organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Anthracen-9-ylmeth­yl)adamantan-1-amine

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212023, People's Republic of China, and bSchool of the Environment, Jiangsu University, Zhenjiang 212023, People's Republic of China
*Correspondence e-mail: fwq4993329@ujs.edu.cn

(Received 29 March 2012; accepted 16 May 2012; online 19 May 2012)

In the crystal stucture of the of the title compound, C25H27N, stong ππ inter­actions are found between adjacent anthracene fragments, with a shortest centroid–centroid distance of 3.5750 (9) Å.

Related literature

Anthracene derivatives have been widely used in the field of anion recognition, metal ion fluorescent sensors, as well as pH sensors, see: Bernhardt et al. (2001[Bernhardt, P. V., Moore, E. G. & Riley, M. J. (2001). Inorg. Chem. 40, 5799-5805.]), Chen & Chen (2004[Chen, Q. Y. & Chen, C. F. (2004). Tetrahedron Lett. 45, 6493-6496.]); Gunnlaugsson et al. (2003[Gunnlaugsson, T., Lee, T. C. & Parkesh, R. (2003). Org. Lett. 5, 4065-4068.]); Kim & Yoon (2002[Kim, S. K. & Yoon, J. (2002). Chem. Commun. pp. 770-771.])

[Scheme 1]

Experimental

Crystal data
  • C25H27N

  • Mr = 341.26

  • Orthorhombic, P c c n

  • a = 9.9546 (4) Å

  • b = 42.1921 (19) Å

  • c = 8.6133 (4) Å

  • V = 3617.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.35 × 0.24 × 0.20 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.998

  • 18689 measured reflections

  • 3594 independent reflections

  • 3089 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.104

  • S = 1.03

  • 3594 reflections

  • 238 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Anthracene derivatives have been widely used in the field of anion recognition, metal ionfluorescent sensors, as well as pH sensors (Gunnlaugsson et al., 2003; Chen & Chen, 2004; Kim & Yoon, 2002; Bernhardt et al. 2001) because of their excellent photophysical properties and high fluorescence.

In the crystals of the title compound (Fig. 1), there are two ππ interactions between benzene rings of the ajacent anthracene fragments with the distances Cg1···Cg2i = 3.5750 (9) Å and Cg1···Cg3i = 4.0043 (10) Å. (Cg1, Cg2 and Cg3 are the centroids of the rings [C1/C5 and C14], [C5/C7 and C12/C14] and [C7/C12], respectively; symmetry code: (i) 1/2 - x, y, z + 1/2) forming one-dimensional supramolecular chains along c axis direction (Fig. 2).

Related literature top

Anthracene derivatives have been widely used in the field of anion recognition, metal ion fluorescent sensors, as well as pH sensors, see: Bernhardt et al. (2001), Chen & Chen (2004); Gunnlaugsson et al. (2003); Kim & Yoon (2002)

Experimental top

9-Anthracenecarboxaldehyde (2.06 g, 10 mmol) was added into a solution of amantadine (1.51 g, 10 mmol) in ethanol. Yellow precipitate was formed atfer string for 1 h. The yellow Schiff base was filtrated and dryed. NaBH4 (7.56 g, 20 mmol) was added into a solution of the Schiff base in anhydrous methanol (120 ml). After 3 h, the white solid, 9-[(adamantan-1-ylamino)methyl]anthracene, was obtained by reduced pressure distillation, extraction and drying. The colourless block-shaped crystals of the title compound suitable for X-ray analysis were obtained by recrystallization from ethanol.

Refinement top

H atom bonded to N was located in a difference Fourier map and refined isotropically with a bond restraint of N—H= 0.85 Å and Uiso(H) = 1.5 Ueq(N). Other H atoms were placed in calculated positions with C—H distances 0.93 (aromatic), 0.97 Å (methylene) and 0.97 Å (methine) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Thermal displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The one-dimensional supramolecular chains linked by ππ interactions. H atoms are omitted for clarity.
N-(Anthracen-9-ylmethyl)adamantan-1-amine top
Crystal data top
C25H27NF(000) = 1472
Mr = 341.26Dx = 1.253 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 3594 reflections
a = 9.9546 (4) Åθ = 1.0–26.0°
b = 42.1921 (19) ŵ = 0.07 mm1
c = 8.6133 (4) ÅT = 293 K
V = 3617.6 (3) Å3Block, colorless
Z = 80.35 × 0.24 × 0.20 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
3594 independent reflections
Radiation source: fine-focus sealed tube3089 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 26.0°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 812
Tmin = 0.975, Tmax = 0.998k = 5250
18689 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0431P)2 + 1.8749P]
where P = (Fo2 + 2Fc2)/3
3594 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C25H27NV = 3617.6 (3) Å3
Mr = 341.26Z = 8
Orthorhombic, PccnMo Kα radiation
a = 9.9546 (4) ŵ = 0.07 mm1
b = 42.1921 (19) ÅT = 293 K
c = 8.6133 (4) Å0.35 × 0.24 × 0.20 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
3594 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3089 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.998Rint = 0.037
18689 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.30 e Å3
3594 reflectionsΔρmin = 0.20 e Å3
238 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.07687 (14)0.06244 (3)0.02106 (16)0.0213 (3)
H10.01900.07630.07200.026*
C20.02463 (14)0.03905 (3)0.06924 (16)0.0251 (3)
H20.06810.03720.07950.030*
C30.10948 (15)0.01740 (3)0.14794 (16)0.0263 (3)
H30.07240.00150.20890.032*
C40.24486 (15)0.01993 (3)0.13433 (15)0.0239 (3)
H40.29980.00570.18660.029*
C50.30441 (14)0.04417 (3)0.04106 (15)0.0189 (3)
C60.44299 (14)0.04664 (3)0.02481 (15)0.0206 (3)
H60.49800.03210.07530.025*
C70.50153 (13)0.07034 (3)0.06532 (15)0.0192 (3)
C80.64357 (14)0.07199 (3)0.08598 (18)0.0275 (3)
H80.69840.05720.03700.033*
C90.70002 (15)0.09479 (3)0.1760 (2)0.0320 (4)
H90.79250.09510.19110.038*
C100.61811 (14)0.11826 (3)0.24708 (17)0.0266 (3)
H100.65770.13420.30610.032*
C110.48252 (13)0.11763 (3)0.22964 (15)0.0201 (3)
H110.43090.13340.27550.024*
C120.41699 (13)0.09318 (3)0.14216 (14)0.0165 (3)
C130.27606 (13)0.09040 (3)0.13158 (14)0.0164 (3)
C140.21886 (13)0.06624 (3)0.03960 (14)0.0177 (3)
C150.18568 (13)0.11250 (3)0.22289 (14)0.0173 (3)
H15A0.10670.10100.25700.021*
H15B0.23300.11990.31450.021*
C160.07339 (12)0.16531 (3)0.21643 (14)0.0148 (3)
C170.03739 (12)0.15278 (3)0.32484 (14)0.0161 (3)
H17A0.10270.14090.26470.019*
H17B0.00180.13850.40070.019*
C180.10802 (12)0.18021 (3)0.40888 (15)0.0178 (3)
H180.17770.17170.47770.021*
C190.17216 (13)0.20239 (3)0.28916 (16)0.0211 (3)
H19A0.21670.21980.34170.025*
H19B0.23890.19090.22930.025*
C200.06276 (13)0.21533 (3)0.18062 (16)0.0204 (3)
H200.10370.22940.10340.024*
C210.04073 (13)0.23400 (3)0.27656 (16)0.0214 (3)
H21A0.10960.24250.20870.026*
H21B0.00300.25160.32870.026*
C220.10463 (13)0.21183 (3)0.39676 (15)0.0193 (3)
H220.17060.22370.45810.023*
C230.17531 (12)0.18428 (3)0.31292 (15)0.0172 (3)
H23A0.24500.19260.24540.021*
H23B0.21740.17050.38870.021*
C240.00819 (13)0.18773 (3)0.09765 (15)0.0185 (3)
H24A0.05650.17610.03570.022*
H24B0.07660.19600.02850.022*
C250.00415 (13)0.19856 (3)0.50496 (15)0.0191 (3)
H25A0.03640.18460.58110.023*
H25B0.04790.21580.55980.023*
N10.14369 (11)0.14005 (2)0.12914 (12)0.0168 (2)
H1N0.0920 (15)0.1338 (3)0.0533 (16)0.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0250 (7)0.0178 (6)0.0210 (7)0.0004 (5)0.0014 (5)0.0045 (5)
C20.0253 (7)0.0248 (7)0.0253 (7)0.0064 (6)0.0025 (6)0.0061 (6)
C30.0386 (8)0.0200 (7)0.0204 (7)0.0101 (6)0.0025 (6)0.0001 (5)
C40.0371 (8)0.0158 (6)0.0189 (7)0.0018 (6)0.0031 (6)0.0011 (5)
C50.0282 (7)0.0130 (6)0.0155 (6)0.0009 (5)0.0019 (5)0.0020 (5)
C60.0272 (7)0.0143 (6)0.0204 (7)0.0037 (5)0.0065 (5)0.0012 (5)
C70.0231 (7)0.0146 (6)0.0199 (7)0.0013 (5)0.0042 (5)0.0016 (5)
C80.0223 (7)0.0218 (7)0.0384 (9)0.0026 (5)0.0077 (6)0.0037 (6)
C90.0195 (7)0.0279 (7)0.0488 (10)0.0032 (6)0.0031 (7)0.0058 (7)
C100.0268 (7)0.0208 (7)0.0323 (8)0.0067 (5)0.0014 (6)0.0042 (6)
C110.0257 (7)0.0146 (6)0.0201 (7)0.0000 (5)0.0038 (5)0.0003 (5)
C120.0229 (6)0.0119 (6)0.0147 (6)0.0009 (5)0.0024 (5)0.0022 (5)
C130.0231 (7)0.0120 (5)0.0139 (6)0.0021 (5)0.0023 (5)0.0041 (5)
C140.0240 (7)0.0138 (6)0.0152 (6)0.0004 (5)0.0017 (5)0.0044 (5)
C150.0203 (6)0.0151 (6)0.0165 (6)0.0013 (5)0.0021 (5)0.0015 (5)
C160.0168 (6)0.0124 (6)0.0153 (6)0.0010 (5)0.0002 (5)0.0002 (5)
C170.0173 (6)0.0141 (6)0.0170 (6)0.0018 (5)0.0009 (5)0.0005 (5)
C180.0176 (6)0.0165 (6)0.0192 (6)0.0003 (5)0.0038 (5)0.0013 (5)
C190.0179 (6)0.0209 (6)0.0246 (7)0.0044 (5)0.0008 (5)0.0036 (5)
C200.0249 (7)0.0156 (6)0.0207 (7)0.0052 (5)0.0020 (5)0.0027 (5)
C210.0259 (7)0.0129 (6)0.0254 (7)0.0006 (5)0.0025 (6)0.0008 (5)
C220.0206 (6)0.0146 (6)0.0226 (7)0.0029 (5)0.0024 (5)0.0028 (5)
C230.0158 (6)0.0153 (6)0.0206 (7)0.0008 (5)0.0005 (5)0.0016 (5)
C240.0215 (6)0.0180 (6)0.0160 (6)0.0020 (5)0.0006 (5)0.0012 (5)
C250.0256 (7)0.0145 (6)0.0171 (6)0.0019 (5)0.0006 (5)0.0022 (5)
N10.0212 (6)0.0145 (5)0.0147 (5)0.0037 (4)0.0003 (4)0.0002 (4)
Geometric parameters (Å, º) top
C1—C21.3598 (19)C16—N11.4800 (15)
C1—C141.4314 (19)C16—C231.5364 (16)
C1—H10.9300C16—C241.5373 (16)
C2—C31.417 (2)C16—C171.5387 (16)
C2—H20.9300C17—C181.5355 (16)
C3—C41.357 (2)C17—H17A0.9700
C3—H30.9300C17—H17B0.9700
C4—C51.4291 (18)C18—C191.5318 (18)
C4—H40.9300C18—C251.5339 (17)
C5—C61.3905 (19)C18—H180.9800
C5—C141.4407 (18)C19—C201.5357 (18)
C6—C71.3937 (18)C19—H19A0.9700
C6—H60.9300C19—H19B0.9700
C7—C81.4268 (19)C20—C241.5378 (17)
C7—C121.4403 (17)C20—C211.5379 (18)
C8—C91.357 (2)C20—H200.9800
C8—H80.9300C21—C221.5335 (18)
C9—C101.422 (2)C21—H21A0.9700
C9—H90.9300C21—H21B0.9700
C10—C111.3584 (19)C22—C251.5346 (18)
C10—H100.9300C22—C231.5389 (17)
C11—C121.4346 (17)C22—H220.9800
C11—H110.9300C23—H23A0.9700
C12—C131.4107 (18)C23—H23B0.9700
C13—C141.4110 (17)C24—H24A0.9700
C13—C151.5155 (16)C24—H24B0.9700
C15—N11.4760 (15)C25—H25A0.9700
C15—H15A0.9700C25—H25B0.9700
C15—H15B0.9700N1—H1N0.873 (13)
C2—C1—C14121.52 (13)C16—C17—H17A109.5
C2—C1—H1119.2C18—C17—H17B109.5
C14—C1—H1119.2C16—C17—H17B109.5
C1—C2—C3120.90 (13)H17A—C17—H17B108.1
C1—C2—H2119.6C19—C18—C25109.63 (10)
C3—C2—H2119.5C19—C18—C17109.51 (10)
C4—C3—C2120.00 (12)C25—C18—C17109.03 (10)
C4—C3—H3120.0C19—C18—H18109.6
C2—C3—H3120.0C25—C18—H18109.6
C3—C4—C5121.12 (13)C17—C18—H18109.6
C3—C4—H4119.4C18—C19—C20109.35 (10)
C5—C4—H4119.4C18—C19—H19A109.8
C6—C5—C4121.45 (12)C20—C19—H19A109.8
C6—C5—C14119.30 (12)C18—C19—H19B109.8
C4—C5—C14119.24 (12)C20—C19—H19B109.8
C5—C6—C7121.65 (12)H19A—C19—H19B108.3
C5—C6—H6119.2C19—C20—C24109.84 (10)
C7—C6—H6119.2C19—C20—C21109.27 (11)
C6—C7—C8121.25 (12)C24—C20—C21109.26 (10)
C6—C7—C12119.45 (12)C19—C20—H20109.5
C8—C7—C12119.29 (12)C24—C20—H20109.5
C9—C8—C7121.07 (13)C21—C20—H20109.5
C9—C8—H8119.5C22—C21—C20109.15 (10)
C7—C8—H8119.5C22—C21—H21A109.8
C8—C9—C10120.16 (13)C20—C21—H21A109.8
C8—C9—H9119.9C22—C21—H21B109.8
C10—C9—H9119.9C20—C21—H21B109.8
C11—C10—C9120.58 (13)H21A—C21—H21B108.3
C11—C10—H10119.7C21—C22—C25109.87 (11)
C9—C10—H10119.7C21—C22—C23109.49 (10)
C10—C11—C12121.59 (12)C25—C22—C23109.38 (10)
C10—C11—H11119.2C21—C22—H22109.4
C12—C11—H11119.2C25—C22—H22109.4
C13—C12—C11123.08 (11)C23—C22—H22109.4
C13—C12—C7119.73 (11)C16—C23—C22110.21 (10)
C11—C12—C7117.18 (12)C16—C23—H23A109.6
C12—C13—C14119.83 (11)C22—C23—H23A109.6
C12—C13—C15120.39 (11)C16—C23—H23B109.6
C14—C13—C15119.75 (11)C22—C23—H23B109.6
C13—C14—C1122.83 (12)H23A—C23—H23B108.1
C13—C14—C5119.96 (12)C16—C24—C20110.53 (10)
C1—C14—C5117.21 (12)C16—C24—H24A109.5
N1—C15—C13111.64 (10)C20—C24—H24A109.5
N1—C15—H15A109.3C16—C24—H24B109.5
C13—C15—H15A109.3C20—C24—H24B109.5
N1—C15—H15B109.3H24A—C24—H24B108.1
C13—C15—H15B109.3C18—C25—C22109.40 (10)
H15A—C15—H15B108.0C18—C25—H25A109.8
N1—C16—C23109.73 (10)C22—C25—H25A109.8
N1—C16—C24107.74 (10)C18—C25—H25B109.8
C23—C16—C24108.55 (10)C22—C25—H25B109.8
N1—C16—C17113.57 (9)H25A—C25—H25B108.2
C23—C16—C17108.90 (10)C15—N1—C16115.03 (9)
C24—C16—C17108.22 (10)C15—N1—H1N109.8 (10)
C18—C17—C16110.81 (10)C16—N1—H1N108.6 (10)
C18—C17—H17A109.5
C14—C1—C2—C30.3 (2)C12—C13—C15—N194.66 (13)
C1—C2—C3—C40.3 (2)C14—C13—C15—N187.49 (13)
C2—C3—C4—C50.2 (2)N1—C16—C17—C18178.78 (10)
C3—C4—C5—C6179.09 (13)C23—C16—C17—C1858.63 (13)
C3—C4—C5—C140.04 (19)C24—C16—C17—C1859.20 (13)
C4—C5—C6—C7179.63 (12)C16—C17—C18—C1960.18 (13)
C14—C5—C6—C71.24 (19)C16—C17—C18—C2559.77 (13)
C5—C6—C7—C8177.65 (13)C25—C18—C19—C2060.30 (13)
C5—C6—C7—C120.85 (19)C17—C18—C19—C2059.28 (13)
C6—C7—C8—C9178.87 (14)C18—C19—C20—C2459.26 (13)
C12—C7—C8—C90.4 (2)C18—C19—C20—C2160.59 (13)
C7—C8—C9—C102.3 (2)C19—C20—C21—C2260.28 (13)
C8—C9—C10—C111.9 (2)C24—C20—C21—C2259.93 (13)
C9—C10—C11—C121.2 (2)C20—C21—C22—C2559.94 (13)
C10—C11—C12—C13174.98 (13)C20—C21—C22—C2360.21 (13)
C10—C11—C12—C73.74 (19)N1—C16—C23—C22176.69 (10)
C6—C7—C12—C133.06 (18)C24—C16—C23—C2259.19 (13)
C8—C7—C12—C13175.46 (12)C17—C16—C23—C2258.43 (12)
C6—C7—C12—C11178.18 (11)C21—C22—C23—C1660.42 (13)
C8—C7—C12—C113.30 (18)C25—C22—C23—C1660.03 (13)
C11—C12—C13—C14178.18 (11)N1—C16—C24—C20178.02 (10)
C7—C12—C13—C143.14 (17)C23—C16—C24—C2059.25 (13)
C11—C12—C13—C153.97 (18)C17—C16—C24—C2058.80 (13)
C7—C12—C13—C15174.71 (11)C19—C20—C24—C1659.76 (13)
C12—C13—C14—C1178.69 (11)C21—C20—C24—C1660.10 (13)
C15—C13—C14—C13.44 (17)C19—C18—C25—C2259.63 (13)
C12—C13—C14—C51.06 (17)C17—C18—C25—C2260.24 (13)
C15—C13—C14—C5176.81 (11)C21—C22—C25—C1859.59 (13)
C2—C1—C14—C13179.54 (12)C23—C22—C25—C1860.63 (13)
C2—C1—C14—C50.22 (18)C13—C15—N1—C16170.68 (10)
C6—C5—C14—C131.15 (18)C23—C16—N1—C1575.36 (12)
C4—C5—C14—C13179.70 (11)C24—C16—N1—C15166.62 (10)
C6—C5—C14—C1179.09 (11)C17—C16—N1—C1546.77 (14)
C4—C5—C14—C10.06 (17)

Experimental details

Crystal data
Chemical formulaC25H27N
Mr341.26
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)293
a, b, c (Å)9.9546 (4), 42.1921 (19), 8.6133 (4)
V3)3617.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.35 × 0.24 × 0.20
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.975, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
18689, 3594, 3089
Rint0.037
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.104, 1.03
No. of reflections3594
No. of parameters238
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.20

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

 

Acknowledgements

We thank the Start-up Foundation for Advanced Professionals of Jiangsu University (11JDG105) for support.

References

First citationBernhardt, P. V., Moore, E. G. & Riley, M. J. (2001). Inorg. Chem. 40, 5799–5805.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Q. Y. & Chen, C. F. (2004). Tetrahedron Lett. 45, 6493–6496.  Web of Science CrossRef CAS Google Scholar
First citationGunnlaugsson, T., Lee, T. C. & Parkesh, R. (2003). Org. Lett. 5, 4065–4068.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, S. K. & Yoon, J. (2002). Chem. Commun. pp. 770–771.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds