organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1698-o1699

2,17-Di­chloro-8,9,10,11-tetra­hydro-19H-dibenzo[k,n][1,10,4,7]dioxadi­aza­cyclo­penta­decine-7,12(6H,13H)-dione

aInstitute of Physics, AS CR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic, bInstitute of Macromolecular Chemistry, AS CR v.v.i., Heyrovského nám. 2, 162 06 Prague 6, Czech Republic, and cFaculty of Environmental Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic
*Correspondence e-mail: pojarova@fzu.cz

(Received 12 April 2012; accepted 6 May 2012; online 12 May 2012)

In the crystal structure of the title compound, C19H18Cl2N2O4, N—H⋯O hydrogen bonds link the mol­ecules into infinite chains along the b axis. The structure also features weak C—H⋯O and C—H⋯Cl hydrogen bonds and C—H⋯π and (lone pair)⋯π inter­actions [Cl⋯centroid = 3.5871 (7) Å]. An intra­molecular N—H⋯O bond occurs.

Related literature

For the synthesis, see: Ertul et al. (2009[Ertul, S., Tombak, A. H., Bayrakci, M. & Merter, O. (2009). Acta Chim. Slov. 56, 878-884.]). For applications of macrocycles, see: Hayvali & Hayvali (2005[Hayvali, M. & Hayvali, Z. (2005). Synth. React. Inorg. Met. Org. Chem. 34, 713-732.]); Kleinpeter et al. (1997[Kleinpeter, E., Starke, I., Strohl, D. & Holdt, H. J. (1997). J. Mol. Struct. 404, 273-290.]); Jaiyu et al. (2007[Jaiyu, A., Rojanathanes, R. & Sukwattanasinitt, M. (2007). Tetrahedron Lett. 48, 1817-1821.]); Christensen et al. (1997[Christensen, A., Jensen, H. S., McKee, V., Mckenzie, C. J. & Munch, M. (1997). Inorg. Chem. 36, 6080-6085.]); Alexander (1995[Alexander, V. (1995). Chem. Rev. 95, 273-342.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18Cl2N2O4

  • Mr = 409.25

  • Monoclinic, P 21 /c

  • a = 12.0877 (3) Å

  • b = 8.73462 (15) Å

  • c = 17.3712 (4) Å

  • β = 93.588 (2)°

  • V = 1830.48 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.44 mm−1

  • T = 120 K

  • 0.31 × 0.22 × 0.21 mm

Data collection
  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.175, Tmax = 0.342

  • 19596 measured reflections

  • 3271 independent reflections

  • 3210 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.074

  • S = 1.07

  • 3271 reflections

  • 244 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O2i 0.89 2.05 2.8945 (15) 158
C14—H14A⋯O3i 0.97 2.54 3.5026 (17) 172
C14—H14B⋯O3ii 0.97 2.34 3.2934 (17) 167
C16—H16B⋯O1iii 0.97 2.59 3.2843 (17) 129
C19—H19A⋯Cl2iv 0.97 2.81 3.6201 (14) 142
C9—H9⋯Cg1v 0.93 2.88 3.8006 (14) 174
N1—H1N1⋯O1 0.90 2.16 2.5935 (15) 109
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Polyazalactones together with polyoxalactones and polyethers are studied for their ability to act as multidentate ligands and to complex various cations. Polyazalactones can incorporate transition metals into their cavities via an ion-dipole interaction (Hayvali et al., 2005; Kleinpeter et al., 1997). They are studied for their role in bioprocesses, catalysis, material science, and transport and separation (Jaiyu et al., 2007; Christensen et al., 1997; Alexander, 1995). In this paper, we report a crystal structure of lactam ionophore (Fig. 1 and Scheme). The macrocycle consists of two phenyl rings substituted with chlorine atom in para position. The neighbouring molecules are connected via hydrogen bonds between amide groups (Fig. 1 and Table 1). Weaker hydrogen bonds can be found between methylene groups and oxygen or chlorine atoms. The arrangement of the molecules in the crystal is influenced by the C—H···π interactions between the aromatic rings (C9—H9··· C1C6 (Cg1)) and lone pair···π interaction between the chlorine atom Cl1 and neighbouring aromatic ring C8C13(Cg2) (the distance between Cl1 and Cg2 is 3.5871 (7) Å).

Related literature top

For the synthesis, see: Ertul et al. (2009). For applications of macrocycles, see: Hayvali et al. (2005); Kleinpeter et al. (1997); Jaiyu et al. (2007); Christensen et al. (1997); Alexander (1995).

Experimental top

All chemicals used were purchased from Fluka and used without further purification. The title compound was synthesized by means of method published by Ertul et al. (2009). Crystals were prepared by slow evaporation from methanol.

Refinement top

H atoms bound to C atoms were positioned geometrically and refined as riding with C—H distances 0.93–0.97 Å. H atoms bound to N atoms were located in a difference map and refined as riding with N—H bond restrained to 0.89 Å. The isotropic temperature parameters of all hydrogen atoms were calculated as 1.2*Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the title compound, together with atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Projection along the b axis with highlighted hydrogen bonds between the molecules.
2,17-Dichloro-8,9,10,11-tetrahydro-19H- dibenzo[k,n][1,10,4,7]dioxadiazacyclopentadecine- 7,12(6H,13H)-dione top
Crystal data top
C19H18Cl2N2O4F(000) = 848
Mr = 409.25Dx = 1.484 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 16650 reflections
a = 12.0877 (3) Åθ = 3.7–67.1°
b = 8.73462 (15) ŵ = 3.44 mm1
c = 17.3712 (4) ÅT = 120 K
β = 93.588 (2)°Prism, colourless
V = 1830.48 (7) Å30.31 × 0.22 × 0.21 mm
Z = 4
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
3271 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source3210 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 3.7°
Rotation method data acquisition using ω scansh = 1414
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2010)
k = 810
Tmin = 0.175, Tmax = 0.342l = 2020
19596 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.7612P]
where P = (Fo2 + 2Fc2)/3
3271 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.29 e Å3
Crystal data top
C19H18Cl2N2O4V = 1830.48 (7) Å3
Mr = 409.25Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.0877 (3) ŵ = 3.44 mm1
b = 8.73462 (15) ÅT = 120 K
c = 17.3712 (4) Å0.31 × 0.22 × 0.21 mm
β = 93.588 (2)°
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
3271 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2010)
3210 reflections with I > 2σ(I)
Tmin = 0.175, Tmax = 0.342Rint = 0.028
19596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0292 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.07Δρmax = 0.20 e Å3
3271 reflectionsΔρmin = 0.29 e Å3
244 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The distance between hydrogen atoms and nitrogen atoms was restrained. The bond length was set to 0.87 Å with σ 0.02. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.86335 (3)1.01411 (4)0.16078 (2)0.03147 (11)
Cl21.00225 (3)0.24819 (5)0.01843 (2)0.03989 (12)
O40.78538 (8)0.52610 (11)0.38371 (5)0.0251 (2)
O10.64125 (7)0.49162 (11)0.15585 (5)0.0248 (2)
O30.58083 (8)0.72265 (11)0.47012 (6)0.0306 (2)
O20.39104 (8)0.69986 (11)0.15386 (6)0.0291 (2)
N20.55581 (9)0.49941 (13)0.40482 (6)0.0247 (2)
H1N20.59040.41320.39230.030*
C190.74034 (11)0.56132 (16)0.45584 (8)0.0262 (3)
H19A0.78090.64630.47990.031*
H19B0.74900.47360.48990.031*
C30.79942 (11)0.91308 (16)0.29832 (8)0.0269 (3)
H30.78801.01540.31020.032*
C50.84978 (11)0.71987 (16)0.20783 (8)0.0241 (3)
H50.87320.69510.15940.029*
C110.79350 (12)0.34870 (16)0.00686 (8)0.0276 (3)
H110.78340.32740.05930.033*
C80.82559 (11)0.40890 (14)0.15178 (8)0.0222 (3)
C10.79727 (10)0.64599 (15)0.33323 (8)0.0230 (3)
C60.82934 (10)0.60427 (15)0.25987 (8)0.0223 (3)
C70.83966 (11)0.43695 (15)0.23779 (8)0.0237 (3)
H7A0.91190.39980.25670.028*
H7B0.78420.37840.26310.028*
C130.72294 (11)0.43609 (15)0.11165 (8)0.0228 (3)
C90.91159 (11)0.35413 (15)0.11042 (8)0.0248 (3)
H90.98090.33740.13520.030*
C120.70686 (11)0.40584 (16)0.03341 (8)0.0268 (3)
H120.63810.42380.00790.032*
N10.49166 (10)0.57462 (14)0.24811 (7)0.0271 (3)
H1N10.55600.52680.26000.033*
C150.46922 (10)0.61525 (15)0.17506 (8)0.0230 (3)
C140.54225 (11)0.54793 (16)0.11649 (8)0.0242 (3)
H14A0.50380.46520.08890.029*
H14B0.56040.62560.07940.029*
C180.61793 (11)0.60295 (15)0.44482 (7)0.0242 (3)
C20.78030 (11)0.79873 (16)0.35175 (8)0.0263 (3)
H20.75620.82450.39990.032*
C40.83550 (11)0.87211 (16)0.22751 (8)0.0250 (3)
C170.44063 (11)0.52947 (16)0.38020 (8)0.0270 (3)
H17A0.40340.57490.42250.032*
H17B0.40380.43370.36660.032*
C100.89470 (11)0.32410 (16)0.03211 (8)0.0268 (3)
C160.43191 (11)0.63655 (16)0.31133 (8)0.0276 (3)
H16A0.35460.65060.29450.033*
H16B0.46240.73570.32620.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0375 (2)0.02398 (18)0.0333 (2)0.00168 (13)0.00512 (14)0.00670 (13)
Cl20.0333 (2)0.0531 (2)0.0343 (2)0.01109 (16)0.00956 (15)0.00592 (16)
O40.0283 (5)0.0241 (5)0.0232 (5)0.0001 (4)0.0043 (4)0.0026 (4)
O10.0209 (5)0.0307 (5)0.0227 (5)0.0044 (4)0.0010 (4)0.0008 (4)
O30.0355 (5)0.0277 (5)0.0291 (5)0.0002 (4)0.0056 (4)0.0042 (4)
O20.0259 (5)0.0293 (5)0.0323 (5)0.0061 (4)0.0027 (4)0.0076 (4)
N20.0253 (6)0.0234 (6)0.0255 (6)0.0011 (4)0.0013 (5)0.0001 (4)
C190.0294 (7)0.0287 (7)0.0205 (6)0.0023 (6)0.0020 (5)0.0012 (5)
C30.0283 (7)0.0210 (7)0.0313 (7)0.0004 (5)0.0005 (5)0.0014 (5)
C50.0233 (6)0.0260 (7)0.0232 (6)0.0011 (5)0.0025 (5)0.0002 (5)
C110.0333 (7)0.0268 (7)0.0227 (7)0.0004 (6)0.0034 (5)0.0003 (5)
C80.0246 (6)0.0161 (6)0.0258 (7)0.0012 (5)0.0014 (5)0.0019 (5)
C10.0198 (6)0.0244 (7)0.0245 (6)0.0019 (5)0.0006 (5)0.0030 (5)
C60.0181 (6)0.0226 (6)0.0259 (7)0.0004 (5)0.0008 (5)0.0004 (5)
C70.0239 (6)0.0224 (6)0.0248 (7)0.0012 (5)0.0004 (5)0.0013 (5)
C130.0235 (6)0.0201 (6)0.0251 (7)0.0004 (5)0.0041 (5)0.0011 (5)
C90.0231 (6)0.0213 (6)0.0299 (7)0.0002 (5)0.0015 (5)0.0019 (5)
C120.0257 (7)0.0284 (7)0.0261 (7)0.0022 (5)0.0001 (5)0.0016 (5)
N10.0258 (6)0.0309 (6)0.0247 (6)0.0087 (5)0.0016 (4)0.0007 (5)
C150.0211 (6)0.0195 (6)0.0283 (7)0.0029 (5)0.0007 (5)0.0018 (5)
C140.0222 (6)0.0256 (7)0.0244 (7)0.0016 (5)0.0008 (5)0.0036 (5)
C180.0301 (7)0.0246 (7)0.0183 (6)0.0015 (5)0.0042 (5)0.0030 (5)
C20.0267 (7)0.0278 (7)0.0248 (7)0.0005 (5)0.0034 (5)0.0028 (6)
C40.0240 (6)0.0231 (7)0.0278 (7)0.0014 (5)0.0001 (5)0.0045 (5)
C170.0244 (7)0.0300 (7)0.0268 (7)0.0005 (5)0.0031 (5)0.0003 (6)
C100.0279 (7)0.0237 (7)0.0295 (7)0.0020 (5)0.0082 (5)0.0001 (5)
C160.0277 (7)0.0292 (7)0.0262 (7)0.0057 (6)0.0030 (5)0.0006 (6)
Geometric parameters (Å, º) top
Cl1—C41.7451 (14)C8—C131.4050 (18)
Cl2—C101.7448 (14)C8—C71.5132 (18)
O4—C11.3794 (16)C1—C21.391 (2)
O4—C191.4306 (16)C1—C61.4031 (19)
O1—C131.3766 (16)C6—C71.5185 (19)
O1—C141.4282 (15)C7—H7A0.9700
O3—C181.2300 (17)C7—H7B0.9700
O2—C151.2377 (16)C13—C121.3864 (19)
N2—C181.3417 (18)C9—C101.388 (2)
N2—C171.4548 (17)C9—H90.9300
N2—H1N20.8948C12—H120.9300
C19—C181.5243 (19)N1—C151.3292 (18)
C19—H19A0.9700N1—C161.4560 (18)
C19—H19B0.9700N1—H1N10.8962
C3—C41.378 (2)C15—C141.5077 (19)
C3—C21.393 (2)C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C5—C61.3880 (19)C2—H20.9300
C5—C41.387 (2)C17—C161.5171 (19)
C5—H50.9300C17—H17A0.9700
C11—C101.377 (2)C17—H17B0.9700
C11—C121.388 (2)C16—H16A0.9700
C11—H110.9300C16—H16B0.9700
C8—C91.3856 (19)
C1—O4—C19117.00 (10)C10—C9—H9119.9
C13—O1—C14117.60 (10)C13—C12—C11119.91 (13)
C18—N2—C17121.67 (12)C13—C12—H12120.0
C18—N2—H1N2116.0C11—C12—H12120.0
C17—N2—H1N2122.3C15—N1—C16122.65 (11)
O4—C19—C18111.17 (10)C15—N1—H1N1117.8
O4—C19—H19A109.4C16—N1—H1N1117.7
C18—C19—H19A109.4O2—C15—N1123.36 (12)
O4—C19—H19B109.4O2—C15—C14120.06 (12)
C18—C19—H19B109.4N1—C15—C14116.55 (11)
H19A—C19—H19B108.0O1—C14—C15108.66 (10)
C4—C3—C2118.92 (13)O1—C14—H14A110.0
C4—C3—H3120.5C15—C14—H14A110.0
C2—C3—H3120.5O1—C14—H14B110.0
C6—C5—C4120.49 (13)C15—C14—H14B110.0
C6—C5—H5119.8H14A—C14—H14B108.3
C4—C5—H5119.8O3—C18—N2123.61 (13)
C10—C11—C12118.92 (13)O3—C18—C19122.07 (12)
C10—C11—H11120.5N2—C18—C19114.31 (12)
C12—C11—H11120.5C1—C2—C3120.07 (13)
C9—C8—C13118.00 (12)C1—C2—H2120.0
C9—C8—C7121.76 (12)C3—C2—H2120.0
C13—C8—C7120.24 (12)C3—C4—C5121.37 (12)
O4—C1—C2123.97 (12)C3—C4—Cl1119.56 (11)
O4—C1—C6115.20 (12)C5—C4—Cl1119.08 (11)
C2—C1—C6120.83 (12)N2—C17—C16111.17 (11)
C5—C6—C1118.23 (12)N2—C17—H17A109.4
C5—C6—C7121.01 (12)C16—C17—H17A109.4
C1—C6—C7120.75 (12)N2—C17—H17B109.4
C8—C7—C6113.54 (11)C16—C17—H17B109.4
C8—C7—H7A108.9H17A—C17—H17B108.0
C6—C7—H7A108.9C11—C10—C9121.58 (13)
C8—C7—H7B108.9C11—C10—Cl2118.62 (11)
C6—C7—H7B108.9C9—C10—Cl2119.77 (11)
H7A—C7—H7B107.7N1—C16—C17110.63 (11)
O1—C13—C12123.54 (12)N1—C16—H16A109.5
O1—C13—C8115.16 (11)C17—C16—H16A109.5
C12—C13—C8121.29 (12)N1—C16—H16B109.5
C8—C9—C10120.29 (12)C17—C16—H16B109.5
C8—C9—H9119.9H16A—C16—H16B108.1
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.892.052.8945 (15)158
C14—H14A···O3i0.972.543.5026 (17)172
C14—H14B···O3ii0.972.343.2934 (17)167
C16—H16B···O1iii0.972.593.2843 (17)129
C19—H19A···Cl2iv0.972.813.6201 (14)142
C9—H9···Cg1v0.932.883.8006 (14)174
N1—H1N1···O10.902.162.5935 (15)109
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y+1/2, z+1/2; (v) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H18Cl2N2O4
Mr409.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)12.0877 (3), 8.73462 (15), 17.3712 (4)
β (°) 93.588 (2)
V3)1830.48 (7)
Z4
Radiation typeCu Kα
µ (mm1)3.44
Crystal size (mm)0.31 × 0.22 × 0.21
Data collection
DiffractometerAgilent Xcalibur Atlas Gemini ultra
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.175, 0.342
No. of measured, independent and
observed [I > 2σ(I)] reflections
19596, 3271, 3210
Rint0.028
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.07
No. of reflections3271
No. of parameters244
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.29

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.892.052.8945 (15)158
C14—H14A···O3i0.972.543.5026 (17)172
C14—H14B···O3ii0.972.343.2934 (17)167
C16—H16B···O1iii0.972.593.2843 (17)129
C19—H19A···Cl2iv0.972.813.6201 (14)142
C9—H9···Cg1v0.932.883.8006 (14)174
N1—H1N1···O10.902.162.5935 (15)109
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y+1/2, z+1/2; (v) x+2, y1/2, z+1/2.
 

Acknowledgements

This study was supported financially by the project Praemium Academiae of the Academy of Science of the Czech Republic, the Grant Agency of the Faculty of Environmental Sciences, Czech University of Life Sciences, Prague (project No. 42900/1312/3114 `Environmental Aspects of Sustainable Development of Society') and the Czech Ministry of Education, Youth and Sports (project ME09058).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAlexander, V. (1995). Chem. Rev. 95, 273–342.  CrossRef CAS Web of Science Google Scholar
First citationChristensen, A., Jensen, H. S., McKee, V., Mckenzie, C. J. & Munch, M. (1997). Inorg. Chem. 36, 6080–6085.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationErtul, S., Tombak, A. H., Bayrakci, M. & Merter, O. (2009). Acta Chim. Slov. 56, 878–884.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHayvali, M. & Hayvali, Z. (2005). Synth. React. Inorg. Met. Org. Chem. 34, 713–732.  Google Scholar
First citationJaiyu, A., Rojanathanes, R. & Sukwattanasinitt, M. (2007). Tetrahedron Lett. 48, 1817–1821.  Web of Science CrossRef CAS Google Scholar
First citationKleinpeter, E., Starke, I., Strohl, D. & Holdt, H. J. (1997). J. Mol. Struct. 404, 273–290.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1698-o1699
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds