organic compounds
2,17-Dichloro-8,9,10,11-tetrahydro-19H-dibenzo[k,n][1,10,4,7]dioxadiazacyclopentadecine-7,12(6H,13H)-dione
aInstitute of Physics, AS CR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic, bInstitute of Macromolecular Chemistry, AS CR v.v.i., Heyrovského nám. 2, 162 06 Prague 6, Czech Republic, and cFaculty of Environmental Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic
*Correspondence e-mail: pojarova@fzu.cz
In the 19H18Cl2N2O4, N—H⋯O hydrogen bonds link the molecules into infinite chains along the b axis. The structure also features weak C—H⋯O and C—H⋯Cl hydrogen bonds and C—H⋯π and (lone pair)⋯π interactions [Cl⋯centroid = 3.5871 (7) Å]. An intramolecular N—H⋯O bond occurs.
of the title compound, CRelated literature
For the synthesis, see: Ertul et al. (2009). For applications of macrocycles, see: Hayvali & Hayvali (2005); Kleinpeter et al. (1997); Jaiyu et al. (2007); Christensen et al. (1997); Alexander (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812020351/aa2058sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812020351/aa2058Isup2.hkl
All chemicals used were purchased from Fluka and used without further purification. The title compound was synthesized by means of method published by Ertul et al. (2009). Crystals were prepared by slow evaporation from methanol.
H atoms bound to C atoms were positioned geometrically and refined as riding with C—H distances 0.93–0.97 Å. H atoms bound to N atoms were located in a difference map and refined as riding with N—H bond restrained to 0.89 Å. The isotropic temperature parameters of all hydrogen atoms were calculated as 1.2*Ueq of the parent atom.
Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. View of the title compound, together with atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level. | |
Fig. 2. Projection along the b axis with highlighted hydrogen bonds between the molecules. |
C19H18Cl2N2O4 | F(000) = 848 |
Mr = 409.25 | Dx = 1.484 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: -P 2ybc | Cell parameters from 16650 reflections |
a = 12.0877 (3) Å | θ = 3.7–67.1° |
b = 8.73462 (15) Å | µ = 3.44 mm−1 |
c = 17.3712 (4) Å | T = 120 K |
β = 93.588 (2)° | Prism, colourless |
V = 1830.48 (7) Å3 | 0.31 × 0.22 × 0.21 mm |
Z = 4 |
Agilent Xcalibur Atlas Gemini ultra diffractometer | 3271 independent reflections |
Radiation source: Enhance Ultra (Cu) X-ray Source | 3210 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.028 |
Detector resolution: 10.3784 pixels mm-1 | θmax = 67.1°, θmin = 3.7° |
Rotation method data acquisition using ω scans | h = −14→14 |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2010) | k = −8→10 |
Tmin = 0.175, Tmax = 0.342 | l = −20→20 |
19596 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0376P)2 + 0.7612P] where P = (Fo2 + 2Fc2)/3 |
3271 reflections | (Δ/σ)max = 0.001 |
244 parameters | Δρmax = 0.20 e Å−3 |
2 restraints | Δρmin = −0.29 e Å−3 |
C19H18Cl2N2O4 | V = 1830.48 (7) Å3 |
Mr = 409.25 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 12.0877 (3) Å | µ = 3.44 mm−1 |
b = 8.73462 (15) Å | T = 120 K |
c = 17.3712 (4) Å | 0.31 × 0.22 × 0.21 mm |
β = 93.588 (2)° |
Agilent Xcalibur Atlas Gemini ultra diffractometer | 3271 independent reflections |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2010) | 3210 reflections with I > 2σ(I) |
Tmin = 0.175, Tmax = 0.342 | Rint = 0.028 |
19596 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 2 restraints |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.20 e Å−3 |
3271 reflections | Δρmin = −0.29 e Å−3 |
244 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The distance between hydrogen atoms and nitrogen atoms was restrained. The bond length was set to 0.87 Å with σ 0.02. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.86335 (3) | 1.01411 (4) | 0.16078 (2) | 0.03147 (11) | |
Cl2 | 1.00225 (3) | 0.24819 (5) | −0.01843 (2) | 0.03989 (12) | |
O4 | 0.78538 (8) | 0.52610 (11) | 0.38371 (5) | 0.0251 (2) | |
O1 | 0.64125 (7) | 0.49162 (11) | 0.15585 (5) | 0.0248 (2) | |
O3 | 0.58083 (8) | 0.72265 (11) | 0.47012 (6) | 0.0306 (2) | |
O2 | 0.39104 (8) | 0.69986 (11) | 0.15386 (6) | 0.0291 (2) | |
N2 | 0.55581 (9) | 0.49941 (13) | 0.40482 (6) | 0.0247 (2) | |
H1N2 | 0.5904 | 0.4132 | 0.3923 | 0.030* | |
C19 | 0.74034 (11) | 0.56132 (16) | 0.45584 (8) | 0.0262 (3) | |
H19A | 0.7809 | 0.6463 | 0.4799 | 0.031* | |
H19B | 0.7490 | 0.4736 | 0.4899 | 0.031* | |
C3 | 0.79942 (11) | 0.91308 (16) | 0.29832 (8) | 0.0269 (3) | |
H3 | 0.7880 | 1.0154 | 0.3102 | 0.032* | |
C5 | 0.84978 (11) | 0.71987 (16) | 0.20783 (8) | 0.0241 (3) | |
H5 | 0.8732 | 0.6951 | 0.1594 | 0.029* | |
C11 | 0.79350 (12) | 0.34870 (16) | −0.00686 (8) | 0.0276 (3) | |
H11 | 0.7834 | 0.3274 | −0.0593 | 0.033* | |
C8 | 0.82559 (11) | 0.40890 (14) | 0.15178 (8) | 0.0222 (3) | |
C1 | 0.79727 (10) | 0.64599 (15) | 0.33323 (8) | 0.0230 (3) | |
C6 | 0.82934 (10) | 0.60427 (15) | 0.25987 (8) | 0.0223 (3) | |
C7 | 0.83966 (11) | 0.43695 (15) | 0.23779 (8) | 0.0237 (3) | |
H7A | 0.9119 | 0.3998 | 0.2567 | 0.028* | |
H7B | 0.7842 | 0.3784 | 0.2631 | 0.028* | |
C13 | 0.72294 (11) | 0.43609 (15) | 0.11165 (8) | 0.0228 (3) | |
C9 | 0.91159 (11) | 0.35413 (15) | 0.11042 (8) | 0.0248 (3) | |
H9 | 0.9809 | 0.3374 | 0.1352 | 0.030* | |
C12 | 0.70686 (11) | 0.40584 (16) | 0.03341 (8) | 0.0268 (3) | |
H12 | 0.6381 | 0.4238 | 0.0079 | 0.032* | |
N1 | 0.49166 (10) | 0.57462 (14) | 0.24811 (7) | 0.0271 (3) | |
H1N1 | 0.5560 | 0.5268 | 0.2600 | 0.033* | |
C15 | 0.46922 (10) | 0.61525 (15) | 0.17506 (8) | 0.0230 (3) | |
C14 | 0.54225 (11) | 0.54793 (16) | 0.11649 (8) | 0.0242 (3) | |
H14A | 0.5038 | 0.4652 | 0.0889 | 0.029* | |
H14B | 0.5604 | 0.6256 | 0.0794 | 0.029* | |
C18 | 0.61793 (11) | 0.60295 (15) | 0.44482 (7) | 0.0242 (3) | |
C2 | 0.78030 (11) | 0.79873 (16) | 0.35175 (8) | 0.0263 (3) | |
H2 | 0.7562 | 0.8245 | 0.3999 | 0.032* | |
C4 | 0.83550 (11) | 0.87211 (16) | 0.22751 (8) | 0.0250 (3) | |
C17 | 0.44063 (11) | 0.52947 (16) | 0.38020 (8) | 0.0270 (3) | |
H17A | 0.4034 | 0.5749 | 0.4225 | 0.032* | |
H17B | 0.4038 | 0.4337 | 0.3666 | 0.032* | |
C10 | 0.89470 (11) | 0.32410 (16) | 0.03211 (8) | 0.0268 (3) | |
C16 | 0.43191 (11) | 0.63655 (16) | 0.31133 (8) | 0.0276 (3) | |
H16A | 0.3546 | 0.6506 | 0.2945 | 0.033* | |
H16B | 0.4624 | 0.7357 | 0.3262 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0375 (2) | 0.02398 (18) | 0.0333 (2) | −0.00168 (13) | 0.00512 (14) | 0.00670 (13) |
Cl2 | 0.0333 (2) | 0.0531 (2) | 0.0343 (2) | 0.01109 (16) | 0.00956 (15) | −0.00592 (16) |
O4 | 0.0283 (5) | 0.0241 (5) | 0.0232 (5) | 0.0001 (4) | 0.0043 (4) | 0.0026 (4) |
O1 | 0.0209 (5) | 0.0307 (5) | 0.0227 (5) | 0.0044 (4) | 0.0010 (4) | 0.0008 (4) |
O3 | 0.0355 (5) | 0.0277 (5) | 0.0291 (5) | 0.0002 (4) | 0.0056 (4) | −0.0042 (4) |
O2 | 0.0259 (5) | 0.0293 (5) | 0.0323 (5) | 0.0061 (4) | 0.0027 (4) | 0.0076 (4) |
N2 | 0.0253 (6) | 0.0234 (6) | 0.0255 (6) | 0.0011 (4) | 0.0013 (5) | 0.0001 (4) |
C19 | 0.0294 (7) | 0.0287 (7) | 0.0205 (6) | −0.0023 (6) | 0.0020 (5) | 0.0012 (5) |
C3 | 0.0283 (7) | 0.0210 (7) | 0.0313 (7) | 0.0004 (5) | 0.0005 (5) | −0.0014 (5) |
C5 | 0.0233 (6) | 0.0260 (7) | 0.0232 (6) | −0.0011 (5) | 0.0025 (5) | 0.0002 (5) |
C11 | 0.0333 (7) | 0.0268 (7) | 0.0227 (7) | 0.0004 (6) | 0.0034 (5) | 0.0003 (5) |
C8 | 0.0246 (6) | 0.0161 (6) | 0.0258 (7) | −0.0012 (5) | 0.0014 (5) | 0.0019 (5) |
C1 | 0.0198 (6) | 0.0244 (7) | 0.0245 (6) | −0.0019 (5) | −0.0006 (5) | 0.0030 (5) |
C6 | 0.0181 (6) | 0.0226 (6) | 0.0259 (7) | −0.0004 (5) | −0.0008 (5) | 0.0004 (5) |
C7 | 0.0239 (6) | 0.0224 (6) | 0.0248 (7) | 0.0012 (5) | 0.0004 (5) | 0.0013 (5) |
C13 | 0.0235 (6) | 0.0201 (6) | 0.0251 (7) | 0.0004 (5) | 0.0041 (5) | 0.0011 (5) |
C9 | 0.0231 (6) | 0.0213 (6) | 0.0299 (7) | −0.0002 (5) | 0.0015 (5) | 0.0019 (5) |
C12 | 0.0257 (7) | 0.0284 (7) | 0.0261 (7) | 0.0022 (5) | −0.0001 (5) | 0.0016 (5) |
N1 | 0.0258 (6) | 0.0309 (6) | 0.0247 (6) | 0.0087 (5) | 0.0016 (4) | 0.0007 (5) |
C15 | 0.0211 (6) | 0.0195 (6) | 0.0283 (7) | −0.0029 (5) | 0.0007 (5) | 0.0018 (5) |
C14 | 0.0222 (6) | 0.0256 (7) | 0.0244 (7) | 0.0016 (5) | −0.0008 (5) | 0.0036 (5) |
C18 | 0.0301 (7) | 0.0246 (7) | 0.0183 (6) | −0.0015 (5) | 0.0042 (5) | 0.0030 (5) |
C2 | 0.0267 (7) | 0.0278 (7) | 0.0248 (7) | 0.0005 (5) | 0.0034 (5) | −0.0028 (6) |
C4 | 0.0240 (6) | 0.0231 (7) | 0.0278 (7) | −0.0014 (5) | 0.0001 (5) | 0.0045 (5) |
C17 | 0.0244 (7) | 0.0300 (7) | 0.0268 (7) | −0.0005 (5) | 0.0031 (5) | 0.0003 (6) |
C10 | 0.0279 (7) | 0.0237 (7) | 0.0295 (7) | 0.0020 (5) | 0.0082 (5) | 0.0001 (5) |
C16 | 0.0277 (7) | 0.0292 (7) | 0.0262 (7) | 0.0057 (6) | 0.0030 (5) | −0.0006 (6) |
Cl1—C4 | 1.7451 (14) | C8—C13 | 1.4050 (18) |
Cl2—C10 | 1.7448 (14) | C8—C7 | 1.5132 (18) |
O4—C1 | 1.3794 (16) | C1—C2 | 1.391 (2) |
O4—C19 | 1.4306 (16) | C1—C6 | 1.4031 (19) |
O1—C13 | 1.3766 (16) | C6—C7 | 1.5185 (19) |
O1—C14 | 1.4282 (15) | C7—H7A | 0.9700 |
O3—C18 | 1.2300 (17) | C7—H7B | 0.9700 |
O2—C15 | 1.2377 (16) | C13—C12 | 1.3864 (19) |
N2—C18 | 1.3417 (18) | C9—C10 | 1.388 (2) |
N2—C17 | 1.4548 (17) | C9—H9 | 0.9300 |
N2—H1N2 | 0.8948 | C12—H12 | 0.9300 |
C19—C18 | 1.5243 (19) | N1—C15 | 1.3292 (18) |
C19—H19A | 0.9700 | N1—C16 | 1.4560 (18) |
C19—H19B | 0.9700 | N1—H1N1 | 0.8962 |
C3—C4 | 1.378 (2) | C15—C14 | 1.5077 (19) |
C3—C2 | 1.393 (2) | C14—H14A | 0.9700 |
C3—H3 | 0.9300 | C14—H14B | 0.9700 |
C5—C6 | 1.3880 (19) | C2—H2 | 0.9300 |
C5—C4 | 1.387 (2) | C17—C16 | 1.5171 (19) |
C5—H5 | 0.9300 | C17—H17A | 0.9700 |
C11—C10 | 1.377 (2) | C17—H17B | 0.9700 |
C11—C12 | 1.388 (2) | C16—H16A | 0.9700 |
C11—H11 | 0.9300 | C16—H16B | 0.9700 |
C8—C9 | 1.3856 (19) | ||
C1—O4—C19 | 117.00 (10) | C10—C9—H9 | 119.9 |
C13—O1—C14 | 117.60 (10) | C13—C12—C11 | 119.91 (13) |
C18—N2—C17 | 121.67 (12) | C13—C12—H12 | 120.0 |
C18—N2—H1N2 | 116.0 | C11—C12—H12 | 120.0 |
C17—N2—H1N2 | 122.3 | C15—N1—C16 | 122.65 (11) |
O4—C19—C18 | 111.17 (10) | C15—N1—H1N1 | 117.8 |
O4—C19—H19A | 109.4 | C16—N1—H1N1 | 117.7 |
C18—C19—H19A | 109.4 | O2—C15—N1 | 123.36 (12) |
O4—C19—H19B | 109.4 | O2—C15—C14 | 120.06 (12) |
C18—C19—H19B | 109.4 | N1—C15—C14 | 116.55 (11) |
H19A—C19—H19B | 108.0 | O1—C14—C15 | 108.66 (10) |
C4—C3—C2 | 118.92 (13) | O1—C14—H14A | 110.0 |
C4—C3—H3 | 120.5 | C15—C14—H14A | 110.0 |
C2—C3—H3 | 120.5 | O1—C14—H14B | 110.0 |
C6—C5—C4 | 120.49 (13) | C15—C14—H14B | 110.0 |
C6—C5—H5 | 119.8 | H14A—C14—H14B | 108.3 |
C4—C5—H5 | 119.8 | O3—C18—N2 | 123.61 (13) |
C10—C11—C12 | 118.92 (13) | O3—C18—C19 | 122.07 (12) |
C10—C11—H11 | 120.5 | N2—C18—C19 | 114.31 (12) |
C12—C11—H11 | 120.5 | C1—C2—C3 | 120.07 (13) |
C9—C8—C13 | 118.00 (12) | C1—C2—H2 | 120.0 |
C9—C8—C7 | 121.76 (12) | C3—C2—H2 | 120.0 |
C13—C8—C7 | 120.24 (12) | C3—C4—C5 | 121.37 (12) |
O4—C1—C2 | 123.97 (12) | C3—C4—Cl1 | 119.56 (11) |
O4—C1—C6 | 115.20 (12) | C5—C4—Cl1 | 119.08 (11) |
C2—C1—C6 | 120.83 (12) | N2—C17—C16 | 111.17 (11) |
C5—C6—C1 | 118.23 (12) | N2—C17—H17A | 109.4 |
C5—C6—C7 | 121.01 (12) | C16—C17—H17A | 109.4 |
C1—C6—C7 | 120.75 (12) | N2—C17—H17B | 109.4 |
C8—C7—C6 | 113.54 (11) | C16—C17—H17B | 109.4 |
C8—C7—H7A | 108.9 | H17A—C17—H17B | 108.0 |
C6—C7—H7A | 108.9 | C11—C10—C9 | 121.58 (13) |
C8—C7—H7B | 108.9 | C11—C10—Cl2 | 118.62 (11) |
C6—C7—H7B | 108.9 | C9—C10—Cl2 | 119.77 (11) |
H7A—C7—H7B | 107.7 | N1—C16—C17 | 110.63 (11) |
O1—C13—C12 | 123.54 (12) | N1—C16—H16A | 109.5 |
O1—C13—C8 | 115.16 (11) | C17—C16—H16A | 109.5 |
C12—C13—C8 | 121.29 (12) | N1—C16—H16B | 109.5 |
C8—C9—C10 | 120.29 (12) | C17—C16—H16B | 109.5 |
C8—C9—H9 | 119.9 | H16A—C16—H16B | 108.1 |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N2···O2i | 0.89 | 2.05 | 2.8945 (15) | 158 |
C14—H14A···O3i | 0.97 | 2.54 | 3.5026 (17) | 172 |
C14—H14B···O3ii | 0.97 | 2.34 | 3.2934 (17) | 167 |
C16—H16B···O1iii | 0.97 | 2.59 | 3.2843 (17) | 129 |
C19—H19A···Cl2iv | 0.97 | 2.81 | 3.6201 (14) | 142 |
C9—H9···Cg1v | 0.93 | 2.88 | 3.8006 (14) | 174 |
N1—H1N1···O1 | 0.90 | 2.16 | 2.5935 (15) | 109 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+2, y+1/2, −z+1/2; (v) −x+2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C19H18Cl2N2O4 |
Mr | 409.25 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 12.0877 (3), 8.73462 (15), 17.3712 (4) |
β (°) | 93.588 (2) |
V (Å3) | 1830.48 (7) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 3.44 |
Crystal size (mm) | 0.31 × 0.22 × 0.21 |
Data collection | |
Diffractometer | Agilent Xcalibur Atlas Gemini ultra diffractometer |
Absorption correction | Analytical (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.175, 0.342 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19596, 3271, 3210 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.598 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.074, 1.07 |
No. of reflections | 3271 |
No. of parameters | 244 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.29 |
Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N2···O2i | 0.89 | 2.05 | 2.8945 (15) | 158 |
C14—H14A···O3i | 0.97 | 2.54 | 3.5026 (17) | 172 |
C14—H14B···O3ii | 0.97 | 2.34 | 3.2934 (17) | 167 |
C16—H16B···O1iii | 0.97 | 2.59 | 3.2843 (17) | 129 |
C19—H19A···Cl2iv | 0.97 | 2.81 | 3.6201 (14) | 142 |
C9—H9···Cg1v | 0.93 | 2.88 | 3.8006 (14) | 174 |
N1—H1N1···O1 | 0.90 | 2.16 | 2.5935 (15) | 109 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+2, y+1/2, −z+1/2; (v) −x+2, y−1/2, −z+1/2. |
Acknowledgements
This study was supported financially by the project Praemium Academiae of the Academy of Science of the Czech Republic, the Grant Agency of the Faculty of Environmental Sciences, Czech University of Life Sciences, Prague (project No. 42900/1312/3114 `Environmental Aspects of Sustainable Development of Society') and the Czech Ministry of Education, Youth and Sports (project ME09058).
References
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Alexander, V. (1995). Chem. Rev. 95, 273–342. CrossRef CAS Web of Science Google Scholar
Christensen, A., Jensen, H. S., McKee, V., Mckenzie, C. J. & Munch, M. (1997). Inorg. Chem. 36, 6080–6085. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ertul, S., Tombak, A. H., Bayrakci, M. & Merter, O. (2009). Acta Chim. Slov. 56, 878–884. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hayvali, M. & Hayvali, Z. (2005). Synth. React. Inorg. Met. Org. Chem. 34, 713–732. Google Scholar
Jaiyu, A., Rojanathanes, R. & Sukwattanasinitt, M. (2007). Tetrahedron Lett. 48, 1817–1821. Web of Science CrossRef CAS Google Scholar
Kleinpeter, E., Starke, I., Strohl, D. & Holdt, H. J. (1997). J. Mol. Struct. 404, 273–290. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Polyazalactones together with polyoxalactones and polyethers are studied for their ability to act as multidentate ligands and to complex various cations. Polyazalactones can incorporate transition metals into their cavities via an ion-dipole interaction (Hayvali et al., 2005; Kleinpeter et al., 1997). They are studied for their role in bioprocesses, catalysis, material science, and transport and separation (Jaiyu et al., 2007; Christensen et al., 1997; Alexander, 1995). In this paper, we report a crystal structure of lactam ionophore (Fig. 1 and Scheme). The macrocycle consists of two phenyl rings substituted with chlorine atom in para position. The neighbouring molecules are connected via hydrogen bonds between amide groups (Fig. 1 and Table 1). Weaker hydrogen bonds can be found between methylene groups and oxygen or chlorine atoms. The arrangement of the molecules in the crystal is influenced by the C—H···π interactions between the aromatic rings (C9—H9··· C1→C6 (Cg1)) and lone pair···π interaction between the chlorine atom Cl1 and neighbouring aromatic ring C8→C13(Cg2) (the distance between Cl1 and Cg2 is 3.5871 (7) Å).