metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetyl­acetonato-κ2O,O′)carbon­yl[di­cyclo­hex­yl(2,6-diiso­propyl­phen­yl)phosphane-κP]rhodium(I)

aResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

(Received 2 March 2012; accepted 26 April 2012; online 5 May 2012)

In the title compound, [Rh(C5H7O2){C12H17P(C6H11)2}(CO)], the RhI atom is coordinated by one carbonyl C, one P and two O atoms, forming a slighlty distorted square-planar configuration.

Related literature

For background literature on the catalytic activity of rhodium–phosphine compounds, see Moloy & Wegman (1989[Moloy, K. G. & Wegman, R. W. (1989). Organometallics, 8, 2883-2892.]); Nozaki et al. (1997[Nozaki, K., Sakai, N., Nanno, T., Higashijima, T., Mano, S., Horiuchi, T. & Takaya, H. (1997). J. Am. Chem. Soc. 119, 4413-4423.]); Ocando-Mavarez et al. (2003[Ocando-Mavarez, E., Ascanio, J., González, T., Atencio, R., Rosales, M. & Silva, N. (2003). Acta Cryst. E59, m633-m635.]); Hayashi & Yamasaki (2003[Hayashi, T. & Yamasaki, T. (2003). Chem. Rev. 103, 2829-2844.]); Erasmus & Conradie (2011[Erasmus, J. J. C. & Conradie, J. (2011). Inorg. Chim. Acta, 375, 128-134.]). For related rhodium compounds, see: Riihimaki et al. (2003[Riihimaki, H., Kangas, T., Suomalainen, P., Reinius, H. K., Jaaskelainen, S., Haukka, M., Krause, A. O. I. & Pakkanen, T. A. (2003). J. Mol. Catal. A Chem. 200, 81-94.]); Brink et al. (2007[Brink, A., Roodt, A. & Visser, H. G. (2007). Acta Cryst. E63, m48-m50.]); Davis & Meijboom (2011[Davis, W. L. & Meijboom, R. (2011). Acta Cryst. E67, m1874.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C5H7O2)(C24H39P)(CO)]

  • Mr = 588.55

  • Monoclinic, C c

  • a = 16.750 (2) Å

  • b = 9.7334 (13) Å

  • c = 19.385 (3) Å

  • β = 111.669 (3)°

  • V = 2937.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 100 K

  • 0.29 × 0.23 × 0.22 mm

Data collection
  • Bruker APEX DUO 4K-CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.553, Tmax = 0.746

  • 14224 measured reflections

  • 6007 independent reflections

  • 5516 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.105

  • S = 1.05

  • 6007 reflections

  • 322 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.85 e Å−3

  • Δρmin = −1.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2437 Friedel pairs

  • Flack parameter: −0.03 (3)

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Transition metal complexes bearing functionalized phosphines are of interest due to their potential catalytic properties (Ocando-Mavarez et al., 2003). These complexes are used with various chiral ligands in the process of highly enantioselective hydroformylation reactions (Nozaki et al., 1997). Studies illustrating the catalytic importance of rhodium(I) square-planar moieties have been conducted on rhodium mono- and di-phosphane complexes containing the symmetrical bidentate ligand, acac (acac = acetylacetonate) (Moloy & Wegman, 1989; Erasmus & Conradie, 2011) as well as rhodium-catalyzed asymmetric 1,4-addition (Hayashi & Yamasaki, 2003). This work is part of an ongoing investigation aimed at determing the steric effects induced by various phosphine ligands on a rhodium(I) metal centre.

The title compound, [Rh(acac)(CO){C12H17P(C6H11)2}] (acac = acetylacetonate), crystallizes in the non-centrosymmetric monoclinic space group, C c (Z=4). The Rh(I) atom has a slightly distorted square-planar geometric coordination (see Fig. 1), illustrated by C1—Rh1—P1 and O2—Rh1—O3 angles of 94.54 (1)° and 89.37 (1)°, respectively, deviating from the ideal 90° right angle. A slightly asymmetric coordination of the acac ligand is observed, whereby the Rh1—O2 distance (2.083 (3) Å) is longer than that for Rh1—O3 (2.059 (3) Å), which may be attributed to a trans influence of the phosphane ligand. The steric demand of the phosphane ligand is indicated by the smaller O3—Rh1—P1 angle, (86.64 (9)°), compared to that of the carbonyl ligand, O2—Rh1—C1 (94.97 (1)°). All geometric parameters are similar to previous reported complexes of the general formula [Rh(acac)(CO)L]; L = tertiary phosphane ligand (Davis & Meijboom, 2011; Brink et al., 2007; Riihimaki et al., 2003).

Related literature top

For background literature on the catalytic activity of rhodium–phosphine compounds, see Moloy & Wegman (1989); Nozaki et al. (1997); Ocando-Mavarez et al. (2003); Hayashi & Yamasaki (2003); Erasmus & Conradie (2011). For related rhodium compounds, see: Riihimaki et al. (2003); Brink et al. (2007); Davis & Meijboom (2011).

Experimental top

A solution of [Rh(acac)(CO)2] (42.2 mg, 0.16 mmol) in acetone (5 ml) was slowly added to a solution of C12H17P(C6H11)2 (64.5 mg, 0.18 mmol) in acetone (5 ml). Slow evaporation of the solvent afforded the title compound as yellow crystals. Spectroscopic analysis: 31P NMR (CDCl3, 162 MHz, p.p.m.): 47.5 [d, 1J(Rh—P)= 165.7 Hz]; IR (CH2Cl2) ν(CO): 1959.2 cm-1.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H = 0.95–1.00) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for aromatic, methine and methylene H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. Methyl torsion angles were refined from electron density. Friedel Pairs = 2437.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom numbering system. Displacement ellipsoids are drawn at the 50% probability level. For the C atoms in rings; the first digit indicates ring number and the second digit indicates the position of the atom in the ring.
(Acetylacetonato-κ2O,O')carbonyl[dicyclohexyl(2,6- diisopropylphenyl)phosphane-κP]rhodium(I) top
Crystal data top
[Rh(C5H7O2)(C24H39P)(CO)]F(000) = 1240
Mr = 588.55Dx = 1.331 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5131 reflections
a = 16.750 (2) Åθ = 2.5–27.6°
b = 9.7334 (13) ŵ = 0.66 mm1
c = 19.385 (3) ÅT = 100 K
β = 111.669 (3)°Cubic, yellow
V = 2937.1 (7) Å30.29 × 0.23 × 0.22 mm
Z = 4
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
6007 independent reflections
Radiation source: sealed tube5516 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 8.4 pixels mm-1θmax = 28.2°, θmin = 2.5°
ϕ and ω scansh = 2122
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1212
Tmin = 0.553, Tmax = 0.746l = 2524
14224 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0588P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
6007 reflectionsΔρmax = 1.85 e Å3
322 parametersΔρmin = 1.42 e Å3
2 restraintsAbsolute structure: Flack (1983), 2437 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (3)
Crystal data top
[Rh(C5H7O2)(C24H39P)(CO)]V = 2937.1 (7) Å3
Mr = 588.55Z = 4
Monoclinic, CcMo Kα radiation
a = 16.750 (2) ŵ = 0.66 mm1
b = 9.7334 (13) ÅT = 100 K
c = 19.385 (3) Å0.29 × 0.23 × 0.22 mm
β = 111.669 (3)°
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
6007 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5516 reflections with I > 2σ(I)
Tmin = 0.553, Tmax = 0.746Rint = 0.049
14224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.105Δρmax = 1.85 e Å3
S = 1.05Δρmin = 1.42 e Å3
6007 reflectionsAbsolute structure: Flack (1983), 2437 Friedel pairs
322 parametersAbsolute structure parameter: 0.03 (3)
2 restraints
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 2 s/frame. A total of 1125 frames were collected with a frame width of 0.5° covering up to θ = 28.18° with 99.1% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh11.04568 (3)0.50680 (3)0.55184 (3)0.01467 (8)
P10.96331 (6)0.64795 (10)0.45914 (6)0.0128 (2)
O10.9055 (2)0.4101 (4)0.5979 (2)0.0355 (9)
O31.14853 (18)0.5725 (3)0.52656 (17)0.0212 (6)
O21.12596 (19)0.3671 (3)0.62714 (18)0.0223 (7)
C10.9568 (3)0.4502 (5)0.5774 (2)0.0230 (9)
C310.9846 (2)0.5943 (4)0.3744 (2)0.0151 (8)
H20.93030.61150.33090.018*
C361.0561 (3)0.6742 (4)0.3596 (2)0.0187 (8)
H3A1.04590.77420.36090.022*
H3B1.11250.65280.39870.022*
C351.0568 (3)0.6340 (5)0.2839 (2)0.0212 (9)
H4A1.10390.68330.27530.025*
H4B1.00190.66250.24490.025*
C341.0688 (3)0.4798 (5)0.2781 (3)0.0271 (10)
H5A1.12720.45350.3120.033*
H5B1.06360.4570.22680.033*
C331.0022 (3)0.3972 (5)0.2977 (3)0.0225 (9)
H6A0.94420.41370.25980.027*
H6B1.01490.29790.29770.027*
C321.0034 (3)0.4391 (4)0.3742 (2)0.0177 (8)
H7A1.06030.41840.41260.021*
H7B0.95950.38620.38590.021*
C110.9794 (2)0.8374 (4)0.4696 (2)0.0151 (8)
C121.0292 (2)0.8964 (4)0.5403 (2)0.0157 (8)
C71.0743 (3)0.8194 (4)0.6126 (2)0.0208 (9)
H101.06270.71930.60190.025*
C91.1720 (3)0.8394 (5)0.6400 (3)0.0383 (13)
H11A1.19270.81070.60110.057*
H11B1.19980.78370.68450.057*
H11C1.18590.93650.65180.057*
C81.0383 (4)0.8585 (5)0.6715 (3)0.0405 (13)
H12A1.04320.9580.67960.061*
H12B1.07080.8110.7180.061*
H12C0.97780.83150.65480.061*
C131.0382 (4)1.0397 (4)0.5487 (4)0.0209 (9)
H131.07121.07720.59590.025*
C140.9997 (3)1.1268 (5)0.4895 (3)0.0245 (10)
H141.00641.22340.49610.029*
C150.9518 (3)1.0737 (5)0.4209 (3)0.0218 (9)
H150.92551.13440.38050.026*
C160.9410 (2)0.9319 (4)0.4096 (2)0.0161 (8)
C170.8849 (3)0.8926 (4)0.3296 (2)0.0203 (9)
H170.8850.79020.32560.024*
C190.9197 (3)0.9524 (5)0.2727 (3)0.0269 (10)
H18A0.91391.05270.27150.04*
H18B0.8870.91480.22340.04*
H18C0.98050.92780.2870.04*
C180.7919 (3)0.9396 (5)0.3118 (3)0.0273 (10)
H19A0.76890.89450.34570.041*
H19B0.75680.91480.26050.041*
H19C0.79061.03940.31780.041*
C210.8441 (2)0.6307 (4)0.4276 (2)0.0165 (8)
H200.81940.68980.38240.02*
C220.8091 (3)0.6873 (4)0.4847 (3)0.0220 (9)
H21A0.82510.78530.49430.026*
H21B0.83530.63650.5320.026*
C230.7110 (3)0.6732 (5)0.4567 (3)0.0290 (11)
H22A0.69050.70540.49560.035*
H22B0.68480.73230.41250.035*
C240.6826 (3)0.5260 (5)0.4366 (3)0.0307 (11)
H23A0.61910.5210.41790.037*
H23B0.70560.46760.48140.037*
C250.7146 (3)0.4728 (5)0.3773 (3)0.0282 (11)
H24A0.68760.52660.33110.034*
H24B0.69720.37560.36610.034*
C260.8128 (3)0.4839 (4)0.4030 (3)0.0216 (9)
H25A0.83970.420.44490.026*
H25B0.8310.45640.36190.026*
C21.2259 (3)0.5256 (5)0.5547 (3)0.0224 (9)
C51.2883 (3)0.5932 (6)0.5257 (3)0.0346 (12)
H27A1.27020.5760.47230.052*
H27B1.34580.55510.55130.052*
H27C1.28930.69240.53460.052*
C31.2540 (3)0.4204 (5)0.6063 (2)0.0245 (10)
H281.31280.39490.62120.029*
C41.2047 (3)0.3483 (4)0.6385 (2)0.0238 (9)
C61.2468 (3)0.2315 (5)0.6923 (3)0.0353 (12)
H30A1.21110.20840.72090.053*
H30B1.30380.26040.72620.053*
H30C1.25230.15070.66420.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01337 (12)0.01245 (13)0.01730 (13)0.00060 (14)0.00463 (9)0.00048 (14)
P10.0102 (4)0.0110 (4)0.0173 (5)0.0018 (4)0.0051 (4)0.0003 (4)
O10.0222 (16)0.046 (2)0.0360 (19)0.0074 (16)0.0083 (15)0.0175 (16)
O30.0128 (14)0.0242 (16)0.0269 (16)0.0011 (12)0.0076 (12)0.0011 (13)
O20.0182 (15)0.0164 (14)0.0269 (17)0.0012 (12)0.0020 (13)0.0057 (12)
C10.026 (2)0.021 (2)0.019 (2)0.0007 (19)0.0043 (18)0.0068 (17)
C310.0133 (17)0.0171 (18)0.0155 (19)0.0034 (15)0.0060 (15)0.0016 (14)
C360.0183 (19)0.0192 (19)0.020 (2)0.0018 (16)0.0091 (16)0.0009 (16)
C350.016 (2)0.029 (2)0.023 (2)0.0042 (18)0.0127 (17)0.0004 (18)
C340.022 (2)0.036 (3)0.029 (2)0.0006 (19)0.016 (2)0.0075 (19)
C330.021 (2)0.022 (2)0.027 (2)0.0014 (18)0.0114 (18)0.0071 (17)
C320.0127 (17)0.0171 (19)0.026 (2)0.0004 (15)0.0096 (16)0.0027 (17)
C110.0090 (18)0.017 (2)0.021 (2)0.0017 (15)0.0078 (16)0.0016 (16)
C120.013 (2)0.0143 (17)0.019 (2)0.0025 (14)0.0056 (17)0.0003 (15)
C70.028 (2)0.014 (2)0.016 (2)0.0003 (18)0.0030 (17)0.0014 (16)
C90.028 (2)0.028 (3)0.042 (3)0.005 (2)0.008 (2)0.000 (2)
C80.075 (4)0.029 (3)0.024 (2)0.007 (3)0.025 (3)0.002 (2)
C130.020 (2)0.0188 (17)0.028 (2)0.004 (2)0.0135 (19)0.007 (3)
C140.030 (2)0.0125 (19)0.036 (3)0.0042 (18)0.018 (2)0.0016 (17)
C150.019 (2)0.017 (2)0.030 (2)0.0021 (17)0.0097 (18)0.0032 (17)
C160.0118 (17)0.0167 (19)0.021 (2)0.0008 (15)0.0073 (16)0.0013 (16)
C170.0180 (19)0.018 (2)0.022 (2)0.0019 (16)0.0035 (16)0.0009 (16)
C190.025 (2)0.033 (2)0.022 (2)0.0050 (19)0.0070 (19)0.0047 (19)
C180.017 (2)0.029 (2)0.030 (2)0.0018 (18)0.0011 (18)0.001 (2)
C210.0100 (17)0.020 (2)0.0190 (19)0.0015 (15)0.0050 (15)0.0000 (15)
C220.0152 (18)0.021 (2)0.031 (2)0.0007 (16)0.0100 (17)0.0059 (17)
C230.0135 (19)0.033 (3)0.043 (3)0.0033 (18)0.0138 (19)0.010 (2)
C240.019 (2)0.040 (3)0.039 (3)0.0161 (19)0.019 (2)0.017 (2)
C250.015 (2)0.038 (3)0.033 (3)0.0107 (18)0.011 (2)0.013 (2)
C260.017 (2)0.027 (2)0.021 (2)0.0037 (17)0.0073 (17)0.0056 (16)
C20.0127 (19)0.026 (2)0.026 (2)0.0012 (16)0.0035 (17)0.0091 (17)
C50.015 (2)0.051 (3)0.039 (3)0.001 (2)0.011 (2)0.002 (2)
C30.0144 (19)0.026 (2)0.028 (2)0.0031 (17)0.0012 (17)0.0081 (18)
C40.027 (2)0.018 (2)0.019 (2)0.0032 (17)0.0005 (17)0.0056 (16)
C60.027 (2)0.020 (2)0.042 (3)0.0058 (19)0.007 (2)0.001 (2)
Geometric parameters (Å, º) top
Rh1—C11.820 (5)C14—C151.374 (7)
Rh1—O32.059 (3)C14—H140.95
Rh1—O22.083 (3)C15—C161.399 (6)
Rh1—P12.2780 (12)C15—H150.95
P1—C111.864 (4)C16—C171.536 (6)
P1—C211.868 (4)C17—C181.536 (6)
P1—C311.879 (4)C17—C191.539 (7)
O1—C11.141 (6)C17—H171
O3—C21.289 (5)C19—H18A0.98
O2—C41.268 (5)C19—H18B0.98
C31—C361.542 (6)C19—H18C0.98
C31—C321.543 (6)C18—H19A0.98
C31—H21C18—H19B0.98
C36—C351.523 (6)C18—H19C0.98
C36—H3A0.99C21—C221.534 (6)
C36—H3B0.99C21—C261.536 (6)
C35—C341.525 (6)C21—H201
C35—H4A0.99C22—C231.534 (5)
C35—H4B0.99C22—H21A0.99
C34—C331.533 (7)C22—H21B0.99
C34—H5A0.99C23—C241.514 (6)
C34—H5B0.99C23—H22A0.99
C33—C321.531 (6)C23—H22B0.99
C33—H6A0.99C24—C251.527 (7)
C33—H6B0.99C24—H23A0.99
C32—H7A0.99C24—H23B0.99
C32—H7B0.99C25—C261.537 (6)
C11—C121.435 (5)C25—H24A0.99
C11—C161.435 (6)C25—H24B0.99
C12—C131.405 (5)C26—H25A0.99
C12—C71.522 (6)C26—H25B0.99
C7—C81.523 (7)C2—C31.387 (7)
C7—C91.535 (7)C2—C51.508 (7)
C7—H101C5—H27A0.98
C9—H11A0.98C5—H27B0.98
C9—H11B0.98C5—H27C0.98
C9—H11C0.98C3—C41.396 (7)
C8—H12A0.98C3—H280.95
C8—H12B0.98C4—C61.527 (6)
C8—H12C0.98C6—H30A0.98
C13—C141.380 (8)C6—H30B0.98
C13—H130.95C6—H30C0.98
C1—Rh1—O3178.09 (18)C14—C15—C16121.2 (4)
C1—Rh1—O289.60 (17)C14—C15—H15119.4
O3—Rh1—O289.37 (12)C16—C15—H15119.4
C1—Rh1—P194.54 (14)C15—C16—C11120.8 (4)
O3—Rh1—P186.64 (9)C15—C16—C17113.5 (3)
O2—Rh1—P1173.12 (11)C11—C16—C17125.6 (4)
C11—P1—C21102.61 (18)C16—C17—C18110.1 (4)
C11—P1—C31107.71 (19)C16—C17—C19112.2 (4)
C21—P1—C31102.32 (18)C18—C17—C19110.4 (4)
C11—P1—Rh1119.33 (13)C16—C17—H17108
C21—P1—Rh1117.86 (14)C18—C17—H17108
C31—P1—Rh1105.47 (13)C19—C17—H17108
C2—O3—Rh1126.0 (3)C17—C19—H18A109.5
C4—O2—Rh1125.3 (3)C17—C19—H18B109.5
O1—C1—Rh1174.9 (4)H18A—C19—H18B109.5
C36—C31—C32108.7 (3)C17—C19—H18C109.5
C36—C31—P1115.7 (3)H18A—C19—H18C109.5
C32—C31—P1112.3 (3)H18B—C19—H18C109.5
C36—C31—H2106.5C17—C18—H19A109.5
C32—C31—H2106.5C17—C18—H19B109.5
P1—C31—H2106.5H19A—C18—H19B109.5
C35—C36—C31109.4 (3)C17—C18—H19C109.5
C35—C36—H3A109.8H19A—C18—H19C109.5
C31—C36—H3A109.8H19B—C18—H19C109.5
C35—C36—H3B109.8C22—C21—C26112.4 (3)
C31—C36—H3B109.8C22—C21—P1112.2 (3)
H3A—C36—H3B108.2C26—C21—P1112.7 (3)
C36—C35—C34111.9 (4)C22—C21—H20106.3
C36—C35—H4A109.2C26—C21—H20106.3
C34—C35—H4A109.2P1—C21—H20106.3
C36—C35—H4B109.2C21—C22—C23110.9 (3)
C34—C35—H4B109.2C21—C22—H21A109.5
H4A—C35—H4B107.9C23—C22—H21A109.5
C35—C34—C33111.7 (4)C21—C22—H21B109.5
C35—C34—H5A109.3C23—C22—H21B109.5
C33—C34—H5A109.3H21A—C22—H21B108.1
C35—C34—H5B109.3C24—C23—C22111.7 (4)
C33—C34—H5B109.3C24—C23—H22A109.3
H5A—C34—H5B107.9C22—C23—H22A109.3
C32—C33—C34110.5 (4)C24—C23—H22B109.3
C32—C33—H6A109.5C22—C23—H22B109.3
C34—C33—H6A109.5H22A—C23—H22B107.9
C32—C33—H6B109.5C23—C24—C25110.5 (4)
C34—C33—H6B109.5C23—C24—H23A109.6
H6A—C33—H6B108.1C25—C24—H23A109.6
C33—C32—C31109.5 (3)C23—C24—H23B109.6
C33—C32—H7A109.8C25—C24—H23B109.6
C31—C32—H7A109.8H23A—C24—H23B108.1
C33—C32—H7B109.8C24—C25—C26111.3 (4)
C31—C32—H7B109.8C24—C25—H24A109.4
H7A—C32—H7B108.2C26—C25—H24A109.4
C12—C11—C16116.4 (4)C24—C25—H24B109.4
C12—C11—P1120.7 (3)C26—C25—H24B109.4
C16—C11—P1122.9 (3)H24A—C25—H24B108
C13—C12—C11120.5 (4)C21—C26—C25111.6 (4)
C13—C12—C7112.8 (4)C21—C26—H25A109.3
C11—C12—C7126.7 (4)C25—C26—H25A109.3
C12—C7—C8111.6 (4)C21—C26—H25B109.3
C12—C7—C9111.1 (4)C25—C26—H25B109.3
C8—C7—C9112.1 (4)H25A—C26—H25B108
C12—C7—H10107.3O3—C2—C3126.0 (5)
C8—C7—H10107.3O3—C2—C5114.5 (4)
C9—C7—H10107.3C3—C2—C5119.5 (4)
C7—C9—H11A109.5C2—C5—H27A109.5
C7—C9—H11B109.5C2—C5—H27B109.5
H11A—C9—H11B109.5H27A—C5—H27B109.5
C7—C9—H11C109.5C2—C5—H27C109.5
H11A—C9—H11C109.5H27A—C5—H27C109.5
H11B—C9—H11C109.5H27B—C5—H27C109.5
C7—C8—H12A109.5C2—C3—C4126.5 (4)
C7—C8—H12B109.5C2—C3—H28116.8
H12A—C8—H12B109.5C4—C3—H28116.8
C7—C8—H12C109.5O2—C4—C3126.8 (4)
H12A—C8—H12C109.5O2—C4—C6114.5 (4)
H12B—C8—H12C109.5C3—C4—C6118.7 (4)
C14—C13—C12121.1 (5)C4—C6—H30A109.5
C14—C13—H13119.4C4—C6—H30B109.5
C12—C13—H13119.4H30A—C6—H30B109.5
C15—C14—C13119.9 (4)C4—C6—H30C109.5
C15—C14—H14120H30A—C6—H30C109.5
C13—C14—H14120H30B—C6—H30C109.5

Experimental details

Crystal data
Chemical formula[Rh(C5H7O2)(C24H39P)(CO)]
Mr588.55
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)16.750 (2), 9.7334 (13), 19.385 (3)
β (°) 111.669 (3)
V3)2937.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.29 × 0.23 × 0.22
Data collection
DiffractometerBruker APEX DUO 4K-CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.553, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
14224, 6007, 5516
Rint0.049
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.105, 1.05
No. of reflections6007
No. of parameters322
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.85, 1.42
Absolute structureFlack (1983), 2437 Friedel pairs
Absolute structure parameter0.03 (3)

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

 

Acknowledgements

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg, Sasol and TESP is gratefully acknowledged. H. Phaza is acknowledged for the data collection.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrink, A., Roodt, A. & Visser, H. G. (2007). Acta Cryst. E63, m48–m50.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavis, W. L. & Meijboom, R. (2011). Acta Cryst. E67, m1874.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationErasmus, J. J. C. & Conradie, J. (2011). Inorg. Chim. Acta, 375, 128–134.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHayashi, T. & Yamasaki, T. (2003). Chem. Rev. 103, 2829–2844.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoloy, K. G. & Wegman, R. W. (1989). Organometallics, 8, 2883–2892.  CrossRef CAS Web of Science Google Scholar
First citationNozaki, K., Sakai, N., Nanno, T., Higashijima, T., Mano, S., Horiuchi, T. & Takaya, H. (1997). J. Am. Chem. Soc. 119, 4413–4423.  CrossRef CAS Web of Science Google Scholar
First citationOcando-Mavarez, E., Ascanio, J., González, T., Atencio, R., Rosales, M. & Silva, N. (2003). Acta Cryst. E59, m633–m635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRiihimaki, H., Kangas, T., Suomalainen, P., Reinius, H. K., Jaaskelainen, S., Haukka, M., Krause, A. O. I. & Pakkanen, T. A. (2003). J. Mol. Catal. A Chem. 200, 81–94.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds