metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[chlorido[μ4-2,2′-(2-methyl-1H-benzimidazol-3-ium-1,3-di­yl)di­acetato]­zinc]

aSchool of Physics and Chemistry, Xihua University, Chengdu 610039, People's Republic of China
*Correspondence e-mail: liujq67@yahoo.com.cn

(Received 11 March 2012; accepted 4 May 2012; online 12 May 2012)

The title compound, [Zn(C12H11N2O4)Cl]n, contains a centrosymmetric dimetal tetra­carboxyl­ate paddle-wheel moiety in which the ZnII atom is square-pyramidally coordinated by four carboxyl­ate O atoms at the basal positions and one Cl anion at the apical position. Each paddle-wheel unit is joined to four such neighbours through bridging dicarboxyl­ate ligands, producing a two-dimensional undulating layer parallel to (-101). Adjacent sheets are stacked in a parallel fashion to form a three-dimensional supra­molecular structure which is stabilized by inter­layer ππ inter­actions between benzene rings, with a centroid–centroid distance of 3.722 Å. The range of Zn—O bond lengths is 2.0440 (17)–2.1256 (15) Å and the Zn—Cl bond length is 2.2622 (6) Å.

Related literature

For background to and potential applications of carboxyl­ate-containing coordination polymers, see Bourne et al. (2001[Bourne, S. A., Lu, J., Mondal, A., Moulton, B. & Zaworotko, M. J. (2001). Angew. Chem. Int. Ed. 40, 2111-2113.]); Chen et al. (2005[Chen, B., Ockwig, N. W., Fronczek, F. R., Contreras, D. S. & Yaghi, O. M. (2005). Inorg. Chem. 44, 181-183.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Li et al. (2012[Li, J.-R., Sculley, J. & Zhou, H.-C. (2012). Chem. Rev. 112, 869-932.]); Xuan et al. (2012[Xuan, W., Zhu, C., Liu, Y. & Cui, Y. (2012). Chem. Soc. Rev. 42, 1677-1695.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C12H11N2O4)Cl]

  • Mr = 348.05

  • Monoclinic, P 21 /n

  • a = 7.1285 (17) Å

  • b = 13.301 (3) Å

  • c = 12.804 (3) Å

  • β = 90.540 (4)°

  • V = 1214.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.26 mm−1

  • T = 173 K

  • 0.48 × 0.32 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.424, Tmax = 0.508

  • 6072 measured reflections

  • 2640 independent reflections

  • 2327 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.078

  • S = 1.07

  • 2640 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carboxylate-containing ligands have been intensively investigated to construct metal-organic frameworks with an intriguing variety of topologies and potential applications in gas sorption, separation and/or catalysis (Bourne et al., 2001; Chen et al., 2005; Kitagawa et al., 2004; Li et al., 2012; Xuan et al., 2012). Polycarboxylate ligands with suitable spacers are good choices for such architectures because the topological structures can be adjusted not only by carboxylate groups but also by the organic spacers. Here we use a flexible zwitterionic ligand, 1-acetoxy-2-methylbenzimidazole-3-acetate acid [HL], to prepare the title compound [Zn(L)Cl]n (I).

The motive consists of a centrosymmetric paddle-wheel dimetal tetracarboxylate moiety [Zn2(CO2)4] (Fig. 1) in which each ZnII is square-pyramidally coordinated by four carboxylate oxygen atoms at the basal position and one Cl- anion at the apical position. Each paddle-wheel unit is bridged by four such neighbors through bridging dicarboxylate ligands, producing a two-dimensional undulate layer in which π-π interactions between phenyl rings of benzimidazole moieties (ring-centroid distance: 3.579 (2) Å) cooperate in the 2-D sheet formation (Fig. 2). Adjacent sheets are stacked in a parallel fashion to form a 3-D supramolecular structure stabilized by interlayer π-π interactions between phenyl rings with a ring-centroid distance of 3.722 (2) Å. The Zn—O span is 2.0440 (17)-2.1256 (15) Å and the Zn—Cl distance is 2.2622 (6) Å.

Related literature top

For background to and potential applications of carboxylate-containing coordination polymers, see Bourne et al. (2001); Chen et al. (2005); Kitagawa et al. (2004); Li et al. (2012); Xuan et al. (2012).

Experimental top

After the pH of an ethanol/water mixture solution (10 ml with ratio of 4:1) containing ZnCl2.2H2O (0.0408 g, 0.3 mmol) and the HL ligand (0.0498 g,0.2 mmol) was adjusted to 7 by addition of triethylamine, the resulting solution was sealed in a Teflon-lined steel bomb (25 ml) and then heated at 140°C for 2 days. Colorless block crystals were collected. Yield: 16%. Elemental analysis (%) calcd for the title compound: C 41.38, H 3.16, N 8.04; found: C 41.24, H 3.23, N 8.47. IR: 1672(s), 1472(m), 1436(m), 1389(s), 1310(m), 764(s), 721(m), 619(m), 574(m).

Refinement top

All hydrogen atoms were generated geometrically and refined with a riding model, Uiso(H)= x×Ueq(Host) (aromatic: C—H: 0.95Å, x=1.2; methyl, C—H: 0.98Å, x=1.5; methylene, C—H: 0.99Å, x=1.2)

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing (at 30% probability) of a paddle-wheel unit in the title compound (symmetry codes: A, -x, -y, -z; B, -0.5 + x, 1.5 - y, -0.5 + z; C, 0.5 - x, -0.5 + y, 1.5 - z). Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. The 2-D sheet structure parallel to the (-101) plane, hydrogen atoms are omitted for clarity.
Poly[chlorido[µ4-2,2'-(2-methyl-1H-benzimidazol-3-ium- 1,3-diyl)diacetato]zinc] top
Crystal data top
[Zn(C12H11N2O4)Cl]Z = 4
Mr = 348.05F(000) = 704
Monoclinic, P21/nDx = 1.904 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.1285 (17) Åθ = 2.2–27.1°
b = 13.301 (3) ŵ = 2.26 mm1
c = 12.804 (3) ÅT = 173 K
β = 90.540 (4)°Block, colorless
V = 1214.0 (5) Å30.48 × 0.32 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2640 independent reflections
Radiation source: fine-focus sealed tube2327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 98
Tmin = 0.424, Tmax = 0.508k = 1117
6072 measured reflectionsl = 169
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.6356P]
where P = (Fo2 + 2Fc2)/3
2640 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Zn(C12H11N2O4)Cl]V = 1214.0 (5) Å3
Mr = 348.05Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1285 (17) ŵ = 2.26 mm1
b = 13.301 (3) ÅT = 173 K
c = 12.804 (3) Å0.48 × 0.32 × 0.30 mm
β = 90.540 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2640 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2327 reflections with I > 2σ(I)
Tmin = 0.424, Tmax = 0.508Rint = 0.026
6072 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.07Δρmax = 0.45 e Å3
2640 reflectionsΔρmin = 0.45 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.13104 (3)0.553340 (17)0.417142 (17)0.01203 (10)
Cl10.29440 (7)0.65999 (4)0.31470 (4)0.01697 (13)
O10.4360 (2)0.84000 (11)0.97522 (12)0.0181 (3)
O20.2502 (2)0.91230 (12)1.09352 (13)0.0217 (4)
O30.2669 (2)0.56544 (13)0.55787 (12)0.0241 (4)
O40.0830 (2)0.49535 (12)0.67900 (12)0.0203 (3)
N10.3143 (2)0.58092 (13)0.83280 (13)0.0122 (3)
N20.2081 (2)0.67202 (13)0.96116 (14)0.0131 (4)
C10.2938 (3)0.51606 (15)0.91696 (16)0.0123 (4)
C20.3314 (3)0.41392 (16)0.92770 (17)0.0164 (4)
H2A0.38290.37550.87240.020*
C30.2899 (3)0.37134 (16)1.02313 (18)0.0190 (5)
H3A0.31350.30181.03380.023*
C40.2140 (3)0.42806 (17)1.10429 (18)0.0190 (5)
H4A0.18540.39571.16830.023*
C50.1792 (3)0.53041 (16)1.09412 (16)0.0157 (4)
H5A0.12800.56891.14950.019*
C60.2235 (3)0.57346 (15)0.99858 (16)0.0133 (4)
C70.2610 (3)0.67345 (15)0.86146 (16)0.0128 (4)
C80.2578 (3)0.75932 (16)0.78819 (17)0.0197 (5)
H8A0.21420.81960.82460.030*
H8B0.17260.74430.72970.030*
H8C0.38440.77090.76170.030*
C90.1487 (3)0.75902 (15)1.02331 (17)0.0159 (4)
H9A0.11870.73571.09460.019*
H9B0.03210.78670.99200.019*
C100.2944 (3)0.84401 (15)1.03157 (16)0.0136 (4)
C110.3852 (3)0.55606 (16)0.72945 (16)0.0142 (4)
H11A0.46370.49480.73480.017*
H11B0.46620.61160.70510.017*
C120.2295 (3)0.53811 (15)0.64823 (17)0.0138 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01287 (15)0.01381 (14)0.00939 (14)0.00070 (8)0.00114 (9)0.00073 (8)
Cl10.0203 (3)0.0164 (2)0.0142 (2)0.00402 (19)0.00246 (19)0.00035 (18)
O10.0171 (8)0.0169 (7)0.0205 (8)0.0037 (6)0.0038 (6)0.0020 (6)
O20.0251 (9)0.0166 (7)0.0235 (8)0.0044 (6)0.0047 (7)0.0089 (7)
O30.0191 (8)0.0415 (10)0.0114 (8)0.0005 (7)0.0032 (6)0.0026 (7)
O40.0199 (8)0.0227 (8)0.0181 (8)0.0067 (7)0.0050 (6)0.0012 (6)
N10.0123 (8)0.0143 (8)0.0100 (8)0.0009 (7)0.0026 (6)0.0012 (7)
N20.0136 (9)0.0126 (8)0.0130 (8)0.0012 (7)0.0004 (7)0.0009 (7)
C10.0113 (10)0.0153 (10)0.0102 (9)0.0027 (8)0.0039 (7)0.0003 (8)
C20.0161 (10)0.0153 (10)0.0176 (10)0.0004 (8)0.0048 (8)0.0025 (8)
C30.0172 (11)0.0136 (10)0.0261 (12)0.0031 (8)0.0065 (9)0.0049 (9)
C40.0170 (11)0.0222 (11)0.0178 (11)0.0050 (9)0.0047 (8)0.0066 (9)
C50.0153 (10)0.0206 (10)0.0112 (10)0.0045 (8)0.0019 (8)0.0014 (8)
C60.0117 (9)0.0136 (9)0.0145 (10)0.0035 (8)0.0032 (8)0.0012 (8)
C70.0110 (9)0.0150 (10)0.0121 (9)0.0027 (8)0.0038 (7)0.0015 (8)
C80.0264 (12)0.0172 (10)0.0154 (10)0.0003 (9)0.0016 (9)0.0030 (9)
C90.0154 (10)0.0131 (10)0.0191 (10)0.0007 (8)0.0028 (8)0.0055 (8)
C100.0152 (10)0.0131 (9)0.0126 (9)0.0012 (8)0.0025 (8)0.0003 (8)
C110.0134 (10)0.0198 (11)0.0093 (9)0.0010 (8)0.0014 (8)0.0014 (8)
C120.0142 (10)0.0150 (10)0.0121 (9)0.0045 (8)0.0034 (8)0.0034 (8)
Geometric parameters (Å, º) top
Zn1—O32.0440 (17)C2—H2A0.9500
Zn1—O4i2.0559 (16)C3—C41.397 (3)
Zn1—O2ii2.0632 (16)C3—H3A0.9500
Zn1—O1iii2.1256 (15)C4—C51.390 (3)
Zn1—Cl12.2622 (6)C4—H4A0.9500
O1—C101.247 (3)C5—C61.390 (3)
O2—C101.248 (3)C5—H5A0.9500
O3—C121.244 (3)C7—C81.478 (3)
O4—C121.256 (3)C8—H8A0.9800
N1—C71.340 (3)C8—H8B0.9800
N1—C11.389 (3)C8—H8C0.9800
N1—C111.459 (3)C9—C101.538 (3)
N2—C71.335 (3)C9—H9A0.9900
N2—C61.400 (3)C9—H9B0.9900
N2—C91.469 (3)C11—C121.532 (3)
C1—C21.391 (3)C11—H11A0.9900
C1—C61.392 (3)C11—H11B0.9900
C2—C31.381 (3)
O3—Zn1—O4i153.56 (7)C6—C5—H5A121.8
O3—Zn1—O2ii86.48 (7)C4—C5—H5A121.8
O4i—Zn1—O2ii88.65 (7)C5—C6—C1121.4 (2)
O3—Zn1—O1iii86.86 (7)C5—C6—N2132.0 (2)
O4i—Zn1—O1iii86.31 (7)C1—C6—N2106.52 (18)
O2ii—Zn1—O1iii154.17 (6)N2—C7—N1109.40 (18)
O3—Zn1—Cl1102.68 (5)N2—C7—C8127.98 (19)
O4i—Zn1—Cl1103.50 (5)N1—C7—C8122.58 (19)
O2ii—Zn1—Cl1108.55 (5)C7—C8—H8A109.5
O1iii—Zn1—Cl197.25 (5)C7—C8—H8B109.5
C10—O1—Zn1iv135.18 (14)H8A—C8—H8B109.5
C10—O2—Zn1v120.91 (14)C7—C8—H8C109.5
C12—O3—Zn1133.86 (15)H8A—C8—H8C109.5
C12—O4—Zn1i124.71 (14)H8B—C8—H8C109.5
C7—N1—C1109.00 (17)N2—C9—C10114.73 (17)
C7—N1—C11123.92 (17)N2—C9—H9A108.6
C1—N1—C11127.07 (18)C10—C9—H9A108.6
C7—N2—C6108.60 (17)N2—C9—H9B108.6
C7—N2—C9126.32 (18)C10—C9—H9B108.6
C6—N2—C9125.06 (18)H9A—C9—H9B107.6
N1—C1—C2131.4 (2)O1—C10—O2127.5 (2)
N1—C1—C6106.45 (18)O1—C10—C9118.58 (18)
C2—C1—C6122.14 (19)O2—C10—C9113.85 (18)
C3—C2—C1116.4 (2)N1—C11—C12113.33 (17)
C3—C2—H2A121.8N1—C11—H11A108.9
C1—C2—H2A121.8C12—C11—H11A108.9
C2—C3—C4121.6 (2)N1—C11—H11B108.9
C2—C3—H3A119.2C12—C11—H11B108.9
C4—C3—H3A119.2H11A—C11—H11B107.7
C5—C4—C3122.0 (2)O3—C12—O4127.6 (2)
C5—C4—H4A119.0O3—C12—C11115.17 (19)
C3—C4—H4A119.0O4—C12—C11117.18 (19)
C6—C5—C4116.4 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y1/2, z+3/2; (iii) x1/2, y+3/2, z1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn(C12H11N2O4)Cl]
Mr348.05
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)7.1285 (17), 13.301 (3), 12.804 (3)
β (°) 90.540 (4)
V3)1214.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.26
Crystal size (mm)0.48 × 0.32 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.424, 0.508
No. of measured, independent and
observed [I > 2σ(I)] reflections
6072, 2640, 2327
Rint0.026
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.078, 1.07
No. of reflections2640
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.45

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Key Program of Xihua University (grant Nos. E0913305, E0913307).

References

First citationBourne, S. A., Lu, J., Mondal, A., Moulton, B. & Zaworotko, M. J. (2001). Angew. Chem. Int. Ed. 40, 2111–2113.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, B., Ockwig, N. W., Fronczek, F. R., Contreras, D. S. & Yaghi, O. M. (2005). Inorg. Chem. 44, 181–183.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLi, J.-R., Sculley, J. & Zhou, H.-C. (2012). Chem. Rev. 112, 869–932.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXuan, W., Zhu, C., Liu, Y. & Cui, Y. (2012). Chem. Soc. Rev. 42, 1677–1695.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds