organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1417

2,6-Di­chloro-N-(4-methyl­phen­yl)benzamide

aCollege of Materials Engineering, Jinling Institute of Technology, Hongjing Road No.99 Nanjing, Nanjing 211146, People's Republic of China
*Correspondence e-mail: hqzhou323@yahoo.cn

(Received 25 March 2012; accepted 6 April 2012; online 18 April 2012)

In the title compound, C14H11Cl2NO, the two benzene rings are non-coplanar [dihedral angle = 60.9 (3)°]. In the crystal, an amide N—H⋯O hydrogen bond links the mol­ecules into chains which extend along (001).

Related literature

For the synthesis of the title compound, see: Houlihan et al. (1981[Houlihan, W. J. U., Yasuyuki, P. & Vincent, A. (1981). J. Org. Chem. 46, 4515-4517.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11Cl2NO

  • Mr = 280.14

  • Monoclinic, P 21 /c

  • a = 11.260 (2) Å

  • b = 12.786 (3) Å

  • c = 9.6700 (19) Å

  • β = 100.65 (3)°

  • V = 1368.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.874, Tmax = 0.955

  • 2650 measured reflections

  • 2518 independent reflections

  • 1514 reflections with I > 2sI)

  • Rint = 0.033

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.150

  • S = 1.01

  • 2518 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯Oi 0.86 1.98 2.839 (4) 173
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989)[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]; cell refinement: CAD-4 Software[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We report here the crystal structure of the title compound C14H11Cl2NO. In this molecule (Fig. 1), the phenyl and dichlorophenyl rings are non-coplanar [dihedral angle 60.9 (3)°]. In the crystal structure an intermolecular amide N—H···O hydrogen bond (Table 1) links the molecules, giving one-dimensional chains which extend along (001) (Fig. 2).

Related literature top

For the synthesis of the title compound, see: Houlihan et al. (1981). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 4-methylbenzenamine (3.2 g, 0.03 mol), 2,6-dichlorobenzoyl chloride (6.3 g, 0.03 mol), and 6 ml of triethylamine in 50 ml of anhydrous tetrahydrofuran was refluxed with stirring for 8 h and then allowed to stand at room temperature. The resulting solids were filtered off and washed with water (2 x 30 mL) then dried, giving 7.2 g of product. Recrystallization from ethanol gave yellow crystals of the title compound. Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

Hydrogen atoms were positioned geometrically, with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and N—H = 0.86 Å and were allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(aromatic C, N) or 1.5Ueq(methyl C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down a, with intermolecular hydrogen bonds shown as dashed lines.
2,6-Dichloro-N-(4-methylphenyl)benzamide top
Crystal data top
C14H11Cl2NOF(000) = 576
Mr = 280.14Dx = 1.360 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.260 (2) Åθ = 9–13°
b = 12.786 (3) ŵ = 0.46 mm1
c = 9.6700 (19) ÅT = 293 K
β = 100.65 (3)°Block, yellow
V = 1368.2 (5) Å30.30 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1514 reflections with I > 2s˘I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 25.4°, θmin = 1.8°
ω/2θ scansh = 130
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.874, Tmax = 0.955l = 1111
2650 measured reflections3 standard reflections every 200 reflections
2518 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.070P)2]
where P = (Fo2 + 2Fc2)/3
2518 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H11Cl2NOV = 1368.2 (5) Å3
Mr = 280.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.260 (2) ŵ = 0.46 mm1
b = 12.786 (3) ÅT = 293 K
c = 9.6700 (19) Å0.30 × 0.10 × 0.10 mm
β = 100.65 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1514 reflections with I > 2s˘I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.033
Tmin = 0.874, Tmax = 0.9553 standard reflections every 200 reflections
2650 measured reflections intensity decay: 1%
2518 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
2518 reflectionsΔρmin = 0.26 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.2641 (2)0.8121 (2)0.1158 (3)0.0404 (7)
H0A0.27570.78890.20070.048*
O0.2803 (3)0.76570 (19)0.1064 (2)0.0660 (8)
Cl10.14387 (9)0.55959 (8)0.07524 (10)0.0635 (3)
C10.0707 (4)1.2269 (3)0.0646 (6)0.0969 (17)
H1A0.02831.23980.14040.145*
H1B0.01621.23520.02360.145*
H1C0.13611.27580.06990.145*
Cl20.56778 (10)0.75531 (9)0.07081 (15)0.0876 (4)
C20.1203 (3)1.1167 (3)0.0760 (5)0.0601 (11)
C30.1026 (4)1.0507 (3)0.1828 (4)0.0629 (11)
H3A0.05961.07450.25000.076*
C40.1474 (3)0.9499 (3)0.1924 (4)0.0533 (9)
H4A0.13340.90650.26490.064*
C50.2128 (3)0.9131 (2)0.0952 (3)0.0395 (8)
C60.2314 (3)0.9779 (3)0.0124 (4)0.0562 (10)
H6A0.27500.95440.07910.067*
C70.1848 (4)1.0781 (3)0.0206 (4)0.0661 (11)
H7A0.19751.12100.09410.079*
C80.2970 (3)0.7476 (3)0.0202 (3)0.0423 (8)
C90.3616 (3)0.6510 (3)0.0813 (3)0.0418 (8)
C100.3010 (3)0.5611 (3)0.1098 (3)0.0445 (8)
C110.3614 (4)0.4729 (3)0.1667 (4)0.0592 (10)
H11A0.31920.41320.18370.071*
C120.4849 (4)0.4751 (4)0.1976 (5)0.0730 (13)
H12A0.52650.41650.23800.088*
C130.5485 (4)0.5612 (4)0.1707 (4)0.0710 (12)
H13A0.63240.56140.19210.085*
C140.4868 (3)0.6472 (3)0.1116 (4)0.0550 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0548 (17)0.0427 (16)0.0246 (13)0.0042 (13)0.0096 (12)0.0009 (12)
O0.112 (2)0.0577 (16)0.0291 (13)0.0081 (15)0.0157 (13)0.0012 (12)
Cl10.0531 (6)0.0723 (7)0.0669 (7)0.0039 (5)0.0156 (5)0.0100 (5)
C10.092 (4)0.054 (3)0.139 (5)0.020 (3)0.007 (3)0.002 (3)
Cl20.0715 (8)0.0718 (8)0.1247 (11)0.0208 (6)0.0314 (7)0.0195 (7)
C20.049 (2)0.044 (2)0.082 (3)0.0040 (18)0.000 (2)0.003 (2)
C30.062 (3)0.060 (3)0.072 (3)0.008 (2)0.027 (2)0.010 (2)
C40.060 (2)0.054 (2)0.050 (2)0.0024 (19)0.0204 (18)0.0009 (18)
C50.0430 (18)0.0413 (19)0.0337 (17)0.0001 (15)0.0059 (14)0.0015 (15)
C60.074 (3)0.052 (2)0.047 (2)0.009 (2)0.0222 (19)0.0045 (18)
C70.083 (3)0.051 (2)0.063 (3)0.003 (2)0.010 (2)0.013 (2)
C80.051 (2)0.0449 (19)0.0318 (18)0.0029 (16)0.0087 (15)0.0000 (16)
C90.050 (2)0.045 (2)0.0323 (17)0.0039 (16)0.0115 (15)0.0071 (15)
C100.050 (2)0.051 (2)0.0338 (17)0.0035 (18)0.0131 (15)0.0029 (17)
C110.072 (3)0.051 (2)0.057 (2)0.008 (2)0.018 (2)0.0078 (18)
C120.073 (3)0.067 (3)0.077 (3)0.027 (3)0.011 (2)0.009 (2)
C130.048 (2)0.086 (3)0.076 (3)0.016 (2)0.002 (2)0.004 (3)
C140.054 (2)0.053 (2)0.060 (2)0.0002 (19)0.0143 (18)0.0102 (19)
Geometric parameters (Å, º) top
N—C81.341 (4)C4—H4A0.9300
N—C51.414 (4)C5—C61.376 (4)
N—H0A0.8600C6—C71.381 (5)
O—C81.225 (4)C6—H6A0.9300
Cl1—C101.739 (4)C7—H7A0.9300
C1—C21.513 (5)C8—C91.498 (5)
C1—H1A0.9600C9—C141.387 (5)
C1—H1B0.9600C9—C101.390 (5)
C1—H1C0.9600C10—C111.379 (5)
Cl2—C141.740 (4)C11—C121.367 (6)
C2—C71.376 (5)C11—H11A0.9300
C2—C31.377 (5)C12—C131.365 (6)
C3—C41.381 (5)C12—H12A0.9300
C3—H3A0.9300C13—C141.368 (5)
C4—C51.379 (4)C13—H13A0.9300
C8—N—C5128.5 (3)C2—C7—C6122.4 (4)
C8—N—H0A115.8C2—C7—H7A118.8
C5—N—H0A115.8C6—C7—H7A118.8
C2—C1—H1A109.5O—C8—N124.2 (3)
C2—C1—H1B109.5O—C8—C9121.6 (3)
H1A—C1—H1B109.5N—C8—C9114.2 (3)
C2—C1—H1C109.5C14—C9—C10116.5 (3)
H1A—C1—H1C109.5C14—C9—C8120.8 (3)
H1B—C1—H1C109.5C10—C9—C8122.7 (3)
C7—C2—C3117.2 (4)C11—C10—C9122.1 (3)
C7—C2—C1121.3 (4)C11—C10—Cl1118.5 (3)
C3—C2—C1121.5 (4)C9—C10—Cl1119.4 (3)
C2—C3—C4121.4 (4)C12—C11—C10118.5 (4)
C2—C3—H3A119.3C12—C11—H11A120.7
C4—C3—H3A119.3C10—C11—H11A120.7
C5—C4—C3120.5 (3)C13—C12—C11121.5 (4)
C5—C4—H4A119.8C13—C12—H12A119.2
C3—C4—H4A119.8C11—C12—H12A119.2
C6—C5—C4119.0 (3)C12—C13—C14119.0 (4)
C6—C5—N122.8 (3)C12—C13—H13A120.5
C4—C5—N118.1 (3)C14—C13—H13A120.5
C5—C6—C7119.5 (3)C13—C14—C9122.3 (4)
C5—C6—H6A120.2C13—C14—Cl2119.1 (3)
C7—C6—H6A120.2C9—C14—Cl2118.6 (3)
C7—C2—C3—C40.2 (6)O—C8—C9—C1096.5 (4)
C1—C2—C3—C4179.6 (4)N—C8—C9—C1085.6 (4)
C2—C3—C4—C50.8 (6)C14—C9—C10—C110.7 (5)
C3—C4—C5—C60.8 (5)C8—C9—C10—C11179.7 (3)
C3—C4—C5—N175.4 (3)C14—C9—C10—Cl1179.8 (2)
C8—N—C5—C626.7 (5)C8—C9—C10—Cl10.5 (4)
C8—N—C5—C4157.2 (3)C9—C10—C11—C121.0 (5)
C4—C5—C6—C70.2 (5)Cl1—C10—C11—C12178.2 (3)
N—C5—C6—C7175.8 (3)C10—C11—C12—C131.4 (6)
C3—C2—C7—C60.4 (6)C11—C12—C13—C140.2 (7)
C1—C2—C7—C6179.8 (4)C12—C13—C14—C91.6 (6)
C5—C6—C7—C20.4 (6)C12—C13—C14—Cl2177.5 (3)
C5—N—C8—O4.5 (5)C10—C9—C14—C132.0 (5)
C5—N—C8—C9173.4 (3)C8—C9—C14—C13178.4 (3)
O—C8—C9—C1483.1 (4)C10—C9—C14—Cl2177.1 (2)
N—C8—C9—C1494.8 (4)C8—C9—C14—Cl22.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···Oi0.861.982.839 (4)173
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H11Cl2NO
Mr280.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.260 (2), 12.786 (3), 9.6700 (19)
β (°) 100.65 (3)
V3)1368.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.874, 0.955
No. of measured, independent and
observed [I > 2s˘I)] reflections
2650, 2518, 1514
Rint0.033
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.150, 1.01
No. of reflections2518
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.26

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···Oi0.861.982.839 (4)173
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The authors thank Liu Bo Nian from Nanjing University of Technology for useful discussions and the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHoulihan, W. J. U., Yasuyuki, P. & Vincent, A. (1981). J. Org. Chem. 46, 4515–4517.  CrossRef CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1417
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds