organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Di­ethyl­amino-2-{(E)-[(3-iodo­phen­yl)imino]­meth­yl}phenol

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey
*Correspondence e-mail: hilal.vesek@oposta.omu.tr

(Received 11 April 2012; accepted 17 May 2012; online 31 May 2012)

The title Schiff base, C17H19IN2O, is not planar, displaying a dihedral angle of 34.9 (2)° between the two aromatic rings. The mol­ecular conformation allows the formation of a strong intra­molecular O—H⋯N hydrogen bond with graph-set motif S(6) between the hy­droxy group and the imine N atom.

Related literature

For Schiff base tautomerism, see: Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]). For the biological properties of Schiff bases, see: Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]). For related structures, see: Gül, Ağar & Işık (2007[Gül, Z. S., Ağar, A. A. & Işık, Ş. (2007). Acta Cryst. E63, o4564.]); Gül, Erşahin, Ağar & Işık (2007[Gül, Z. S., Erşahin, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o3547.]); Pekdemir et al. (2012[Pekdemir, M., Şahin, Z. S., Işık, Ş., Alaman Ağar, A., Öztürk Yıldırım, S. & Butcher, R. J. (2012). Acta Cryst. E68, o1024.]); Yüce et al. (2004[Yüce, S., Özek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2004). Acta Cryst. E60, o718-o719.]); Demirtaş et al. (2011[Demirtaş, G., Dege, N., Alaman Ağar, A. & Büyükgüngör, O. (2011). Acta Cryst. E67, o857.]). For the classification of hydrogen-bonding patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19IN2O

  • Mr = 394.24

  • Orthorhombic, P 21 21 21

  • a = 6.6999 (6) Å

  • b = 15.248 (2) Å

  • c = 16.1195 (15) Å

  • V = 1646.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.95 mm−1

  • T = 296 K

  • 0.49 × 0.34 × 0.21 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.451, Tmax = 0.603

  • 6072 measured reflections

  • 3225 independent reflections

  • 2417 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.074

  • S = 0.86

  • 3225 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.63 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1355 Friedel pairs

  • Flack parameter: −0.02 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.577 (6) 147

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base compounds are used in many different areas. Generally, they exhibit biological activity: anti-bacterial and anti-cancer properties were demonstrated (Dao et al., 2000). Thermochromic and photochromic Schiff base compounds can be classified on the basis of their specific characteristics (Cohen et al., 1964): intermolecular hydrogen bonds may be formed in two different ways. Chromic action is strongly related to the tautomerization between the O—H···NC—CC (enolimino) and —C O···H—N—CC—C (ketoamino) tautomeric forms (Hadjoudis et al., 1987). The title compound is stabilized in the phenol-imine tautomeric form (Fig. 1).

The C1—N1 bond length, 1.407 (7) Å, is in agreement with the distance reported for 2-[(E)-(naphthalen-2-ylimino)methyl]-4-(trifluoromethoxy)phenol [1.417 (2) Å, Pekdemir et al., 2012] and 1-{4-[(2-hydroxybenzylidene)amino]phenyl}ethanone [1.4138 (17) Å, Yüce et al., 2004]. The C7N1 bond length of 1.292 (7) Å is also comparable to the imine double bond found in (E)-4-bromo-2-[(2-hydroxy-5-methylphenyl)iminomethy]phenol [1.289 (6) Å, Gül, Ağar & Işık, 2007]. Figure 1 also shows a strong intramolecular hydrogen bond O1—H1···N1, which can be described as an S(6) motif (Bernstein et al., 1995). The O1···N1 separation of 2.577 (6) Å is comparable to that observed for similar hydrogen bonds in related Schiff bases (Gül, Erşahin, Ağar & Işık, 2007). The C3—I1 bond length, 2.114 (5) Å, is in agreement with other C—I bonds, for example in 2-(2-iodophenyl)isoindoline-1,3-dione [2.094 (3) Å; Demirtaş et al., 2011]. The title molecule is not planar, displaying a dihedral angle of 34.9 (2)° between the two aromatic rings.

Related literature top

For Schiff base tautomerism, see: Cohen et al. (1964); Hadjoudis et al. (1987). For the biological properties of Schiff bases, see: Dao et al. (2000). For related structures, see: Gül, Ağar & Işık (2007); Gül, Erşahin, Ağar & Işık (2007); Pekdemir et al. (2012); Yüce et al. (2004); Demirtaş et al. (2011). For the classification of hydrogen-bonding patterns, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by refluxing for 1 h. a mixture of 4-(diethylamino)-2-hydroxybenzaldehyde (0.022 g, 0.11 mmol) in ethanol (20 ml) and 3-iodoaniline (0.025 g, 0.11 mmol) in ethanol (20 ml). Crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation (yield: 72%, m.p. 394–395 K).

Refinement top

The H atom of the hydroxy group was refined with the O1—H1 bond length constrained to 0.82 Å and Uiso(H1) = 1.5Ueq(O1). All other H atoms were placed in calculated positions and constrained to ride on their parents atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). The refinement of the Flack parameter (Flack, 1983) is based on 1355 measured Friedel pairs.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level.
5-Diethylamino-2-{(E)-[(3-iodophenyl)imino]methyl}phenol top
Crystal data top
C17H19IN2ODx = 1.590 Mg m3
Mr = 394.24Melting point: 394 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8061 reflections
a = 6.6999 (6) Åθ = 1.8–28.1°
b = 15.248 (2) ŵ = 1.95 mm1
c = 16.1195 (15) ÅT = 296 K
V = 1646.7 (3) Å3Prism, yellow
Z = 40.49 × 0.34 × 0.21 mm
F(000) = 784
Data collection top
Stoe IPDS II
diffractometer
3225 independent reflections
Radiation source: fine-focus sealed tube2417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.8°
rotation method scansh = 68
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1519
Tmin = 0.451, Tmax = 0.603l = 2020
6072 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0337P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max = 0.002
3225 reflectionsΔρmax = 0.57 e Å3
190 parametersΔρmin = 0.63 e Å3
0 restraintsAbsolute structure: Flack (1983), 1355 Friedel pairs
0 constraintsAbsolute structure parameter: 0.02 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
C17H19IN2OV = 1646.7 (3) Å3
Mr = 394.24Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.6999 (6) ŵ = 1.95 mm1
b = 15.248 (2) ÅT = 296 K
c = 16.1195 (15) Å0.49 × 0.34 × 0.21 mm
Data collection top
Stoe IPDS II
diffractometer
3225 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2417 reflections with I > 2σ(I)
Tmin = 0.451, Tmax = 0.603Rint = 0.049
6072 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.57 e Å3
S = 0.86Δρmin = 0.63 e Å3
3225 reflectionsAbsolute structure: Flack (1983), 1355 Friedel pairs
190 parametersAbsolute structure parameter: 0.02 (3)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5355 (9)0.7994 (3)0.3130 (3)0.0424 (14)
C20.6547 (9)0.8639 (3)0.2779 (3)0.0438 (13)
H20.78690.86990.29460.053*
C30.5784 (8)0.9186 (3)0.2188 (3)0.0411 (13)
C40.3846 (10)0.9108 (4)0.1905 (4)0.0539 (16)
H40.33530.94770.14940.065*
C50.2675 (12)0.8468 (4)0.2254 (4)0.0648 (16)
H50.13610.84090.20770.078*
C60.3395 (9)0.7908 (4)0.2860 (4)0.0513 (15)
H60.25730.74780.30850.062*
C70.5263 (10)0.7053 (4)0.4284 (3)0.0463 (16)
H70.39340.72050.43660.056*
C80.6183 (8)0.6397 (4)0.4808 (4)0.0398 (14)
C90.5079 (9)0.5976 (4)0.5432 (4)0.0470 (14)
H90.37650.61480.55220.056*
C100.5856 (9)0.5330 (4)0.5909 (3)0.0474 (15)
H100.50710.50670.63140.057*
C110.7872 (8)0.5048 (3)0.5794 (3)0.0396 (12)
C120.8970 (8)0.5476 (4)0.5182 (3)0.0429 (13)
H121.02850.53050.50910.052*
C130.8187 (8)0.6140 (4)0.4706 (3)0.0382 (14)
C141.0628 (11)0.4029 (4)0.6072 (4)0.0602 (17)
H14A1.11380.37220.65550.072*
H14B1.15300.45120.59560.072*
C151.0651 (14)0.3412 (6)0.5345 (5)0.098 (3)
H15A1.19840.32000.52590.147*
H15B1.02040.37150.48580.147*
H15C0.97790.29260.54550.147*
C160.7536 (12)0.3977 (4)0.6930 (3)0.0594 (15)
H16A0.67130.44200.71940.071*
H16B0.84520.37520.73450.071*
C170.6208 (11)0.3235 (5)0.6640 (6)0.085 (2)
H17A0.54970.29970.71050.127*
H17B0.70120.27850.63920.127*
H17C0.52730.34540.62390.127*
I10.76828 (6)1.01529 (2)0.16772 (2)0.05438 (13)
N10.6279 (7)0.7428 (3)0.3703 (3)0.0431 (11)
N20.8680 (7)0.4386 (3)0.6273 (3)0.0478 (12)
O10.9360 (6)0.6522 (3)0.4129 (2)0.0532 (11)
H10.87270.69050.38880.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.056 (3)0.032 (3)0.039 (3)0.004 (3)0.001 (2)0.006 (2)
C20.048 (3)0.044 (3)0.039 (3)0.000 (3)0.000 (2)0.002 (2)
C30.042 (3)0.037 (3)0.044 (3)0.002 (2)0.011 (2)0.004 (2)
C40.061 (4)0.049 (4)0.051 (4)0.000 (3)0.017 (3)0.008 (3)
C50.049 (4)0.062 (3)0.084 (4)0.002 (4)0.015 (4)0.008 (3)
C60.051 (4)0.041 (3)0.061 (4)0.006 (3)0.008 (3)0.005 (3)
C70.055 (4)0.043 (4)0.040 (3)0.008 (3)0.006 (3)0.008 (3)
C80.047 (3)0.032 (3)0.040 (3)0.003 (3)0.007 (3)0.001 (3)
C90.043 (3)0.047 (4)0.051 (4)0.003 (3)0.011 (3)0.003 (3)
C100.046 (3)0.051 (4)0.045 (3)0.000 (3)0.009 (2)0.004 (3)
C110.041 (3)0.036 (3)0.041 (2)0.000 (3)0.002 (2)0.0006 (17)
C120.040 (3)0.042 (3)0.046 (3)0.001 (2)0.008 (3)0.002 (3)
C130.046 (4)0.032 (3)0.037 (3)0.006 (2)0.007 (2)0.002 (2)
C140.063 (4)0.056 (4)0.061 (4)0.010 (3)0.007 (3)0.013 (3)
C150.108 (7)0.089 (6)0.098 (7)0.025 (5)0.021 (5)0.012 (5)
C160.064 (4)0.061 (3)0.054 (3)0.001 (5)0.002 (4)0.018 (2)
C170.072 (5)0.069 (5)0.114 (6)0.019 (4)0.003 (5)0.024 (5)
I10.0585 (2)0.05387 (18)0.05074 (17)0.0006 (2)0.0024 (2)0.01511 (17)
N10.054 (3)0.036 (2)0.039 (2)0.001 (2)0.004 (2)0.003 (2)
N20.050 (3)0.052 (3)0.041 (2)0.003 (2)0.005 (2)0.011 (2)
O10.051 (3)0.060 (3)0.048 (3)0.008 (2)0.015 (2)0.013 (2)
Geometric parameters (Å, º) top
C1—C21.388 (7)C11—N21.381 (7)
C1—C61.390 (8)C11—C121.393 (7)
C1—N11.407 (7)C12—C131.374 (7)
C2—C31.365 (7)C12—H120.9300
C2—H20.9300C13—O11.349 (6)
C3—C41.381 (8)C14—N21.450 (8)
C3—I12.114 (5)C14—C151.503 (10)
C4—C51.373 (8)C14—H14A0.9700
C4—H40.9300C14—H14B0.9700
C5—C61.384 (8)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—H60.9300C15—H15C0.9600
C7—N11.292 (7)C16—N21.449 (7)
C7—C81.446 (8)C16—C171.512 (9)
C7—H70.9300C16—H16A0.9700
C8—C91.404 (8)C16—H16B0.9700
C8—C131.409 (8)C17—H17A0.9600
C9—C101.354 (8)C17—H17B0.9600
C9—H90.9300C17—H17C0.9600
C10—C111.430 (9)O1—H10.8200
C10—H100.9300
C2—C1—C6118.8 (5)C13—C12—H12118.7
C2—C1—N1116.7 (5)C11—C12—H12118.7
C6—C1—N1124.3 (5)O1—C13—C12118.7 (5)
C3—C2—C1120.1 (5)O1—C13—C8121.0 (6)
C3—C2—H2119.9C12—C13—C8120.2 (5)
C1—C2—H2119.9N2—C14—C15114.7 (6)
C2—C3—C4122.0 (5)N2—C14—H14A108.6
C2—C3—I1118.2 (4)C15—C14—H14A108.6
C4—C3—I1119.8 (4)N2—C14—H14B108.6
C5—C4—C3117.6 (5)C15—C14—H14B108.6
C5—C4—H4121.2H14A—C14—H14B107.6
C3—C4—H4121.2C14—C15—H15A109.5
C4—C5—C6121.9 (6)C14—C15—H15B109.5
C4—C5—H5119.0H15A—C15—H15B109.5
C6—C5—H5119.0C14—C15—H15C109.5
C5—C6—C1119.5 (6)H15A—C15—H15C109.5
C5—C6—H6120.3H15B—C15—H15C109.5
C1—C6—H6120.3N2—C16—C17114.0 (5)
N1—C7—C8120.3 (6)N2—C16—H16A108.8
N1—C7—H7119.8C17—C16—H16A108.8
C8—C7—H7119.8N2—C16—H16B108.8
C9—C8—C13117.3 (6)C17—C16—H16B108.8
C9—C8—C7120.6 (5)H16A—C16—H16B107.6
C13—C8—C7122.0 (6)C16—C17—H17A109.5
C10—C9—C8122.5 (6)C16—C17—H17B109.5
C10—C9—H9118.8H17A—C17—H17B109.5
C8—C9—H9118.8C16—C17—H17C109.5
C9—C10—C11120.6 (5)H17A—C17—H17C109.5
C9—C10—H10119.7H17B—C17—H17C109.5
C11—C10—H10119.7C7—N1—C1121.0 (5)
N2—C11—C12122.1 (5)C11—N2—C16121.0 (5)
N2—C11—C10121.2 (4)C11—N2—C14120.2 (5)
C12—C11—C10116.7 (5)C16—N2—C14118.6 (5)
C13—C12—C11122.6 (5)C13—O1—H1109.5
C6—C1—C2—C31.1 (8)C10—C11—C12—C130.2 (8)
N1—C1—C2—C3176.8 (5)C11—C12—C13—O1179.6 (5)
C1—C2—C3—C41.7 (8)C11—C12—C13—C81.9 (9)
C1—C2—C3—I1179.9 (4)C9—C8—C13—O1178.9 (5)
C2—C3—C4—C51.5 (9)C7—C8—C13—O12.5 (8)
I1—C3—C4—C5179.7 (4)C9—C8—C13—C122.7 (8)
C3—C4—C5—C60.8 (9)C7—C8—C13—C12175.9 (5)
C4—C5—C6—C10.3 (9)C8—C7—N1—C1172.9 (5)
C2—C1—C6—C50.4 (8)C2—C1—N1—C7152.9 (5)
N1—C1—C6—C5175.8 (5)C6—C1—N1—C731.6 (8)
N1—C7—C8—C9179.0 (6)C12—C11—N2—C16177.3 (5)
N1—C7—C8—C130.4 (9)C10—C11—N2—C162.5 (8)
C13—C8—C9—C101.9 (9)C12—C11—N2—C148.6 (8)
C7—C8—C9—C10176.7 (6)C10—C11—N2—C14171.6 (5)
C8—C9—C10—C110.3 (9)C17—C16—N2—C1185.1 (7)
C9—C10—C11—N2179.6 (5)C17—C16—N2—C1489.0 (7)
C9—C10—C11—C120.6 (7)C15—C14—N2—C1176.5 (8)
N2—C11—C12—C13179.5 (5)C15—C14—N2—C1697.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.577 (6)147

Experimental details

Crystal data
Chemical formulaC17H19IN2O
Mr394.24
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.6999 (6), 15.248 (2), 16.1195 (15)
V3)1646.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.95
Crystal size (mm)0.49 × 0.34 × 0.21
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.451, 0.603
No. of measured, independent and
observed [I > 2σ(I)] reflections
6072, 3225, 2417
Rint0.049
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.074, 0.86
No. of reflections3225
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.63
Absolute structureFlack (1983), 1355 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.577 (6)147.4
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences of Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Grant of Ondokuz Mayıs University).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDemirtaş, G., Dege, N., Alaman Ağar, A. & Büyükgüngör, O. (2011). Acta Cryst. E67, o857.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGül, Z. S., Ağar, A. A. & Işık, Ş. (2007). Acta Cryst. E63, o4564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGül, Z. S., Erşahin, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o3547.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationPekdemir, M., Şahin, Z. S., Işık, Ş., Alaman Ağar, A., Öztürk Yıldırım, S. & Butcher, R. J. (2012). Acta Cryst. E68, o1024.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYüce, S., Özek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2004). Acta Cryst. E60, o718–o719.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds