
rac-Methyl 2-(2-formyl-4-nitrophenoxy)hexanoate top
Crystal data top
C14H17NO6F(000) = 624
Mr = 295.29Dx = 1.311 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 14.918 (3) Åθ = 9–13°
b = 4.922 (1) ŵ = 0.10 mm1
c = 20.928 (4) ÅT = 293 K
β = 103.26 (3)°Block, colourless
V = 1495.7 (5) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4 four-circle
diffractometer
1228 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.4°, θmin = 1.5°
ω–2θ scansh = 1717
Absorption correction: ψ scan
(North et al., 1968)
k = 05
Tmin = 0.980, Tmax = 0.990l = 025
2722 measured reflections3 standard reflections every 200 reflections
2722 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
2722 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H17NO6V = 1495.7 (5) Å3
Mr = 295.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.918 (3) ŵ = 0.10 mm1
b = 4.922 (1) ÅT = 293 K
c = 20.928 (4) Å0.20 × 0.10 × 0.10 mm
β = 103.26 (3)°
Data collection top
Enraf–Nonius CAD-4 four-circle
diffractometer
1228 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.980, Tmax = 0.9903 standard reflections every 200 reflections
2722 measured reflections intensity decay: 1%
2722 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
2722 reflectionsΔρmin = 0.22 e Å3
172 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.0326 (2)0.6463 (8)0.59117 (19)0.0672 (11)
C10.2020 (3)0.5437 (8)0.56249 (18)0.0592 (11)
H1A0.23890.61480.53630.071*
O10.0535 (2)0.8534 (7)0.55953 (18)0.0926 (11)
C20.1162 (3)0.6501 (9)0.55803 (19)0.0604 (11)
H2A0.09460.79420.53000.072*
O20.0834 (2)0.5218 (8)0.61742 (19)0.1013 (13)
C30.0617 (3)0.5338 (9)0.59740 (18)0.0544 (10)
O30.16665 (19)0.0836 (7)0.72916 (13)0.0747 (10)
O40.31794 (16)0.2096 (6)0.61157 (12)0.0598 (8)
C40.0913 (2)0.3232 (7)0.64028 (16)0.0437 (9)
H4A0.05330.24960.66540.052*
C50.1794 (2)0.2243 (8)0.64485 (17)0.0496 (9)
O50.2966 (2)0.0517 (6)0.48813 (13)0.0675 (9)
C60.2353 (3)0.3330 (8)0.60504 (17)0.0529 (10)
O60.3773 (2)0.3910 (8)0.46304 (16)0.0990 (12)
C70.2119 (3)0.0063 (8)0.69327 (17)0.0549 (10)
H7A0.27040.06510.69610.066*
C80.3791 (3)0.3212 (9)0.5738 (2)0.0645 (12)
H8A0.38390.51830.58030.077*
C90.3496 (3)0.2609 (11)0.5030 (2)0.0663 (12)
C100.2656 (3)0.0163 (11)0.41826 (19)0.0806 (15)
H10A0.22680.17410.41350.121*
H10B0.31800.05290.40030.121*
H10C0.23150.13370.39530.121*
C110.4715 (3)0.1900 (12)0.6028 (2)0.0907 (17)
H11A0.46520.00340.59410.109*
H11B0.51530.25880.57900.109*
C120.5116 (4)0.2243 (12)0.6721 (3)0.107
H12A0.46670.17030.69670.128*
H12B0.56420.10400.68460.128*
C130.5406 (4)0.4958 (13)0.6900 (3)0.122
H13A0.48810.60340.69490.147*
H13B0.56560.57680.65550.147*
C140.6167 (4)0.4976 (13)0.7569 (3)0.123
H14A0.63670.68070.76760.184*
H14B0.66830.38910.75210.184*
H14C0.59120.42410.79130.184*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.055 (2)0.056 (3)0.086 (3)0.014 (2)0.008 (2)0.010 (2)
C10.088 (3)0.040 (2)0.050 (2)0.006 (2)0.018 (2)0.0012 (19)
O10.079 (2)0.073 (2)0.122 (3)0.031 (2)0.016 (2)0.010 (2)
C20.073 (3)0.048 (3)0.057 (2)0.008 (2)0.008 (2)0.004 (2)
O20.063 (2)0.111 (3)0.138 (3)0.010 (2)0.040 (2)0.022 (3)
C30.053 (2)0.057 (3)0.050 (2)0.003 (2)0.0052 (17)0.010 (2)
O30.0661 (19)0.094 (3)0.0691 (18)0.0031 (18)0.0249 (15)0.0283 (18)
O40.0533 (16)0.074 (2)0.0563 (16)0.0033 (15)0.0203 (13)0.0139 (15)
C40.046 (2)0.036 (2)0.049 (2)0.0041 (17)0.0126 (16)0.0033 (18)
C50.051 (2)0.044 (2)0.051 (2)0.0027 (19)0.0062 (18)0.0037 (18)
O50.075 (2)0.070 (2)0.0647 (19)0.0062 (17)0.0305 (15)0.0095 (17)
C60.057 (2)0.065 (3)0.0377 (18)0.003 (2)0.0119 (18)0.0054 (19)
O60.102 (3)0.116 (3)0.088 (2)0.025 (2)0.042 (2)0.016 (2)
C70.053 (2)0.052 (3)0.058 (2)0.019 (2)0.010 (2)0.010 (2)
C80.048 (2)0.071 (3)0.083 (3)0.005 (2)0.031 (2)0.018 (2)
C90.053 (2)0.077 (3)0.078 (3)0.010 (3)0.032 (2)0.021 (3)
C100.061 (3)0.115 (4)0.063 (3)0.008 (3)0.009 (2)0.011 (3)
C110.063 (3)0.131 (5)0.078 (3)0.010 (3)0.018 (2)0.002 (3)
C120.1070.1070.1070.0000.0240.000
C130.1220.1220.1220.0000.0280.000
C140.1230.1230.1230.0000.0280.000
Geometric parameters (Å, º) top
N—O21.200 (4)C7—H7A0.9300
N—O11.216 (4)C8—C91.476 (6)
N—C31.490 (5)C8—C111.517 (6)
C1—C21.366 (5)C8—H8A0.9800
C1—C61.383 (5)C10—H10A0.9600
C1—H1A0.9300C10—H10B0.9600
C2—C31.405 (5)C10—H10C0.9600
C2—H2A0.9300C11—C121.447 (6)
C3—C41.376 (5)C11—H11A0.9700
O3—C71.204 (4)C11—H11B0.9700
O4—C61.353 (4)C12—C131.428 (7)
O4—C81.446 (4)C12—H12A0.9700
C4—C51.385 (5)C12—H12B0.9700
C4—H4A0.9300C13—C141.587 (7)
C5—C61.412 (5)C13—H13A0.9700
C5—C71.479 (5)C13—H13B0.9700
O5—C91.291 (5)C14—H14A0.9600
O5—C101.468 (4)C14—H14B0.9600
O6—C91.200 (5)C14—H14C0.9600
O2—N—O1124.6 (4)O6—C9—C8121.4 (5)
O2—N—C3116.9 (4)O5—C9—C8115.3 (4)
O1—N—C3118.5 (4)O5—C10—H10A109.5
C2—C1—C6121.6 (4)O5—C10—H10B109.5
C2—C1—H1A119.2H10A—C10—H10B109.5
C6—C1—H1A119.2O5—C10—H10C109.5
C1—C2—C3117.6 (4)H10A—C10—H10C109.5
C1—C2—H2A121.2H10B—C10—H10C109.5
C3—C2—H2A121.2C12—C11—C8118.7 (5)
C4—C3—C2123.2 (4)C12—C11—H11A107.6
C4—C3—N119.5 (4)C8—C11—H11A107.6
C2—C3—N117.3 (4)C12—C11—H11B107.6
C6—O4—C8116.7 (3)C8—C11—H11B107.6
C3—C4—C5117.8 (3)H11A—C11—H11B107.1
C3—C4—H4A121.1C13—C12—C11113.7 (6)
C5—C4—H4A121.1C13—C12—H12A108.8
C4—C5—C6120.4 (4)C11—C12—H12A108.8
C4—C5—C7117.3 (3)C13—C12—H12B108.8
C6—C5—C7122.3 (4)C11—C12—H12B108.8
C9—O5—C10117.2 (4)H12A—C12—H12B107.7
O4—C6—C1125.9 (4)C12—C13—C14110.4 (6)
O4—C6—C5114.7 (3)C12—C13—H13A109.6
C1—C6—C5119.4 (4)C14—C13—H13A109.6
O3—C7—C5123.5 (4)C12—C13—H13B109.6
O3—C7—H7A118.3C14—C13—H13B109.6
C5—C7—H7A118.3H13A—C13—H13B108.1
O4—C8—C9113.1 (3)C13—C14—H14A109.5
O4—C8—C11104.4 (3)C13—C14—H14B109.5
C9—C8—C11110.5 (4)H14A—C14—H14B109.5
O4—C8—H8A109.6C13—C14—H14C109.5
C9—C8—H8A109.6H14A—C14—H14C109.5
C11—C8—H8A109.6H14B—C14—H14C109.5
O6—C9—O5123.2 (5)
C6—C1—C2—C31.3 (6)C4—C5—C6—C11.5 (5)
C1—C2—C3—C41.0 (6)C7—C5—C6—C1177.6 (3)
C1—C2—C3—N178.6 (3)C4—C5—C7—O31.5 (5)
O2—N—C3—C410.1 (6)C6—C5—C7—O3177.6 (4)
O1—N—C3—C4170.9 (4)C6—O4—C8—C972.8 (5)
O2—N—C3—C2169.5 (4)C6—O4—C8—C11166.9 (4)
O1—N—C3—C29.6 (5)C10—O5—C9—O63.7 (6)
C2—C3—C4—C50.6 (5)C10—O5—C9—C8180.0 (3)
N—C3—C4—C5179.9 (3)O4—C8—C9—O6160.8 (4)
C3—C4—C5—C61.8 (5)C11—C8—C9—O682.5 (6)
C3—C4—C5—C7177.3 (3)O4—C8—C9—O522.8 (5)
C8—O4—C6—C14.5 (5)C11—C8—C9—O593.8 (4)
C8—O4—C6—C5177.5 (3)O4—C8—C11—C1257.5 (6)
C2—C1—C6—O4178.0 (4)C9—C8—C11—C12179.5 (5)
C2—C1—C6—C50.1 (6)C8—C11—C12—C1368.5 (7)
C4—C5—C6—O4176.6 (3)C11—C12—C13—C14157.4 (5)
C7—C5—C6—O44.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O40.972.512.877 (6)102
C7—H7A···O40.932.462.769 (5)100
C2—H2A···O1i0.932.523.442 (6)169
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H17NO6
Mr295.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.918 (3), 4.922 (1), 20.928 (4)
β (°) 103.26 (3)
V3)1495.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4 four-circle
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
2722, 2722, 1228
Rint0.000
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.172, 1.00
No. of reflections2722
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.22

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.523.442 (6)169
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

The work was supported by the Center for Testing and Analysis, Nanjing University.

References

First citationDale, K. M. & White, C. M. (2007). Ann. Pharmacother. 41, 599–605.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1395
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds