organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1504

3-Benzyl-2H-chromen-2-one

aGuangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China, and bResearch Center for Harmful Algae and Aquatic Environment, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: wang_guocai@hotmail.com

(Received 27 March 2012; accepted 2 April 2012; online 21 April 2012)

The title compound, C16H12O2, is a coumarin which was isolated from stones of the Chinese traditional medicine Clausena lansium. The pyrone ring is almost planar, with a mean deviation of 0.0135 (4) Å. The benzene ring (A) of the benzopyrone unit forms dihedral angles of 1.82 (5) and 72.86 (2)° with the pyrone ring and the substituent benzene ring, respectively. The crystal structure is stabilized by weak ππ stacking inter­actions, with a minimum centroid–centroid distance between benzene rings of 3.6761 (7) Å.

Related literature

For general background to the isolation of the title compound, see: Wisanu et al. (2010[Wisanu, M., Uma, P., Nisakorn, S. & Surat, L. (2010). J. Braz. Chem. Soc. 21, 665-668.], 2012[Wisanu, M., Thunwadee, R., Sarot, C. & Surat, L. (2012). Phytochem. Lett. 5, 26-28.]). For the biological activity of Clausena lansium, see: Adebajo et al. (2009[Adebajo, A. C., Iwalewa, E. O., Obuotor, E. M., Ibikunle, G. F., Omisore, N. O., Adewunmi, C. O., Obaparusi, O. O., Klaes, M., Adetogun, G. E., Schmidt, T. J. & Verspohl, E. J. (2009). J. Ethnopharmacol. 122, 10-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12O2

  • Mr = 236.26

  • Monoclinic, P 21 /c

  • a = 11.7704 (4) Å

  • b = 8.2809 (4) Å

  • c = 12.4652 (6) Å

  • β = 108.151 (2)°

  • V = 1154.52 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.86 × 0.23 × 0.21 mm

Data collection
  • Bruker SMART CCD 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.928, Tmax = 0.982

  • 8002 measured reflections

  • 2475 independent reflections

  • 2050 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.08

  • 2475 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title compound, C16H12O2 (systematic name:3-benzylchromen-2-one), is a coumarin which was isolated from stones of the Chinese traditional medicine Clausena lansium. This plant is a rich source of coumarin (Wisanu et al., 2010; Wisanu et al., 2012). The biological activity of Clausena lansium have been studied (Adebajo et al., 2009). In this study, we report the crystal structure of the title compound (Fig. 1) comprises two benzene rings (A and C) and a pyrone ring (B), which is almost planar with a mean deviation 0.0135 (4) Å. The ring A of the benzopyrone unit forms dihedral angles of 1.82 (5) and 72.86 (2)° with the ring B and the ring C, respectively. The molecules are stacked parallel to the c axis giving weak ππ interactions between benzene rings (Fig. 2), with a minimum centroid–centroid distance of 3.6761 (7) Å.

Related literature top

For general background to the isolation of the title compound, see: Wisanu et al. (2010, 2012). For the biological activity of Clausena lansium, see: Adebajo et al. (2009).

Experimental top

The title compound was isolated from stones of the traditional chinese medicine Clausena lansium, 5 kg of which was extracted with 95% ethanol at room temperature, then concentrated by rotary evaporation. The crude extract was suspended in distilled water and partitioned with petroleum ether, ethyl acetate and n-butanol. The title compound (8 mg) was isolated from the petroleum ether fraction using silica gel column chromatography. Crystals of the title compound were obtained after slow evaporation of an ethyl acetate solution at room temperature.

Refinement top

All H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.99 Å (CH2) or C—H = 0.95 Å (aryl H) and Uiso(H)= 1.2Ueq(C).

Computing details top

Data collection: SAINT (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the c axis.
3-Benzyl-2H-chromen-2-one top
Crystal data top
C16H12O2F(000) = 496
Mr = 236.26Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.710747 Å
a = 11.7704 (4) ÅCell parameters from 8002 reflections
b = 8.2809 (4) Åθ = 3–27.5°
c = 12.4652 (6) ŵ = 0.09 mm1
β = 108.151 (2)°T = 150 K
V = 1154.52 (9) Å3Prism, colourless
Z = 40.86 × 0.23 × 0.21 mm
Data collection top
Bruker SMART CCD 1000
diffractometer
2475 independent reflections
Radiation source: fine-focus sealed tube2050 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.928, Tmax = 0.982k = 1010
8002 measured reflectionsl = 1215
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.2137P]
where P = (Fo2 + 2Fc2)/3
2475 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H12O2V = 1154.52 (9) Å3
Mr = 236.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7704 (4) ŵ = 0.09 mm1
b = 8.2809 (4) ÅT = 150 K
c = 12.4652 (6) Å0.86 × 0.23 × 0.21 mm
β = 108.151 (2)°
Data collection top
Bruker SMART CCD 1000
diffractometer
2475 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2050 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.982Rint = 0.033
8002 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.08Δρmax = 0.24 e Å3
2475 reflectionsΔρmin = 0.18 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38027 (9)0.35804 (12)0.36947 (9)0.0229 (2)
C20.35856 (9)0.38688 (11)0.47770 (9)0.0206 (2)
C30.43498 (9)0.32578 (12)0.57355 (9)0.0213 (2)
H30.42190.34770.64360.026*
C40.53617 (9)0.22788 (12)0.57215 (9)0.0206 (2)
C50.61806 (10)0.16006 (13)0.66886 (10)0.0260 (3)
H50.60990.18030.74110.031*
C60.71066 (10)0.06388 (13)0.65934 (10)0.0287 (3)
H60.76600.01910.72520.034*
C70.72314 (10)0.03238 (12)0.55376 (11)0.0271 (3)
H70.78680.03420.54820.033*
C80.64344 (9)0.09730 (12)0.45677 (10)0.0251 (2)
H80.65110.07520.38460.030*
C90.55206 (9)0.19552 (12)0.46798 (9)0.0206 (2)
C100.24760 (9)0.48264 (12)0.47378 (10)0.0244 (2)
H10A0.23660.57060.41770.029*
H10B0.25860.53250.54850.029*
C110.13605 (9)0.37716 (12)0.44253 (9)0.0216 (2)
C120.09172 (10)0.31780 (13)0.52614 (10)0.0285 (3)
H120.13050.34530.60290.034*
C130.00877 (11)0.21854 (14)0.49858 (11)0.0323 (3)
H130.03830.17940.55650.039*
C140.06579 (10)0.17677 (13)0.38743 (11)0.0296 (3)
H140.13440.10920.36870.036*
C150.02205 (10)0.23422 (14)0.30374 (11)0.0307 (3)
H150.06040.20510.22730.037*
C160.07789 (9)0.33453 (13)0.33096 (10)0.0272 (3)
H160.10660.37420.27270.033*
O10.47592 (6)0.26132 (9)0.36983 (6)0.02389 (19)
O20.32169 (7)0.41253 (10)0.27881 (7)0.0331 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0211 (5)0.0238 (5)0.0243 (6)0.0041 (4)0.0078 (4)0.0014 (4)
C20.0205 (5)0.0186 (5)0.0242 (6)0.0052 (4)0.0092 (4)0.0015 (4)
C30.0233 (5)0.0221 (5)0.0209 (6)0.0049 (4)0.0102 (4)0.0034 (4)
C40.0204 (5)0.0199 (5)0.0221 (6)0.0050 (4)0.0076 (4)0.0012 (4)
C50.0273 (6)0.0286 (5)0.0217 (6)0.0024 (4)0.0072 (4)0.0003 (4)
C60.0246 (6)0.0268 (5)0.0318 (7)0.0005 (4)0.0045 (5)0.0045 (5)
C70.0231 (5)0.0199 (5)0.0401 (7)0.0018 (4)0.0126 (5)0.0016 (4)
C80.0262 (6)0.0237 (5)0.0294 (6)0.0053 (4)0.0143 (5)0.0050 (4)
C90.0201 (5)0.0199 (5)0.0221 (6)0.0053 (4)0.0071 (4)0.0006 (4)
C100.0238 (6)0.0203 (5)0.0292 (6)0.0012 (4)0.0086 (4)0.0014 (4)
C110.0198 (5)0.0179 (5)0.0276 (6)0.0031 (4)0.0079 (4)0.0001 (4)
C120.0312 (6)0.0310 (6)0.0254 (6)0.0042 (5)0.0121 (5)0.0067 (5)
C130.0358 (6)0.0343 (6)0.0338 (7)0.0070 (5)0.0207 (5)0.0034 (5)
C140.0224 (6)0.0297 (6)0.0372 (7)0.0056 (4)0.0101 (5)0.0021 (5)
C150.0264 (6)0.0368 (6)0.0247 (6)0.0043 (5)0.0020 (5)0.0011 (5)
C160.0253 (6)0.0307 (6)0.0250 (6)0.0020 (4)0.0067 (4)0.0066 (4)
O10.0247 (4)0.0297 (4)0.0191 (4)0.0007 (3)0.0094 (3)0.0003 (3)
O20.0314 (4)0.0432 (5)0.0240 (5)0.0019 (4)0.0077 (3)0.0089 (4)
Geometric parameters (Å, º) top
C1—C21.4687 (15)C8—C91.3898 (15)
C1—O11.3805 (13)C9—O11.3834 (13)
C1—O21.2128 (13)C10—H10A0.9900
C2—C31.3502 (15)C10—H10B0.9900
C2—C101.5157 (14)C10—C111.5231 (14)
C3—H30.9500C11—C121.3925 (15)
C3—C41.4453 (14)C11—C161.3908 (16)
C4—C51.4050 (15)C12—H120.9500
C4—C91.3944 (16)C12—C131.3927 (16)
C5—H50.9500C13—H130.9500
C5—C61.3845 (16)C13—C141.3821 (18)
C6—H60.9500C14—H140.9500
C6—C71.3937 (17)C14—C151.3836 (17)
C7—H70.9500C15—H150.9500
C7—C81.3871 (16)C15—C161.3930 (15)
C8—H80.9500C16—H160.9500
O1—C1—C2117.80 (9)O1—C9—C8116.75 (10)
O2—C1—C2125.76 (10)C2—C10—H10A109.2
O2—C1—O1116.43 (10)C2—C10—H10B109.2
C1—C2—C10116.75 (9)C2—C10—C11111.95 (8)
C3—C2—C1119.56 (9)H10A—C10—H10B107.9
C3—C2—C10123.67 (10)C11—C10—H10A109.2
C2—C3—H3119.2C11—C10—H10B109.2
C2—C3—C4121.59 (10)C12—C11—C10120.34 (10)
C4—C3—H3119.2C16—C11—C10121.18 (10)
C5—C4—C3124.16 (10)C16—C11—C12118.46 (10)
C9—C4—C3117.98 (10)C11—C12—H12119.6
C9—C4—C5117.84 (10)C11—C12—C13120.74 (11)
C4—C5—H5119.9C13—C12—H12119.6
C6—C5—C4120.29 (11)C12—C13—H13119.8
C6—C5—H5119.9C14—C13—C12120.33 (11)
C5—C6—H6119.8C14—C13—H13119.8
C5—C6—C7120.40 (11)C13—C14—H14120.3
C7—C6—H6119.8C13—C14—C15119.42 (11)
C6—C7—H7119.7C15—C14—H14120.3
C8—C7—C6120.58 (10)C14—C15—H15119.8
C8—C7—H7119.7C14—C15—C16120.38 (11)
C7—C8—H8120.9C16—C15—H15119.8
C7—C8—C9118.28 (11)C11—C16—C15120.67 (11)
C9—C8—H8120.9C11—C16—H16119.7
C8—C9—C4122.59 (10)C15—C16—H16119.7
O1—C9—C4120.66 (9)C1—O1—C9122.30 (9)
C1—C2—C3—C41.97 (14)C7—C8—C9—O1178.51 (9)
C1—C2—C10—C1182.11 (11)C8—C9—O1—C1178.61 (9)
C2—C1—O1—C91.63 (13)C9—C4—C5—C60.30 (15)
C2—C3—C4—C5179.48 (9)C10—C2—C3—C4176.63 (9)
C2—C3—C4—C91.02 (14)C10—C11—C12—C13178.67 (10)
C2—C10—C11—C1298.80 (12)C10—C11—C16—C15178.15 (10)
C2—C10—C11—C1679.60 (12)C11—C12—C13—C140.32 (18)
C3—C2—C10—C1196.53 (12)C12—C11—C16—C150.27 (16)
C3—C4—C5—C6178.17 (9)C12—C13—C14—C150.10 (18)
C3—C4—C9—C8177.27 (9)C13—C14—C15—C160.60 (18)
C3—C4—C9—O12.74 (14)C14—C15—C16—C110.70 (17)
C4—C5—C6—C70.46 (16)C16—C11—C12—C130.23 (16)
C4—C9—O1—C11.39 (14)O1—C1—C2—C33.29 (14)
C5—C4—C9—C81.30 (15)O1—C1—C2—C10175.41 (8)
C5—C4—C9—O1178.70 (8)O2—C1—C2—C3176.32 (10)
C5—C6—C7—C80.27 (16)O2—C1—C2—C104.98 (15)
C6—C7—C8—C90.68 (15)O2—C1—O1—C9178.02 (9)
C7—C8—C9—C41.49 (15)

Experimental details

Crystal data
Chemical formulaC16H12O2
Mr236.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)11.7704 (4), 8.2809 (4), 12.4652 (6)
β (°) 108.151 (2)
V3)1154.52 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.86 × 0.23 × 0.21
Data collection
DiffractometerBruker SMART CCD 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.928, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
8002, 2475, 2050
Rint0.033
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.08
No. of reflections2475
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.18

Computer programs: SAINT (Bruker, 1998), SMART (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 41106090) and the Natural Science Foundation of Guangdong Province (No. S2011040003113)

References

First citationAdebajo, A. C., Iwalewa, E. O., Obuotor, E. M., Ibikunle, G. F., Omisore, N. O., Adewunmi, C. O., Obaparusi, O. O., Klaes, M., Adetogun, G. E., Schmidt, T. J. & Verspohl, E. J. (2009). J. Ethnopharmacol. 122, 10–19.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWisanu, M., Thunwadee, R., Sarot, C. & Surat, L. (2012). Phytochem. Lett. 5, 26–28.  Google Scholar
First citationWisanu, M., Uma, P., Nisakorn, S. & Surat, L. (2010). J. Braz. Chem. Soc. 21, 665–668.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1504
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds